博碩士論文 973202100 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:54.158.194.80
姓名 張桓(Huan Chang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 滅點幾何精化於單視影像模型重建
(Single View Reconstruction Using Refined Vanishing Point Geometry)
相關論文
★ 三維房屋模型實景紋理影像製作與敷貼之研究★ 紋理輔助高解析度衛星影像分析應用於偵測入侵性植物分布之研究
★ 利用高光譜影像偵測外來植物-以恆春地區銀合歡為例★ 以視訊影像進行三維房屋模型實景紋理敷貼之研究
★ 區塊式Level of Detail地景視覺模擬之研究★ 高光譜影像立方體紋理特徵之三維計算
★ 漸變式多重解析度於大型地景視覺模擬之應用★ 區塊式LOD網格細化於大型地形視覺模擬之應用
★ 多層次精緻度三維房屋模型之建置★ 高光譜影像立方體於特徵空間之三維紋理計算
★ 影像修補技術於牆面紋理影像遮蔽去除之應用★ 結合遙測影像與GIS資料以資料挖掘 技術進行崩塌地辨識-以石門水庫集水區為例
★ 利用近景影像提高三維建物模型之細緻化等級★ 以地面及空載光達點雲重建複雜物三維模型
★ 高精緻度房屋模型結合蟻群演算法於室內最佳路徑選擇之應用★ 二次微分法於空載全波形光達之特徵萃取與地物分類
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文描述如何在單一視角的平面影像中,藉由透視投影所隱含之幾何資訊,量測與重建場景特徵物的三維模型。
單影像量測所依據的是物空間三個彼此正交軸向的平行線,在影像上所交集的滅點,藉由滅點重新推論出成像時的物像關係與相機參數及姿態。
此演算法具有低操作門檻、低成本與可靠精度等特性,並能針對已遭拆遷或破壞之歷史建物進行三維重建。

本研究提出之演算流程,可在無先驗資訊,例如相機內外方位參數、透鏡畸變等環境下,在具有透視投影的照片或是圖畫中,以層疊霍式轉換自動化地萃取與分類通過三方向滅點的直線特徵。
在初始滅點與估算特徵投影點的迭代過程中,利用投影點的誤差分析以O(1)計算複雜度的階層式微調機制修正滅點的位置,降低滅點幾何的隨機與系統性誤差。
平面模型藉由滅點幾何即可推估特徵點的相對坐標,而針對三種常見的曲面結構:橢圓柱型、旋轉曲面、自由曲面,則進行不同策略性的三維幾何特徵參數重建。
圓柱結構萃取其長短軸長度與起迄點位置,旋轉曲面尋找其中心軸與邊界曲線,自由曲面則決定取樣點數與建立邊界參數後,內插出曲面參數模型。

本研究使用之測試例影像來源包含低誤差之電腦模擬輸出影像、近景攝影之非量測型相機與視訊擷取、真實畫作與數化歷史影像等。
電腦模擬輸出影像在規則與非平面模型的建置誤差皆低於1\%。
近景攝影建置之規則與非平面模型,相較於地面光達與航測立體對的模型誤差則各低於2\%與3\%。
滅點微調機制能給重建後三維模型的均方根誤差由2\%降至0.6\%。
建置成果與現地量測等資料進行量化驗証與視覺化之比較,同時也針對視角條件進行了誤差分析。
此技術能應用於三維數位典藏、虛擬實境、數位城市、畫作三維視覺化與構圖分析等多方領域。
摘要(英) This study developed algorithms to measure and reconstruct three-dimentional (3D) objects and scenes from a single-perspective image based on its geometric cues.
Single view metrology relies on the 3 vanishing points that converge by parallel lines along 3 mutually orthogonal axes.
Vanishing points can be used to estimate not only the camera pose but also internal parameters; thus, the 3D measurement of monocular vision can obtain a partial or complete 3D reconstruction of a scene.
Advantages of the proposed method include low cost, reliable accuracy and flexibility, and the potential to reconstruct buildings and other architecture that are heavily damaged or even no longer exist.

The presented algorithms employ uncalibrated images; therefore, no prior camera information is needed.
Exterior and interior orientation parameters can be calibrated directly from the vanishing points.
The proposed scheme began with line segment extraction and classification using cascade Hough transform from photographs or paintings with fine-perspective projection, and a fully automated base point searching algorithm is then used to locate the projection of feature points on the referenced plane.
The systematic and random errors of the vanishing points and base points are minimized iteratively during the vanishing point refinement process based on the diversity of each projection group with an O(1) computational complexity.
Three-dimensional coordinates of feature points are computed based on the single-view metrology.
In addition, 3 types of non-planar structures including elliptic cylinder shapes, surfaces of revolution, and free-form surfaces are extracted separately for reconstruction based on their significant parameters.
Finally, regular and curved models are merged based on their shared feature points.

The output imagery of a computer-simulated model, video frame cut, consumer camera, and real paintings are used in this study to test the performance of the algorithms.
The proposed vanishing point refinement process is able to reduce the differences between the images with and without lens distortion.
Quantitative evaluations of the results compared with ground-based surveying and visualized comparison with raw images indicate that the algorithms can successfully extract 3D information and reconstruct 3D models of specific non-planar structures.
Estimation errors of regular and non-planar parameters are less than 1\% compared to the ground truth using computer simulated imagery.
For close range photograph, the average regular and non-planar errors are less than 2\% and 3\%, respectively, compared to the ground truth measured by ground-based LIDAR and stereo photo pairs.
The proposed vanishing point refinement process improves the RMSE of the 3D model from about 2\% error to about 0.6\%.
The accuracy of the proposed methods are related to the viewing angles based on the vanishing point geometry, and validation of viewing angle tolerance is also provided by given random errors during vanishing point calculation.
