博碩士論文 973203019 詳細資訊


姓名 康銘仁(Ming-Jen Kang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 骨螺絲幾何對鎖入力矩影響之數學模型
(Mathematical Model of Thread Shape and Thread Profile on Insertion Torque of the Bone Screw)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 ( 永不開放)
摘要(中) 骨螺絲在牙科與骨科領域中已成為臨床相當普遍的零件,儘管如此,骨螺絲失效的案例依然層出不窮。當骨螺絲發生斷裂或鬆脫時將導致手術失敗、二次手術與延遲癒合等問題。現今研究認為鎖入力矩與骨螺絲鎖入的初始穩定度相關,足夠的鎖入力矩可以提供較高的穩定度。然而,也有研究指出過高的鎖入力矩可能導致骨螺絲斷裂、骨頭壞死與延遲癒合。影響鎖入力矩的因素有螺絲幾何參數、骨頭強度以及預鑽孔的大小。
本研究目的在於將過去應用於工程自鑽螺絲之數學模型,修改至適用齒科螺絲,並評估不同牙型、螺絲錐度與預鑽孔對鎖入力矩的影響。藉由材料力學觀點來探討螺絲在骨頭中攻牙與摩擦過程的兩種行為。為了驗證理論推導模型的正確性,利用四支齒科螺絲的理論預測與實際測詴結果進行比對,結果顯示牙型有較高的準確性,然而,螺絲錐度在不同預鑽孔的準確性較低。作者認為螺絲錐度與預鑽孔在理論模型中應仔細考慮螺牙表面應力與摩擦係數。
本論文之研究成果在機械力學與材料力學基礎下提供了骨螺絲幾何參數對鎖入力矩之影響的數學模型。給予工程領域的設計人員在研發新型骨螺絲的依據。
摘要(英) In clinical application, although bone screws became the general parts in the orthodontic and orthopaedic domains, the cases of screw failure were emerged in endlessly. When screw fractured or loosened, it would cause surgery fail, secondary operation, and delayed union. Current researches considered that the initial primary stability during inserted process was correlated to insertion torque; the enough torque can provide higher stability. However, some researches also pointed out the excessive insertion torque might cause fracture of implants, bionecrosis of bone tissue, and delayed union. The influence of factors on insertion torque were geometry of screw、strength of bone and the diameter of pilot hole.
This study improved a mathematical model of the engineering self-tapping screw fastening process in previous research, so that it could be used in dental implants to estimate the influence of difference on thread profile、taper of screw and pilot-hole on insertion torque. The two behaviors of removal and friction in bone was probe by concept of mechanics of materials.To confirm the accuracy of the model, four dental implants were used in this research. Besides, experimental results for torque tester and predictions of the mathematical model were compared. The results appeared high accuracy in thread shape test. However, the results in the taper of screw test showed low accuracy. The author suggested that stress on the surface of thread and coefficient of friction be considered carefully.
The results of this research provided the influence of geometry of bone screws on insertion torque in the fundamental of mechanics and materials, and assist design engineers in developing new bone screws.
