博碩士論文 973203003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:3.21.248.47
姓名 林育漢(Yu-Han Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以鈷作為催化劑製作橫向準直性奈米碳管元件
(Fabrication of laterally aligned carbon nanotubes using cobalt catalyst)
相關論文
★ 凹形球面微電極與異形微孔的成形技術研究★ 二氧化鈦薄膜之製備與分析
★ 固態氧化物燃料電池連接板電漿鍍膜特性研究★ 碳奈米管微電極陣列之製造與性質檢測
★ 超塑性5083鋁合金快速成形空孔狀態之分析★ 微極彈性內凹結構波桑比之有限元素法分析
★ 不銹鋼微細槽放電加工及電化學拋光精修槽壁效果之研究★ 壓力容器與引流管接合處之軸對稱有限元素分析
★ 負波桑比結構之桁架有限元素法分析★ 具負波桑比性質之細胞型材料之有限元素法分析
★ 具負波桑比傘狀結構之分析與應用★ Ti-6Al-4V之超塑性成形製程模擬與分析
★ 利用微極彈性理論分析蜂巢式結構之波桑比效應★ 結合微細放電與高頻抖動研磨之微孔加工研究
★ 負波桑比機構之設計與分析★ 微雙材料熱變形樑之應用分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗使用熱化學氣相沉積法合成奈米碳管,以鈷薄膜作為催化劑,藉由改變成長碳管的溫度流量比例,壓力並探討各項因子對於碳管密度,石墨化程度以及結構的影響,並藉由此過程得到800 ℃壓力為760 torr時為最穩定之成長參數,並使用於製作元件之控制參數。
本實驗利用靜電場模擬Si/Silicon dioxide/Bottom metal/Co/Top metal元件結構的上下電極的厚度,並發現當上電極厚度大於下電極很多時,催化劑附近的電場會向下,並根據這些結果,規劃出不同的疊層結構來做論證。
根據實驗的結果,可以看出無論是改變疊層結構中上下電極的材料或厚度,都會對成長碳管或是製作元件都會造成很大的影響,在本實驗使用的基版當中 200 nm TaN/7 nm Co/150 nm Pd 是目前作為製作橫向奈米碳管元件較好的結構,並以此結構在成長步驟中加入電場效應成長碳管,發現電場對於碳管成長的方向性有些許的影響,也成功的跨接少數根的奈米碳管於通道兩側,但就結果而言,準直性以及電阻值都不甚理想,我們必需努力探討各項原因,以增加碳管的準直性和降低接觸電阻來改良元件之性能。
摘要(英) We synthesis the multi-wall carbon nanotube(NWCNT) using cobalt catalyst by chemical vapor deposition method with H2 carrir gas and carbon source of CH4 and discuss the effect of CNT density and quality in different temperature, gas ratio and pressure in CNT growth process. From those experiment results the proper condition for CNT growth are 760 torr and 800 ℃.
In order to discuss the electric field effect during the CNT growth and design the experiment of metal stack we use electrostatic simulation software to simulate the different thickness of top and bottom metal electrode. From simulation result we got the Horizontal or upward electric field vectors around the Co film were attained when the bottom metal electrode thickness is no less than top metal electrode thickness.
According to the experiment result, we discover the significant effect when we use different stack structure to grow CNT (unpattened) and making device. From the substrate we used in this experiment, 200 nm TaN/7 nm Co/150 nm Pd is proper metal stack structure for producing lateral CNT devices. The effect of electric field on lateral CNT growth was observed. However, the improvement is required for the lateral alignment of CNTs and reduction of contact resistances between the CNTs and metal electrodes.