關鍵字(中) ★ 滅點
★ 模型建置
★ 相機校正
★ 曲面建模
★ 視覺化
關鍵字(英) ★ vanishing points
★ model reconstruction
★ camera calibration
★ non-planar modelling
★ visualization
論文目次
Contents
Page
摘要.................................................................................................... i
Abstract.............................................................................................. iii
Acknowledgements.............................................................................. v
Contents .............................................................................................vii
List of figures...................................................................................... xi
List of tables.......................................................................................xvii
List of acronyms .................................................................................xix
1. Introduction....................................................................... 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Research challenges, scope and assumptions . . . . . 5
1.3 Innovation and contribution . . . . . . . . . . . . . . 6
1.4 Dissertation outline . . . . . . . . . . . . . . . . . . 7
2. Related Work..................................................................... 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Image based model reconstruction . . . . . . . . . . 9
2.2.1 Stereo and multiple view vision . . . . . . . . . . . . 10
2.2.2 Singlw view metrology . . . . . . . . . . . . . . . . . 15
2.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Pre-processing for SVR . . . . . . . . . . . . . . . . 27
2.3.1 Camera calibration . . . . . . . . . . . . . . . . . . . 27
2.3.2 Vanishing point estimation . . . . . . . . . . . . . . 33
2.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4 Representation of 3D models . . . . . . . . . . . . . 40
2.4.1 Parametric model . . . . . . . . . . . . . . . . . . . 40
2.4.2 Constructive solid geometry . . . . . . . . . . . . . . 40
2.4.3 Boundary representation . . . . . . . . . . . . . . . . 41
2.4.4 Sweeping and surface-of-revolution . . . . . . . . . . 42
2.4.5 Surface mesh model . . . . . . . . . . . . . . . . . . 42
2.4.6 Cell decomposition . . . . . . . . . . . . . . . . . . . 43
2.4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5 Summary of chapter 2 . . . . . . . . . . . . . . . . . 47
3. Vanishing Point Geometry ................................................ 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Vanishing point and vanishing line . . . . . . . . . . 49
3.3 Vanishing points and camera calibration . . . . . . . 54
3.3.1 Vanishing points and collinearity condition equations 54
3.3.2 Vanishing points and perspective projection transformation
. . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.3 Vanishing points and camera positioning . . . . . . . 62
3.3.4 Vanishing points and lens distortion . . . . . . . . . 63
3.4 Geometric cues and vanishing points . . . . . . . . . 64
3.4.1 Affine measurements between parallel planes . . . . . 66
3.5 Summary of chapter 3 . . . . . . . . . . . . . . . . . 71
4. Refinement of Single View Reconstruction........................ 73
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 73
4.2 Image pre-processing . . . . . . . . . . . . . . . . . . 73
4.2.1 Feature lines detection . . . . . . . . . . . . . . . . . 75
4.2.2 Initial vanishing point localization . . . . . . . . . . 76
4.3 Vanishing point refinement . . . . . . . . . . . . . . 78
4.3.1 Feature point selection and base point estimation . . 78
4.3.2 Vanishing point fine-tuning . . . . . . . . . . . . . . 80
4.3.3 Measurement regularization . . . . . . . . . . . . . . 84
4.3.4 A test case of vanishing point estimation and refinement
process . . . . . . . . . . . . . . . . . . . . . . 85
4.4 Non-planar reconstruction . . . . . . . . . . . . . . . 93
4.4.1 Cylindrical model . . . . . . . . . . . . . . . . . . . 93
4.4.2 Surface-of-revolution model . . . . . . . . . . . . . . 94
4.4.3 Free-form structure . . . . . . . . . . . . . . . . . . 95
4.5 Summary of chapter 4 . . . . . . . . . . . . . . . . . 96
5. Results and Discussions..................................................... 99
5.1 Computer simulated models . . . . . . . . . . . . . . 99
5.1.1 Computer simulated parametric model . . . . . . . . 99
5.1.2 Complex CAD model . . . . . . . . . . . . . . . . . 105
5.2 Close range photographs . . . . . . . . . . . . . . . . 111
5.2.1 Video frame cut . . . . . . . . . . . . . . . . . . . . 111
5.2.2 Oblique top-view photograph . . . . . . . . . . . . . 114
5.2.3 Historical photograph . . . . . . . . . . . . . . . . . 118
5.3 Paintings . . . . . . . . . . . . . . . . . . . . . . . . 122
5.4 Viewing angle analysis . . . . . . . . . . . . . . . . . 126
5.5 Summary of chapter 5 . . . . . . . . . . . . . . . . . 128
6. Conclusions........................................................................131
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . 131
6.1.1 Single view metrology . . . . . . . . . . . . . . . . . 131
6.1.2 Vanishing point estimation and refinement . . . . . . 132
6.1.3 Model reconstruction and error analysis . . . . . . . 132
6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . 134
6.2.1 Vanishing points and camera calibration . . . . . . . 134
6.2.2 Model reconstruction . . . . . . . . . . . . . . . . . 134
6.2.3 Level of automation . . . . . . . . . . . . . . . . . . 135
6.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . 135
6.4 Possible applications . . . . . . . . . . . . . . . . . . 136
6.5 Suggestions and future works . . . . . . . . . . . . . 137
Bibliography .......................................................................................139
Curriculum Vitae................................................................................159
參考文獻 Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Su?sstrunk, S.,
2012. Slic superpixels compared to state-of-the-art superpixel methods.
IEEE transactions on pattern analysis and machine intelligence
34 (11), 2274–2282.
Aguilera, D., Lahoz, J. G., Codes, J. F., 2005. A new method for vanishing
points detection in 3d reconstruction from a single view. Proceedings
of ISPRS comission 2.
Almansa, A., Desolneux, A., Vamech, S., 2003. Vanishing point detection
without any a priori information. IEEE Transactions on Pattern
Analysis and Machine Intelligence 25 (4), 502–507.
Autodesk, 2016. Autodesk 123d.
URL http://www.123dapp.com/
Badler, N., 1974. Three-dimensional motion from two-dimensional picture
sequences. In: Proceedings of the 2nd Int. Joint Conf. Pattern
Recognition. pp. 157–161.
Baillard, C., Schmid, C., Zisserman, A., Fitzgibbon, A. W., 1999. Automatic
line matching and 3D reconstruction of buildings from multiple
views. In: ISPRS Conference on Automatic Extraction of GIS Objects
from Digital Imagery. pp. 69–80.