關鍵字(中) ★ 鎖入力矩
★ 骨螺絲
★ 失效
★ 數學模型
★ 初始穩定度
關鍵字(英) ★ Mathematical model
★ Bone screw
★ Failure
★ Insertion torque
★ Initial stability
論文目次 摘 要 i
Abstract ii
致 謝 文 iv
目 錄 v
圖 目 錄 vii
表 目 錄 ix
符 號 說 明 x
第一章 緒 論 1
1.1 研究背景 1
1.1.1 齒科螺絲 1
1.1.2 創傷螺絲 4
1.1.3 脊椎螺絲 5
1.1.4 骨螺絲常見的破壞模式 6
1.2 研究目的 7
1.3 研究方向 9
1.4 研究架構 10
第二章 文獻回顧 12
2.1 齒科螺絲在旋入期間的破壞 12
2.2 鎖入力矩與初始穩定度之關係 13
2.3 工程螺絲旋緊過程之理論模型 14
2.4 延性與脆性材料之破壞準則 17
2.4.1攻牙力矩延性材料受平面應力作用之降伏準則 17
2.4.2脆性材料受平面應力作用之破裂準則 20
2.4.3本研究使用之準則 21
第三章 材料與方法 23
3.1 螺絲幾何 23
3.2 鎖入過程理想條件 25
3.3 座標系統 27
3.4 使螺絲前進的軸向力矩 28
3.4.1攻牙力矩 29
3.4.2攻牙力矩推導 30
3.4.3摩擦力矩 39
3.4.4摩擦力矩推導 41
3.5 數學模型之理論預測 49
3.5.1骨螺絲在旋入過程之力學效應 49
3.5.2程式模擬計算 50
3.6 鎖入扭矩實驗 50
3.6.1不同牙形之鎖入力矩比較 52
3.6.2不同預鑽孔與錐度之鎖入力矩比較 52
3.6.3受測螺絲之幾何參數 53
3.6.4受測骨頭之材料參數 55
3.6.5預鑽孔洞程序 56
第四章 研究結果 57
4.1 不同牙形之鎖入力矩 57
4.2 不同預鑽孔與錐度之鎖入力矩 60
第五章 討論與結論 65
5.1 討論 65
5.2 結論 73
參考文獻 75
附錄一 79
附錄二 81
參考文獻 [1] 汪君翰,「人工牙根與牙墩之卡榫機構的有限元素應力分析」,國立中央大學,碩士論文,民國98年。
[2] Taylor, “What is a dental implant In Peppers LG. (eds). Dental implant Are they for me” Iowa Quintessence, pp. 6-7, 1990.
[3] A.K. Ritto, H.M. Kyung, “Bracket head micio implant for orthodontic anchorage”, Orthod Cyb J, December 2004.
[4] R. Kanomi, “Mini-implant for orthodontic anchorage”, J Clin Orthod, Vol 31, pp. 763–767, November 1997.
[5] 劉德均,「微植體於矯正錨定應用之生物力學探討」,國立成功大學,碩士論文,民國95年。
[6] 林晉,「遠端股骨鎖定螺絲之應力分析有限元素模型及機械測試」,行政院國家科學委員會輔助專題研究計畫成果報告,國立台灣大學醫學院骨科,民國九十一年十二月。
[7] 徐慶琪,「骨螺絲之結構設計與生物力學分析」,國立台灣科技大學,博士論文,民國94年。
[8] 簡基勝,「雙孔骨側板滑動式髖螺釘治療髖部粗隆間骨折力學失衡因子探討之臨床研究」,國立成功大學,碩士論文,民國93年。
[9] K. Yokoyama, T. Ichikawa, H. Murakami, Y. Miyamoto, K. Asaoka, “Fracture mechanisms of retrieved titanium screw thread in dental implants”, Biomaterials, Vol 23, pp. 2459–2465, June 2002.
[10] R.A. Mischkowski, P. Kneuertz, B. Florvaag, F. Lazar, J. Koebke, J.E. Zoller, “Biomechanical comparison of four different miniscrew types for skeletal anchorage in the mandibulo-maxillary area”, Int. J. Oral Maxillofac. Surg, Vol 37, pp. 948-954, October 2008.
[11] J.W. Kim, S.H. Baek, T.W. Kim, Y.I. Chang, “Comparison of stability between cylindrical and conical type mini-implants”, Angle Orthod, Vol 78, pp. 692-698, July 2008.
[12] L. Seneviratne, F. Negmoh, S. Earles, and K. Althoefer, “Theoretical modelling of the self-tapping screw fastening process”, Journal of Mechanical Engineering Science, Vol 215, pp. 135-154, 2001.
[13] J. Sakoh, U. Wahlmann, E. Stender, R. Nat, B. Al-Nawas, W. Wagner, “Primary stability of a conical implant and a hybrid, cylindrical screw-type implant in vitro”, Int J Oral Maxillofac Implants, Vol 21, pp. 560–566, 2006.