關鍵字(中) ★ 靜電場模擬
★ 準直性奈米碳管
★ 電場
★ 鈷薄膜
★ 化學氣相沉積法
關鍵字(英) ★ Electric field
★ Carbon nanotube aligned
★ Electrostatic simulation
★ Chemical vapor deposition
★ Cobalt thin film
論文目次 中文摘要.............................................. i
英文摘要.............................................. ii
誌謝.................................................. iii
目錄.................................................. iv
圖目錄................................................ vi
第一章 緒論........................................... 1
1-1 前言.............................................. 1
1-2 文獻回顧.......................................... 2
1-3 研究動機與目的.................................... 12
第二章 奈米碳管的介紹................................. 13
2-1 奈米碳管的起源.................................... 13
2-2 奈米碳管的結構及電學性質.......................... 16
2-3 奈米碳管之合成技術................................ 20
2-4 奈米碳管之成長機制................................ 26
2-5 奈米碳管之特性與應用.............................. 28
第三章 實驗流程與方法................................. 32
3-1 實驗流程.......................................... 32
3-2 實驗設備.......................................... 34
3-2-1 製程設備........................................ 34
3-2-2 量測設備........................................ 38
3-3 基版製備.......................................... 40
3-3-1 未經圖形化製程基版(unpatterned substrate)....... 40
3-3-2 製作元件專用基版(patterned substrate)........... 42
3-3-3 元件設計與光罩.................................. 45
3-4 Thermal CVD 成長奈米碳管之步驟.....................49
3-5 電場施加方式.......................................51
3-6 靜電場模擬的尺寸定義與原理.........................52
3-7 奈米碳管品質的分析.................................55
第四章 結果與討論......................................57
4-1 模擬上下電極厚度對電場的影響.......................57
4-2 各項CVD參數對成長奈米碳管的影響....................60
4-2-1 溫度對成長奈米碳管的影響........................ 60
4-2-2 流量比例對成長奈米碳管的影響.................... 63
4-2-3 製程壓力對成長奈米碳管的影響.....................66
4-2-4 添加氨氣對成長奈米碳管的影響.....................71
4-3 元件製作與特性.................................... 75
4-3-1 催化劑下層金屬的材料與厚度對碳管生長的影響...... 75
4-3-2催化劑薄膜厚度對碳管生長的影響................... 80
4-3-3 不同上下電極厚度與材料製作CNT元件的比較......... 82
4-3-4 施加電場的對碳管生長的影響...................... 85
4-3-5 將上電極與催化劑往通道兩旁退縮對碳管生長的影響...87
4-3-6 奈米碳管元件電性量測.............................89
第五章 結論........................................... 93
參考文獻.............................................. 95
參考文獻 [1] S. Iijima, “Helical microtubules of graphitic carbon”, Nature 3, 56-58(1991)
[2] H. Lee, Y.-S. Kang, Poul S. Lee and, J.-Y. Lee,“Hydrogen plasma treatment on catalytic layer and effect of oxygen additions on plasma enhanced chemical vapor deposition of carbon nanotube”, Journal of Alloys and Compounds 330–332, 569–573 (2002)
[3] E. Terrado, M. Redrado, E. Mun˜oz, W.K. Maser, A.M. Benito, and M.T. Martı´nez,“Carbon nanotube growth on cobalt-sprayed substrates by thermal CVD”, Materials Science and Engineering C26, 1185 – 1188(2006)
[4] Y. J. Yoon, J. C. Bae, H. K. Baik, S. J. Cho, S.-J. Lee, K. M. Song, and N. S. Myung,“Growth control of single and multi-walled carbon nanotubes by thin film catalyst”, Chemical Physics Letters 366, 109–114(2002)
[5] S. Wang, P. Wang, and O. Zhou,“Effects of NH3 plasma pretreatment on the growth of carbon nanotubes”, Diamond & Related Materials 15, 361 – 364(2006)
[6] Z.P. Huang, D.Z. Wang, J.G. Wen, M. Sennett, H. Gibson, and Z.F. Ren,“Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes”, Appl. Phys. A 74, 387–391(2002)
[7] S. Hofmann, M. Cantoro, B. Kleinsorge, C. Casiraghi, A. Parvez, J. Robertson, and C. Ducati,“Effects of catalyst film thickness on plasma-enhanced carbon nanotube growth”, J. Appl. Phys. 98, 034308(2005)
[8] Y. Y. Wei, Gyula Eres, V. I. Merkulov, and D. H. Lowndes,“Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition”, Appl. Phys. Lett. 78, No. 10, 1394-1396(2001)
[9] S. Wei, W.P. Kang, J.L. Davidson, and J.H. Huang,“Aligned carbon nanotubes fabricated by thermal CVD at atmospheric pressure using Co as catalyst with NH3 as reactive gas”, Diamond & Related Materials 15, 1828–1833(2006)