Barinova, O., Konushin, V., Yakubenko, A., Lee, K., Lim, H., Konushin,
A., 2008. Fast automatic single-view 3-d reconstruction of urban
scenes. In: European Conference on Computer Vision. Springer, pp.
100–113.
Barnard, S. T., 1983. Interpreting perspective images. Artificial intelligence
21 (4), 435–462.
139
Baumberg, A., 2016. 3d software object modeller (3dsom).
URL http://www.3dsom.com/
Bay, H., Tuytelaars, T., Van Gool, L., 2006. Surf: Speeded up robust
features. In: Computer vision–ECCV 2006. Springer, pp. 404–417.
Bazin, J.-C., Pollefeys, M., 2012. 3-line ransac for orthogonal vanishing
point detection. In: 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, pp. 4282–4287.
Blackmore, D., Leu, M. C., Shih, F., 1994. Analysis and modelling of
deformed swept volumes. Computer-Aided Design 26 (4), 315–326.
Boulanger, K., Bouatouch, K., Pattanaik, S., 2006. Atip: A tool for 3d
navigation inside a single image with automatic camera calibration.
EG UK theory and practice of computer graphics 15.
Brauer-Burchardt, C., Ku?hmstedt, P., Notni, G., 2015. Calibration of
stereo 3d scanners with minimal number of views using plane targets
and vanishing points. In: International Conference on Computer Analysis
of Images and Patterns. Springer, pp. 61–72.
Brauer-Burchardt, C., Voss, K., 2000. Robust vanishing point determination
in noisy images. In: Pattern Recognition, 2000. Proceedings.
15th International Conference on. Vol. 1. IEEE, pp. 559–562.
Byrod, M., Astrom, K., 2010. Conjugate gradient bundle adjustment.
In: European Conference on Computer Vision. Springer, pp. 114–127.
Canny, J., 1986. A computational approach to edge detection. IEEE
Transactions on pattern analysis and machine intelligence (6), 679–
698.
Cantoni, V., Lombardi, L., Porta, M., Sicard, N., 2001. Vanishing point
detection: representation analysis and new approaches. In: Image
Analysis and Processing, 2001. Proceedings. 11th International Conference
on. IEEE, pp. 90–94.
Caprile, B., Torre, V., 1990. Using vanishing points for camera calibration.
International journal of computer vision 4 (2), 127–139.
140
Chang, H., Tsai, F., 2011. Single view reconstruction for specific curve
structures. In: 32nd Asian Conference on Remote Sensing. pp. 232–
240.
Chang, H., Tsai, F., 2012. Reconstructing three-dimensional specific
curve building models from a single perspective view image. International
Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences 39, B6.
Chen, Q., Wu, H., Wada, T., 2004. Camera calibration with two arbitrary
coplanar circles. In: Proc. European Conf. Computer Vision.
Inc, pp. 521–532.
Chen, W., 2017. Sketchup 3d warehouse tantunny.
URL 3dwarehouse.sketchup.com/user/
0047218326419084816043122/TANTUNNY?nav=models
Choi, J., Kim, W., Kong, H., Kim, C., 2011. Real-time vanishing point
detection using the local dominant orientation signature. In: 3DTV
Conference: The True Vision-Capture, Transmission and Display of
3D Video (3DTV-CON), 2011. IEEE, pp. 1–4.
Colombo, C., Com, D., Bimbo, A. D., 2006. Camera calibration with
two arbitrary coaxial circles. In: In Proc. 9th European Conference on
Computer Vision ECCV 2006. Springer, pp. 265–276.
Colombo, C., Del Bimbo, A., Pernici, F., 2005. Metric 3d reconstruction
and texture acquisition of surfaces of revolution from a single uncalibrated
view. IEEE Transactions on Pattern Analysis and Machine
Intelligence 27 (1), 99–114.
Corral-Soto, E. R., Elder, J. H., 2014. Automatic single-view calibration
and rectification from parallel planar curves. In: European Conference
on Computer Vision. Springer, pp. 813–827.
Criminisi, A., 1999. Accurate visual metrology from single and multiple
uncalibrated images. Ph.D. thesis, University of Oxford.
Criminisi, A., 2002. Single-view metrology: Algorithms and applica-
141
tions. In: Joint Pattern Recognition Symposium. Springer, pp. 224–
239.
Criminisi, A., 2012. Accurate visual metrology from single and multiple
uncalibrated images. Springer Science & Business Media.
Criminisi, A., Reid, I., Zisserman, A., 2000. Single view metrology. International
Journal of Computer Vision 40 (2), 123–148.
Dalal, N., Triggs, B., 2005. Histograms of oriented gradients for human
detection. In: Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on. Vol. 1. IEEE, pp. 886–
893.
Desolneux, A., Moisan, L., Morel, J.-M., 2001. Edge detection by
helmholtz principle. Journal of Mathematical Imaging and Vision
14 (3), 271–284.
Devernay, F., Faugeras, O. D., 1995. Automatic calibration and removal
of distortion from scenes of structured environments. In: SPIE’s 1995
International Symposium on Optical Science, Engineering, and Instrumentation.
International Society for Optics and Photonics, pp. 62–72.
Diaz, E., Arguello, H., 2016. An algorithm to estimate building heights
from google street-view imagery using single view metrology across a
representational state transfer system. In: SPIE Commercial+ Scientific
Sensing and Imaging. International Society for Optics and Photonics,
pp. 98680A–98680A.
Dissanayake, M. G., Newman, P., Clark, S., Durrant-Whyte, H. F.,
Csorba, M., 2001. A solution to the simultaneous localization and map
building (slam) problem. IEEE Transactions on robotics and automation
17 (3), 229–241.
Duda, R. O., Hart, P. E., 1972. Use of the hough transformation to
detect lines and curves in pictures. Communications of the ACM 15 (1),
11–15.
Engel, J., Schops, T., Cremers, D., 2014. Lsd-slam: Large-scale di-
142
rect monocular slam. In: European Conference on Computer Vision.