[14] L. Vidyasagar, P. Apse, “Dental Implant Design and Biological Effects on Bone-Implant Interface”, Baltic Dental and Maxillofacial Journal, Vol 6, pp. 51-54, 2004.
[15] D. O’Sullivan, L. Sennerby, D. Jagger, N. Meredith, “A comparison of two methods of enhancing implant primary stability”. Clin Implant Dent Relat Res, Vol 6, pp. 48-57, 2004
[16] J.W. Kim, S.J. Ahn, Y.I. Chang, “Histomorphometric and mechanical analyses of the drill-free screw as orthodontic anchorage”, Am J orthod Dentofacial Orthop, Vol 128, pp. 190-194, 2005.
[17] A. Carano, P. Lonardo, S. Velo, C. Incorvati, “Mechanical properties of three different commercially available miniscrews for skeletal anchorage”, Prog Orthod, Vol 6, pp. 82-97, 2005.
[18] B. Friberg, L. Sennerby, J. Roos, P. Johansson, C.G. Strid, U. Lekholm, “Evaluation of bone density using cutting resistance measurements and microradiography: an in vitro study in pig ribs”, Clin Oral Implants Res, Vol 6, pp. 164–171, 1995.
[19] H. Kido, E.E. Schulz, A. Kumar, J. Lozada, S. Saha, “Implant diameter and bonedensity: effect on initial stability and pulloutresistance”, J Oral Implantol, Vol 23, pp. 163-169, 1997;
[20] J. Sakoh, U. Wahlmann, E. Stender, R. Nat, B. Al-Nawas, W. Wagner, “Primary stability of a conical implant and ahybrid, cylindric screw-type implant in vitro”, Int J Oral Maxillofac Implants, Vol 21, pp. 560–566, 2006.
[21] D. O’Sullivan, L. Sennerby & N. Meredith, “Measurements comparing the initial stability of five designs of dental implants:a human cadaver study.” Clinical Implant Dentistry and Related Research, Vol 2, pp. 85-92, 2000.
[22] Turkyilmaz, “Comparison between insertion torque and resonance frequency in the assessment of torque capacity and primary stability of Bra°nemark system implants”, Journal of Oral Rehabilitation, Vol 33, pp. 754–759, January 2006
[23] B. Wilmes, C. Rademacher, G. Olthoff, D. Drescher, “Parameters affecting primary stability of orthodontic mini-implants”, J Orofac Orthop, Vol 67, pp. 162-174, May 2006.
[24] H. Martinez, M. Davarpanah, P. Missika, R. Celletti & R. Lazzara, “Optimal implant stabilization in low density bone”, Clinical Oral Implants Research, Vol 12, pp. 423–432, 2001.
[25] A. Leo, S. Manivanna, and J. Potter, “Mathematical Modeling of the Torque for Screw Insertion Process”, MQP paper at WPI, Worcester, MA, 2006.
[26] Roy R. Craig, JR., MECHANICS OF MATERIALS.林盈收,林冠丞譯,第一版,材料力學(下冊),吳秀蓁發行,台北市,民國八十八年四月
[27] Ferdinand P. Beer, E. Russel Johnston, Jr., 朱紹鎔,蘇金佳譯,材料力學,第二版,東華書局股份有限公司發行,麥格羅.希爾國際股份有限公司,2001年1月出版。
[28] Sawbones 公司產品型錄,2008年,取自http://www.sawbones.com。
[29] 何擇榮、黃立忠、葉泰榮、朱裕華等人,牙科植體暨相關器材指引 系列之二 2005植體系統新增版 Overview of Dental Implant Systems 2005,台北市牙科植體學學會,民國94年。
[30] Louis T. Kirco, Carl E. Misch, Dental implant prosthetics., Elsevier Mosby, 2005.
[31] D. O’Sullivan, L. Sennerby, N. Meredith, “Influence of implant taper on the primary and secondary stability of ossesintegrated titanium implants”, Clin Oral Implants Res. Vol 15, pp. 474-480, 2004.
指導教授 林上智(Shang-Chih Lin) 審核日期 2010-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