[10] Y. K. Yap, V. Kayastha, S. Hackney, S. Dimovski, and Y. Gogotsi,“Effect of Carrier Gas on the Growth Rate, Growth Density, and Structure of Carbon Nanotubes”, Mat. Res. Soc. Symp. Proc. 818, M11.31(2004)
[11] Sander J. Tans, Alwin R. M. Verschueren & Cees Dekker, “Room- temperature transistor based on a single carbon nanotube”, Nature 393, 49-52(1998)
[12] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and Ph. Avouris, “Single- and multi-wall carbon nanotube field-effect transistors”, Applied Physics Letter 73, 2447-2449(1998)
[13] Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li,N. Morris, E. Yenilmez, J. Kong, and H. Dai,“Electric-field-directed growth of aligned single-walled carbon nanotubes”, Appl. Phys. Lett. 79, No. 19, 3155-3157(2001)
[14] S. Dittmer, J. Svensson, and E.E.B. Campbell,“Electric field aligned growth of single-walled carbon nanotubes”, Current Applied Physics 4, 595–598(2004)
[15] A. Nojeh, A. Ural, R. F. Pease, and H. Dai,“Electric-field-directed growth of carbon nanotubes in two dimensions” , J. Vac. Sci. Technol. B 22(6), 3421-3425(2004)
[16] A. Ural, Y. Li, and H. Dai,“Electric-field-aligned growth of single-walled carbon nanotubes on surfaces”, Appl. Phys. Lett. 81, No. 18, 3464-3466(2002)
[17] Y.-T. Jang, J.-H. Ahn, B.-K. Ju, and Y.-H. Lee,“Lateral growth of aligned mutilwalled carbon nanotubes under electric field”, Solid State Communications 126, 305–308(2003)
[18] M. Maeda, C.-K. Hyon, T. Kamimura, A. Kojima, K. Sakamoto, and K. Matsumoto,“Growth Control of Carbon Nanotube using Various Applied Electric Field for Electronic Device Applications”, Jpn. J. Appl. Phys. 44, No. 4A, 1585-1587 (2005)
[19] N.M. bulgakova1, A.V. bulgakov, J. svensson, and E.E.B. campbel,“Possible role of charge transport in enhanced carbon nanotube growth”, Appl. Phys. A 85, 109–116 (2006)
[20] M. Maeda, T. Kamimura, and K. Matsumoto,“One by one control of the exact number of carbon nanotubes formed by chemical vapor deposition growth: A digital growth process”, Appl. Phys. Lett. 90, 043119(2007)
[21] H. B. Peng, T. G. Ristroph, G. M. Schurmann, G. M. King, J. Yoon, V. Narayanamurti, and J. A. Golovchenko,“Patterned growth of single-walled carbon nanotube arrays from a vapor-deposited Fe catalyst”, Appl. Phys. Lett. 83, No. 20, 4238-4240(2003)
[22] Nathan R. Franklin, Q. Wang, Thomas W. Tombler, A. Javey, M. Shim, and H. Dai,“Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems”, Appl. Phys. Lett. 81, No. 5, 913-915(2002)
[23] C.-C. Chiu, N.-H. Tai, M.-K. Yeh, B.-Y. Chen, S.-H. Tseng, and Y.-H. Chang,“Tip-to-tip growth of aligned single-walled carbon nanotubes under an electric field”, Journal of Crystal Growth 290, 171–175 (2006)
[24] B.-H. Chen, P.-Y. Lo, J.-H. Wei, M.-J. Tsai, C.-L. Hwang, T.-S. Chao, H.-C. Lin, and T.-Y. Huang,“Localized Lateral Growth of Single-Walled Carbon Nanotubes for Field-Effect Transistors by a Cobalt-Mix-TEOS Method”, Electrochemical and Solid-State Letters 8, G290-G293(2005)
[25] W.-C. Yang, T.-Y. Yang, and T.-R. Yew,“Growth of self-aligned carbon nanotube for use as a field-effect transistor using cobalt silicide as a catalyst”, Carbon 45, 1679–1685(2007)
[26] Gael F. Close and H.-S. Philip Wong,“Fabrication and Characterization of Carbon Nanotube Interconnects”, IEDM 2007, 203-206
[27] Z. Chen, W. Hu, J. Guo, and K.Saito, “Fabrication of nanoelectrodes based on controlled placement of carbon nanotubes using alternating-current electric field”, J. Vac. Sci. Technol. B 22(2), 776-780(2004)
[28]原子世界-碳的同素異形體 2010 年 6 月 5 日 取自 http://www.hk-phy.org/atomic_world/carbon/carbon01_c.html
[29] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, “C60: Buckminsterfullerene” , Nature 318, 162-163(1985)
[30] S. Iijima, and T.Ichihashi,“Single-shell carbon nanotubes of 1-nm diameter”, Nature 363, 603-605(1993)
[31] D.S. Bethune, C.H. Kiang, and M.S. Deveries, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layers wells”, Nature 363, 605-607(1993)
[32] W. Hoenlein, F. Kreupl, G.S. Duesberg, A.P. Graham, M. Liebau, R. V. Seidel, E. Unger, “Carbon nanotube applications in microelectronics”, IEEE transactions on components and packaging technologies 27, 629-634(2004)