Springer, pp. 834–849.
Eos Systems, I., 2016. Accurate and affordable 3d modeling - measuring
- scanning.
URL http://www.photomodeler.com/index.html
Fangi, G., Gagliardini, G., Malinverni, E. S., 2002. Photointerpretation
and small scale stereoplotting with digitally rectified photographs
with geometrical constraints. International Archives of Photogrammetry,
Remote Sensing and Spatial Information Sciences 34 (5/C7), 160–
167.
Faugeras, O., 1993. Three-dimensional computer vision: a geometric
viewpoint. MIT press.
Faugeras, O., 1995. Stratification of three-dimensional vision: projective,
affine, and metric representations. JOSA A 12 (3), 465–484.
Faugeras, O., Laveau, S., Robert, L., Csurka, G., Zeller, C., 1995. 3-d
reconstruction of urban scenes from sequences of images. In: Automatic
Extraction of Man-Made Objects from Aerial and Space Images.
Springer, pp. 145–168.
Faugeras, O. D., 1992. What can be seen in three dimensions with an
uncalibrated stereo rig? In: European conference on computer vision.
Springer, pp. 563–578.
Faugeras, S. L. O., 2004. Oriented projective geometry for computer
vision. InProc. ECCV 1064.
Fremont, V., Chellali, R., 2002. Direct camera calibration using two
concentric circles from a single view. In: International Conference on
Artificial Reality and Telexistence. Citeseer, pp. 93–98.
Furferi, R., Governi, L., Vanni, N., Volpe, Y., 2014. Tactile 3d bas-relief
from single-point perspective paintings: a computer based method.
Journal of Information & Computational Science 11 (16), 5667–5680.
Furukawa, Y., Curless, B., Seitz, S. M., Szeliski, R., 2010. Towards
internet-scale multi-view stereo. In: CVPR.
143
Furukawa, Y., Ponce, J., 2010. Accurate, dense, and robust multiview
stereopsis. Pattern Analysis and Machine Intelligence, IEEE Transactions
on 32 (8), 1362–1376.
Gamba, P., Mecocci, A., Salvatore, U., 1996. Vanishing point detection
by a voting scheme. In: Image Processing, 1996. Proceedings., International
Conference on. Vol. 1. IEEE, pp. 301–304.
Garcia-Gago, J., Gomez-Lahoz, J., Rodriguez-Mendez, J., Gonzalez-
Aguilera, D., 2014. Historical single image-based modeling: The case
of gobierna tower, zamora (spain). Remote Sensing 6 (2), 1085–1101.
Gonzalez-Aguilera, D., Gomez-Lahoz, J., 2008. From 2d to 3d through
modelling based on a single image. The Photogrammetric Record
23 (122), 208–227.
Gopi, S., et al., 2007. Advanced Surveying: Total Station, GIS and
Remote Sensing. Pearson Education India.
Gracie, G., 1968. Analytical photogrammetry applied to single terrestrial
photograph mensuration. In: Proceedings of the XIth International
Congress of Photogrammetry, Lausanne, Switzerland.
Grammatikopoulos, L., Karras, G., Petsa, E., 2007. An automatic approach
for camera calibration from vanishing points. ISPRS journal of
photogrammetry and remote sensing 62 (1), 64–76.
Groger, G., Kolbe, T., Nagel, C., Hafele, K., 2012. Ogc city geography
markup language (citygml) encoding standard v2. 0. OGC Doc (12-
019).
Grossmann, E., Ortin, D., Santos-Victor, J., 2002. Single and multi-view
reconstruction of structured scenes. In: Proceedings of the Fifth Asian
Conference on Computer Vision, Melbourne, Australia. pp. 93–104.
Guillou, E., Meneveaux, D., Maisel, E., Bouatouch, K., 2000. Using
vanishing points for camera calibration and coarse 3d reconstruction
from a single image. The Visual Computer 16 (7), 396–410.
Haggren, H., 2002. Applications of projective transformation for stereo
photogrammetry.
144
URL https://foto.aalto.fi/research/projects/Full_scale/
Academy_11_2002.htm
Haines, O., Calway, A., 2015. Recognising planes in a single image. IEEE
transactions on pattern analysis and machine intelligence 37 (9), 1849–
1861.
Haralick, R. M., 1980. Using perspective transformations in scene analysis.
Computer Graphics and Image Processing 13 (3), 191–221.
Harris, C., Stephens, M., 1988. A combined corner and edge detector.
In: Alvey vision conference. Vol. 15. Citeseer, p. 50.
Hartley, R., Zisserman, A., 2003. Multiple view geometry in computer
vision. Cambridge university press.
Hartley, R. I., 1992. Estimation of relative camera positions for uncalibrated
cameras. In: European Conference on Computer Vision.
Springer, pp. 579–587.
Hartley, R. I., Sturm, P., 1997. Triangulation. Computer vision and
image understanding 68 (2), 146–157.
Hassner, T., Basri, R., 2006. Example based 3d reconstruction from
single 2d images. In: 2006 Conference on Computer Vision and Pattern
Recognition Workshop (CVPRW’06). IEEE, pp. 15–15.
He, B., Li, Y., 2009. Camera calibration with lens distortion and from
vanishing points. Optical Engineering 48 (1), 013603–013603.
Heyden, A., Astrom, K., 1997. Euclidean reconstruction from image
sequences with varying and unknown focal length and principal point.
In: Computer Vision and Pattern Recognition, 1997. Proceedings.,
1997 IEEE Computer Society Conference on. IEEE, pp. 438–443.
Hoiem, D., Efros, A. A., Hebert, M., 2005. Automatic photo pop-up.
ACM transactions on graphics (TOG) 24 (3), 577–584.
Hong, W., 2004. On symmetry and multiple-view geometry: Structure,
pose, and calibration from a single image. IJCV 60, 2004.
145
Horry, Y., Anjyo, K.-I., Arai, K., 1997. Tour into the picture: using
a spidery mesh interface to make animation from a single image. In:
Proceedings of the 24th annual conference on Computer graphics and
interactive techniques. ACM Press/Addison-Wesley Publishing Co.,
pp. 225–232.
Hou, F., Qin, H., Qi, Y., 2016. Procedure-based component and architecture
modeling from a single image. The Visual Computer 32 (2),
151–166.
Hough, P. V., Dec 1962. Method and means for recognizing complex
patterns. US Patent 3,069,654.
Ikeuchi, K., 2014. Computer vision: A reference guide. Springer Publishing
Company, Incorporated.
Intuition, S., 2017. Volume mesh generation by sweeping operations.
URL http://www.visualfea.com/manual-normal/html/4-2-3.
htm
Jahromi, A. B., Sohn, G., 2016. Geometric context and orientation map
combination for indoor corridor modeling using a single image. International
Archives of the Photogrammetry, Remote Sensing & Spatial
Information Sciences 41, 295–302.
Ji, Q., Haralick, R. M., 1999. Error propagation for computer vision
performance characterization. In: International Conference on Imaging
Science, Systems, and Technology, Las Vegas, NV. Vol. 28. pp. 429–35.
Jiang, G., Quan, L., 2005. Detection of concentric circles for camera
calibration. In: Tenth IEEE International Conference on Computer
Vision (ICCV’05) Volume 1. Vol. 1. IEEE, pp. 333–340.
Kalantari, M., Jung, F., Guedon, J., 2009. Precise, automatic and fast
method for vanishing point detection. The Photogrammetric Record
24 (127), 246–263.
Kanazawa, A., Jacobs, D. W., Chandraker, M., 2016. Warpnet: Weakly
supervised matching for single-view reconstruction. arXiv preprint
arXiv:1604.05592.
146
Kang, H. W., Pyo, S. H., Anjyo, K.-i., Shin, S. Y., 2001. Tour into the
picture using a vanishing line and its extension to panoramic images.
In: Computer Graphics Forum. Vol. 20. Wiley Online Library, pp.
132–141.
Kemp, M., et al., 1990. The Science of Art: Optical themes in western
art from Brunelleschi to Seurat. Yale University Press New Haven.
Kender, J. R., 1979. Shape from texture: An aggregation transform that
maps a class of textures into surface orientation. In: Proceedings of
the 6th international joint conference on Artificial intelligence-Volume
1. Morgan Kaufmann Publishers Inc., pp. 475–480.
Klein, G., Murray, D., 2007. Parallel tracking and mapping for small ar
workspaces. In: Mixed and Augmented Reality, 2007. ISMAR 2007.
6th IEEE and ACM International Symposium on. IEEE, pp. 225–234.
Koenderink, J., van Doorn, A., 1991. Affine structure from motion. Journal
of the Optical Society of America. A, Optics and image science
8 (2), 377–385.
Ko?ecka, J., Zhang, W., 2002. Video compass. In: European conference
on computer vision. Springer, pp. 476–490.
Koutsoudis, A., Vidmar, B., Ioannakis, G., Arnaoutoglou, F., Pavlidis,
G., Chamzas, C., 2014. Multi-image 3d reconstruction data evaluation.
Journal of Cultural Heritage 15 (1), 73–79.
Koutsourakis, P., Simon, L., Teboul, O., Tziritas, G., Paragios, N., 2009.
Single view reconstruction using shape grammars for urban environments.
In: 2009 IEEE 12th international conference on computer vision.
IEEE, pp. 1795–1802.
Kruppa, E., 1913. Zur Ermittlung eines Objektes aus zwei Perspektiven
mit innerer Orientierung. Holder.
Kushal, A., Bansal, V., Banerjee, S., 2002. A simple method for interactive
3d reconstruction, camera calibration from a single view. In:
ICVGIP. Citeseer.
147
Lee, D. C., Hebert, M., Kanade, T., 2009. Geometric reasoning for single
image structure recovery. In: Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on. IEEE, pp. 2136–2143.
Leonard, J. J., Durrant-Whyte, H. F., 1991. Simultaneous map building
and localization for an autonomous mobile robot. In: Intelligent
Robots and Systems’ 91.’Intelligence for Mechanical Systems, Proceedings
IROS’91. IEEE/RSJ International Workshop on. Ieee, pp. 1442–
1447.
Li, B., Peng, K., Ying, X., Zha, H., 2010. Simultaneous vanishing point
detection and camera calibration from single images. In: International
Symposium on Visual Computing. Springer, pp. 151–160.
Liang, D., Wang, X., 2008. Planar visual metrology using partitionbased
camera calibration. In: Robotics, Automation and Mechatronics,
2008 IEEE Conference on. IEEE, pp. 205–209.
Liebowitz, D., Criminisi, A., Zisserman, A., 1999. Creating architectural
models from images. In: Computer Graphics Forum. Vol. 18. Wiley
Online Library, pp. 39–50.
Liebowitz, D., Zisserman, A., 1998. Metric rectification for perspective
images of planes. In: Computer Vision and Pattern Recognition, 1998.
Proceedings. 1998 IEEE Computer Society Conference on. IEEE, pp.
482–488.
Liu, M., Guo, Y., Wang, J., 2017. Indoor scene modeling from a single
image using normal inference and edge features. The Visual Computer,
1–14.
Lloyd, R., McCloskey, S., 2014. Recognition of 3d package shapes for single
camera metrology. In: Applications of Computer Vision (WACV),
2014 IEEE Winter Conference on. IEEE, pp. 99–106.
Longuet-Higgins, H. C., 1987. A computer algorithm for reconstructing
a scene from two projections. Readings in Computer Vision: Issues,
Problems, Principles, and Paradigms, MA Fischler and O. Firschein,
eds, 61–62.
148
Lowe, D. G., 1999. Object recognition from local scale-invariant features.
In: Computer vision, 1999. The proceedings of the seventh IEEE international
conference on. Vol. 2. Ieee, pp. 1150–1157.
Luong, Q.-T., 1992. Matrice fondamentale et calibration visuelle sur
l’environnement. vers une plus grande autonomie des systeme robotiques.
Ph.D. thesis, Universite Paris Sud-Paris XI.