[33] A. Huczko, “Synthesis of aligned carbon nanotubes”, Appl. Phys. A 74, 617-638 (2002)
[34] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley “Crystalline Ropes of Metallic Carbon Nanotubes”, Science 273, 483(2006)
[35] Th. Henning, and F. Salama,“Carbon in the universe”, Science 282, 2204-2210(1998)
[36] 成會明、張勁燕,“奈米碳管”, 五南圖書出版股份有限公司
[37] R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, “Electronic structure of chiral graphene tubules”, Appl. Phys. Lett. 60, 2204-2206(1992)
[38] A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, and R. E. Smalley, “Unraveling Nanotubes: Field Emission from an Atomic Wire”, Science 269, 1550-1553(1995)
[39] R. Andrews, D. Jacques, A.M. Rao, F. Derbyshire, D. Qian, X. Fan, E.C. Dickey, and J. Chen, “Continuous production of aligned carbon nanotubes: a step closer to commercial realization”, Chem. Phys. Lett. 303, 467-474(1999)
[40] M. Meyyappan, L. Delzeit, A. Cassell, and D. Hash, “Carbon nanotube growth by PECVD: review”, Plasma Sources Sci. Technol 12, 205–216 (2003)
[41] Y.S. Woo, D.Y. Jeon, I.T. Han, N.S. Lee, J.E. Jung, and J.M. Kim, “In situ diagnosis of chemical species for the growth of carbon nanotubes in microwave plasma-enhanced chemical vapor deposition”, Diamond and Related Materials 11, 59–66 (2002)
[42] S.B. Sinnott, R. Andrews, D. Qian, A.M. Rao, Z. Mao, E.C. Dickey, and F. Derbyshire, “Model of carbon nanotube growth through chemical vapor deposition”, Chem. Phys. Lett. 31, 25–30(1999)
[43] R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates, and R. J. Waite “Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene”, Journal of catalysis 26, 51-62(1972)
[44] G. G. Tibbetts, “Vapor-grown carbon fibers: status and prospectus”, Carbon 27, 745-747(1989)
[45] 劉士瑜,米碳管之催化生長及其特性研究,國立雲林科技大學碩士論文,2004
[46] G. Nagy, M. Levy, R. Scarmozzino, R. M. Osgood, H. Dai, R. E. Smalley, and C. A. Michaels, G. W. Flynn, and G. F. McLane, “Carbon nanotube tipped atomic force microscopy for measurement of <100 nm etch morphology on semiconductors”, Appl. Phys. Lett. 73, No. 4, 529-531(1998)
[47] H.W. Lee, S.H. Kim, Y.K. Kwak, and C.S. Han, “Nanoscale fabrication of a single multiwalled carbon nanotube attached atomic force microscope tip using an electric field”, Rev. Sci. Instrum. 76, 046108 (2005)
[48] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, “Fully sealed, high-brightness carbon-nanotube field-emission display” , Appl. Phys. Lett. 75, 3129-3131 (1999)
[49] G. Z. Yue, Q. Qiu, Bo Gao, Y. Cheng, J. Zhang, H. Shimoda, S. Chang, J. P. Lu, and O. Zhou, “Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field-emission cathode”, Appl. Phys. Let. 81, No. 2, 355-357(2002)
[50] W. I. Milne, K. B. K. Teo, G. A. J. Amaratunga, P. Legagneux, L. Gangloff, J. P. Schnell, V. Semet, V. Thien Binh, and O. Groening, “Carbon nanotubes as field emission sources” , Journal of Materials Chemistry 14, 933-943 (2004)
[51] F. Kreupl, A. P. Graham, G. S. Duesberg, W. Steinhogl, M. Liebau, E. Unger, and W. Honlein, “Carbon nanotube in interconnect applications” , Microelectrinic Engineering 64, 399-408 (2002)
[52] H. Li, N. Srivastava, J.-F. Mao, W.-Y. Yin, and Kaustav Banerjee “Carbon Nanotube Vias: A Reality Check”, IEDM 2007, 207-210
[53] A.C. Dillon, K.E.H. Gilbert, P.A. Parilla, J.L. Alleman, G.L. Hornyak, K.M. Jones, and M.J. Heben, “Hydrogen storage in carbon single-wall nanotubes”, Proceedings of the 2002 U.S. DOE Hydrogen Program Review
[54] T. Bezrodnaa, T. Gavrilkoa, G. Puchkovskaa, V. Shimanovskaa, J. Baran, and M. Marchewk,“Spectroscopic study of TiO2 (rutile)–benzophenone heterogeneous systems”, Journal of Molecular Structure 614, 315–324(2002)
[55] Harish C. Barshilia, and K.S. Rajam,“Raman spectroscopy studies on the thermal stability of TiN, CrN, TiAlN coatings and nanolayered TiN/CrN, TiAlN/CrN multilayer coatings”, J. Mater. Res. 19, No. 11, 3196-3205(2004)
指導教授 丁志華、黃豐元
(Jyh-Hua Ting、Fuang-Yuan Huang)
審核日期 2010-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明