Luong, Q.-T., Faugeras, O. D., 1996. The fundamental matrix: Theory,
algorithms, and stability analysis. International journal of computer
vision 17 (1), 43–75.
Lutton, E., Maitre, H., Lopez-Krahe, J., 1994. Contribution to the determination
of vanishing points using hough transform. IEEE transactions
on pattern analysis and machine intelligence 16 (4), 430–438.
Magee, M., Aggarwal, J., 1984. Determining vanishing points from
perspective images. Computer Vision, Graphics, and Image Processing
26 (2), 256 – 267.
URL http://www.sciencedirect.com/science/article/pii/
0734189X84901889
Malik, J., Rosenholtz, R., 1997. Computing local surface orientation
and shape from texture for curved surfaces. International journal of
computer vision 23 (2), 149–168.
Martyushev, E., 2011. An algorithmic solution to the five-point pose
problem based on the cayley representation of rotations. arXiv preprint
arXiv:1105.3828.
Matessi, A., Lombardi, L., 1999. Vanishing point detection in the hough
transform space. In: European Conference on Parallel Processing.
Springer, pp. 987–994.
Maybank, S. J., Faugeras, O. D., 1992. A theory of self-calibration of a
moving camera. International Journal of Computer Vision 8 (2), 123–
151.
McGlone, J. C., Shufelt, J. A., 1994. Projective and object space geometry
for monocular building extraction. In: Computer Vision and
149
Pattern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer
Society Conference on. IEEE, pp. 54–61.
McLean, G., Kotturi, D., 1995. Vanishing point detection by line clustering.
IEEE Transactions on pattern analysis and machine intelligence
17 (11), 1090–1095.
Microsoft, 2016. Experience the new photosynth 3d.
URL https://photosynth.net/default.aspx
Middlemiss, R. R., Marks, J. L., Smart, J. R., 1968. Analytic geometry.
McGraw-Hill Companies.
Mikolajczyk, K., Schmid, C., 2005. A performance evaluation of local
descriptors. Pattern Analysis and Machine Intelligence, IEEE Transactions
on 27 (10), 1615–1630.
Miyagawa, I., Arai, H., Koike, H., 2010. Simple camera calibration from
a single image using five points on two orthogonal 1-d objects. IEEE
Transactions on Image Processing 19 (6), 1528–1538.
Moons, T., Van Gool, L., Van Diest, M., Pauwels, E., 1993. Affine reconstruction
from perspective image pairs obtained by a translating
camera. In: Joint European-US Workshop on Applications of Invariance
in Computer Vision. Springer, pp. 297–316.
Mur-Artal, R., Montiel, J., Tardos, J. D., 2015. Orb-slam: a versatile
and accurate monocular slam system. IEEE Transactions on Robotics
31 (5), 1147–1163.
Neves, J. C., Moreno, J. C., Barra, S., Proenca, H., 2015. A calibration
algorithm for multi-camera visual surveillance systems based on singleview
metrology. In: Iberian Conference on Pattern Recognition and
Image Analysis. Springer, pp. 552–559.
Nister, D., 2004. An efficient solution to the five-point relative pose problem.
IEEE transactions on pattern analysis and machine intelligence
26 (6), 756–770.
Nister, D., Naroditsky, O., Bergen, J., 2004. Visual odometry. In: Computer
Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings
150
of the 2004 IEEE Computer Society Conference on. Vol. 1. IEEE, pp.
I–652.
Padeleris, P., 2004. jsvr project.
URL svr.sourceforge.net/index.php
Park, J., 2007. Quaternion-based camera calibration and 3d scene reconstruction.
In: Computer Graphics, Imaging and Visualisation (CGIV
2007).
Philip, J., 1998. Critical point configurations of the 5-, 6-, 7-, and 8-
point algorithms for relative orientation. Department of Mathematics,
Royal Institute of Technology Stockholm, Sweden.
Phillips, C. J., Danillidis, K., 2016. Absolute pose and structure from
motion for surfaces of revolution: minimal problems using apparent
contours. In: 3D Vision (3DV), 2016 Fourth International Conference
on. IEEE, pp. 221–229.
Phillips, C. J., Lecce, M., Davis, C., Daniilidis, K., 2015. Grasping surfaces
of revolution: Simultaneous pose and shape recovery from two
views. In: Robotics and Automation (ICRA), 2015 IEEE International
Conference on. IEEE, pp. 1352–1359.
Photometrix, 2016. iwitness.
URL http://www.photometrix.com.au/
Pollefeys, M., Koch, R., Van Gool, L., 1999. Self-calibration and metric
reconstruction inspite of varying and unknown intrinsic camera parameters.
International Journal of Computer Vision 32 (1), 7–25.
Prasad, M., Fitzgibbon, A., 2006. Single view reconstruction of curved
surfaces. In: 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’06). Vol. 2. IEEE, pp. 1345–
1354.
Requicha, A. G., 1980. Representations for rigid solids: Theory, methods,
and systems. ACM Computing Surveys (CSUR) 12 (4), 437–464.
151
Rosten, E., Porter, R., Drummond, T., 2010. Faster and better: A
machine learning approach to corner detection. Pattern Analysis and
Machine Intelligence, IEEE Transactions on 32 (1), 105–119.
Rother, C., 2002. A new approach to vanishing point detection in architectural
environments. Image and Vision Computing 20 (9), 647–655.
Roy, U., Xu, Y., 1998. 3-d object decomposition with extended octree
model and its application in geometric simulation of nc machining.
Robotics and Computer-Integrated Manufacturing 14 (4), 317–327.
Sanpaolesi, P., 1962. Brunelleschi. G. Barbera Florence.
Saxena, A., Chung, S. H., Ng, A. Y., 2008. 3-d depth reconstruction from
a single still image. International journal of computer vision 76 (1), 53–
69.
Saxena, A., Sun, M., Ng, A. Y., 2009. Make3d: Learning 3d scene structure
from a single still image. IEEE transactions on pattern analysis
and machine intelligence 31 (5), 824–840.
Schaffalitzky, F., Zisserman, A., 2000. Planar grouping for automatic
detection of vanishing lines and points. Image and Vision Computing
18 (9), 647–658.
Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R., 2006.
A comparison and evaluation of multi-view stereo reconstruction algorithms.
In: Computer vision and pattern recognition, 2006 IEEE
Computer Society Conference on. Vol. 1. IEEE, pp. 519–528.
Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R., 2016.
Multi-view stereo evaluation web page.
URL http://vision.middlebury.edu/mview/
Shang, Y., Yu, Q., Zhang, X., 2004. Analytical method for camera calibration
from a single image with four coplanar control lines. Applied
optics 43 (28), 5364–5369.
Shapiro, V., 2002. Solid modeling. Handbook of computer aided geometric
design 20, 473–518.
152
Shashua, A., Navab, N., 1996. Relative affine structure: Canonical model
for 3d from 2d geometry and applications. IEEE Transactions on Pattern
Analysis and Machine Intelligence 18 (9), 873–883.
Shi, J., Tomasi, C., 1994. Good features to track. In: Computer Vision
and Pattern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE
Computer Society Conference on. IEEE, pp. 593–600.
Shufelt, J. A., 1999. Performance evaluation and analysis of vanishing
point detection techniques. IEEE Transactions on Pattern Analysis
and Machine Intelligence 21 (3), 282–288.
Shum, H.-Y., Szeliski, R., Baker, S., Han, M., Anandan, P., 1998. Interactive
3d modeling from multiple images using scene regularities. In:
European Workshop on 3D Structure from Multiple Images of Large-
Scale Environments. Springer, pp. 236–252.
Smith, C., 2006. On vertex-vertex systems and their use in geometric and
biological modelling. Ph.D. thesis, Calgary, Alta., Canada, Canada,
aAINR19574.
Smith, S. M., Brady, J. M., 1995. Susan - a new approach to low level
image processing. International Journal of Computer Vision 23, 45–78.
Snavely, N., Seitz, S. M., Szeliski, R., 2006. Photo tourism: Exploring
photo collections in 3d. In: SIGGRAPH Conference Proceedings. ACM
Press, New York, NY, USA, pp. 835–846.
Spetsakis, M. E., Aloimonos, J. Y., 1990. Structure from motion using
line correspondences. International Journal of Computer Vision 4 (3),
171–183.
Sturm, P., 2011. A historical survey of geometric computer vision. In:
Computer Analysis of Images and Patterns. Springer, pp. 1–8.
Sturm, P., Maybank, S., 1999a. A method for interactive 3d reconstruction
of piecewise planar objects from single images. In: The 10th
British machine vision conference (BMVC’99). The British Machine
Vision Association (BMVA), pp. 265–274.
153
Sturm, P., Ramalingam, S., 2004. A generic concept for camera calibration.
In: European Conference on Computer Vision. Springer, pp.
1–13.
Sturm, P. F., Maybank, S. J., 1999b. On plane-based camera calibration:
A general algorithm, singularities, applications. In: Computer Vision
and Pattern Recognition, 1999. IEEE Computer Society Conference
on. Vol. 1. IEEE.
Sweeney, C., 2016. Theia vision library.
URL http://www.theia-sfm.org/sfm.html
Sequin, C. H., 2006. Representations for solid modeling.
URL https://people.eecs.berkeley.edu/~sequin/CS285/
LECT06/L7.htm
Tardif, J.-P., 2009. Non-iterative approach for fast and accurate vanishing
point detection. In: 2009 IEEE 12th International Conference on
Computer Vision. IEEE, pp. 1250–1257.
Taylor, B., 1992. New principles of linear perspective. In: Brook Taylor’s
Work on Linear Perspective. Springer, pp. 145–247.
Tebaldini, S., Marcon, M., Sarti, A., Tubaro, S., 2008. Uncalibrated view
synthesis from relative affine structure based on planes parallelism. In:
2008 15th IEEE International Conference on Image Processing. IEEE,
pp. 317–320.
Termes, R., 1998. New perspective systems: Seeing the total picture.
Terzopoulos, D., Witkin, A., Kass, M., 1988. Symmetry-seeking models
and 3d object reconstruction. International Journal of Computer
Vision 1 (3), 211–221.
Trimble, 2017. Trimble sketchup.
URL www.sketchup.com
Tsai, F., Chang, H., 2013. Detection of vanishing points using hough
transform for single view 3d reconstruction. In: 34th Asian Conference
on Remote Sensing. Vol. 2. pp. 1182–1189.
154
Tsai, R., 1987. A versatile camera calibration technique for highaccuracy
3d machine vision metrology using off-the-shelf tv cameras
and lenses. IEEE Journal on Robotics and Automation 3 (4), 323–344.
Tsai, Fuan, T. T. C. H. C. L., Chen, C., 2013. Three dimensional digital
building modeling for multiple level of detail. Journal of Photogrammetry
and Remote Sensing (Published by CSPRS, in Chinese) 17 (4),
267–285.
Tuytelaars, T., Proesmans, M., Van Gool, L., 1997. The cascaded
hough transform as support for grouping and finding vanishing points
and lines. In: International Workshop on Algebraic Frames for the
Perception-Action Cycle. Springer, pp. 278–289.
Tuytelaars, T., Van Gool, L., Proesmans, M., Moons, T., 1998. The
cascaded hough transform as an aid in aerial image interpretation. In:
Computer Vision, 1998. Sixth International Conference on. IEEE, pp.
67–72.
Ullman, S., 1979. The interpretation of structure from motion. Proceedings
of the Royal Society of London B: Biological Sciences 203 (1153),
405–426.
Van den Heuvel, F. A., 1998. 3d reconstruction from a single image
using geometric constraints. ISPRS Journal of Photogrammetry and
Remote Sensing 53 (6), 354–368.
Van Den Heuvel, F. A., 1998. Vanishing point detection for architectural
photogrammetry. International archives of photogrammetry and
remote sensing 32, 652–659.
Verykokou, S., Ioannidis, C., 2016. Exterior orientation estimation of
oblique aerial imagery using vanishing points. ISPRS-International
Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, 123–130.
Volpe, Y., Furferi, R., Governi, L., Tennirelli, G., 2014. Computer-based
methodologies for semi-automatic 3d model generation from paintings.
International Journal of Computer Aided Engineering and Technology
6 (1), 88–112.
155
Vouzounaras, G., Daras, P., Strintzis, M. G., 2014. Automatic generation
of 3d outdoor and indoor building scenes from a single image.
Multimedia Tools and Applications 70 (1), 361–378.
Wade, N. J., 2003. The chimenti controversy. Perception 32 (2), 185–200.
Wang, G., Tsui, H.-T., Hu, Z., Wu, F., 2005. Camera calibration and 3d
reconstruction from a single view based on scene constraints. Image
and Vision Computing 23 (3), 311–323.
Wang, L.-L., Tsai, W.-H., 1990. Computing camera parameters using
vanishing-line information from a rectangular parallelepiped. Machine
Vision and Applications 3 (3), 129–141.
Wang, S., Fidler, S., Urtasun, R., 2015. Lost shopping! monocular localization
in large indoor spaces. In: Proceedings of the IEEE International
Conference on Computer Vision. pp. 2695–2703.
Weng, J., Ahuja, N., Huang, T. S., 1993. Optimal motion and structure
estimation. IEEE Transactions on pattern analysis and machine
intelligence 15 (9), 864–884.
Wilczkowiak, M., Boyer, E., Sturm, P., 2001. Camera calibration and
3d reconstruction from single images using parallelepipeds. In: Computer
Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International
Conference on. Vol. 1. IEEE, pp. 142–148.
Wilczkowiak, M., Sturm, P., Boyer, E., 2005. Using geometric constraints
through parallelepipeds for calibration and 3d modeling. IEEE
transactions on pattern analysis and machine intelligence 27 (2), 194–
207.
Wildenauer, H., Hanbury, A., June 2012. Robust camera self-calibration
from monocular images of manhattan worlds. In: Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on. pp. 2831–
2838.
Wildenauer, H., Vincze, M., 2007. Vanishing point detection in complex
man-made worlds. In: Image Analysis and Processing, 2007. ICIAP
2007. 14th International Conference on. IEEE, pp. 615–622.
156
Wolf, P. R., Dewitt, B. A., 2000. Elements of Photogrammetry: with
applications in GIS. Vol. 3. McGraw-Hill New York.
Wrobel, B. P., 2001. Minimum solutions for orientation. In: Calibration
and orientation of cameras in computer vision. Springer, pp. 7–62.
Wu, C., 2013. Towards linear-time incremental structure from motion.
In: 2013 International Conference on 3D Vision-3DV 2013. IEEE, pp.
127–134.
Wu, C., 2016. Visualsfm : A visual structure from motion system.
URL http://ccwu.me/vsfm/
Wu, C., Frahm, J.-M., Pollefeys, M., 2011. Repetition-based dense
single-view reconstruction. In: Computer Vision and Pattern Recognition
(CVPR), 2011 IEEE Conference on. IEEE, pp. 3113–3120.
Wu, Q., Shao, T.-C., Chen, T., 2007. Robust self-calibration from single
image using ransac. In: International Symposium on Visual Computing.
Springer, pp. 230–237.
Wu, T.-P., Sun, J., Tang, C.-K., Shum, H.-Y., 2008. Interactive normal
reconstruction from a single image. In: ACM Transactions on Graphics
(TOG). Vol. 27. ACM, p. 119.
Xu, X., 2009. Integrating advanced computer-aided design, manufacturing,
and numerical control: principles and implementations. Information
Science Reference Hershey.
Yu, C., 2017. Single view 3d reconstruction and parsing using geometric
commonsense for scene understanding.
Zhai, M., Workman, S., Jacobs, N., 2016. Detecting vanishing points
using global image context in a non-manhattan world. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 5657–5665.
Zhang, L., Dugas-Phocion, G., Samson, J.-S., Seitz, S. M., 2002. Singleview
modelling of free-form scenes. The Journal of Visualization and
Computer Animation 13 (4), 225–235.
157
Zhang, L., Lu, H., Hu, X., Koch, R., 2016. Vanishing point estimation
and line classification in a manhattan world with a unifying camera
model. International Journal of Computer Vision 117 (2), 111.
Zhang, Z., 1998. Understanding the relationship between the optimization
criteria in two-view motion analysis. In: Computer Vision, 1998.
Sixth International Conference on. IEEE, pp. 772–777.
Zhang, Z., 2000. A flexible new technique for camera calibration. IEEE
Transactions on pattern analysis and machine intelligence 22 (11),
1330–1334.
Zhang, Z., Hanson, A. R., 1996. 3d reconstruction based on homography
mapping. Proc. ARPA96, 1007–1012.
Zhang, Z., Luong, Q.-T., Faugeras, O., 1996. Motion of an uncalibrated
stereo rig: self-calibration and metric reconstruction. Robotics and
Automation, IEEE Transactions On 12 (1), 103–113.
Zhang, Z., Xu, G., 1998. A unified theory of uncalibrated stereo for both
perspective and affine cameras. Journal of Mathematical Imaging and
Vision 9 (3), 213–229.
Zhao, Y.-X., Tai, H.-P., Fang, S.-J., Chou, C.-H., 2012. A new validity
measure and fuzzy clustering algorithm for vanishing-point detection.
In: Automatic Control and Artificial Intelligence (ACAI 2012), International
Conference on. IET, pp. 195–198.
Zhou, F., Cui, Y., Gao, H., Wang, Y., 2013. Line-based camera calibration
with lens distortion correction from a single image. Optics and
lasers in Engineering 51 (12), 1332–1343.
Zisserman, A., Beardsley, P. A., Reid, I. D., 1995. Metric calibration of
a stereo rig. In: Representation of Visual Scenes, 1995.(In Conjuction
with ICCV’95), Proceedings IEEE Workshop on. IEEE, pp. 93–100.
指導教授 蔡富安(Fuan Tsai) 審核日期 2017-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明