博碩士論文 973203024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:34.228.194.177
姓名 張志豪(Chih-hao Chang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 石英蝕刻微結構之非等向性研究
(A study of etch the anisotropic of quartz microstructures)
相關論文
★ 以流體式數值模擬直流磁控電漿濺鍍系統之磁場影響★ 利用鉻薄膜為濕蝕刻遮罩製備石英奈米針狀結構之研究
★ 具有微結構之石英表面聲波感測器之共振頻率數值模擬與分析★ 以數值模擬方法探討電感耦合式電漿輔助製程之氣體溫度與腔體熱分析
★ 石英柱狀微結構濕蝕刻製程之研究★ 利用暫態熱微影技術製備高分子微結構
★ 石英柱狀微結構之表面聲波感測器之研製與特性分析★ 利用電子束微影製作高密度石英柱狀結構
★ 利用暫態熱線法之微型熱傳導係數量測元件之設計與製備★ 石英微結構對表面接觸角與潤濕性影響之研究
★ 石英奈米針狀結構表面之潤濕性及遲滯性研究★ 利用示差掃描熱量分析與雷射閃光熱擴散法 研究牛血清蛋白之熱變性
★ MOCVD噴淋式腔體沉積模擬與進氣系統分析★ The Deposition and Microstructure of Tungsten Oxide Films by Physical Vapor Deposition
★ 利用聲子波茲曼方程式分析非對稱多孔矽之熱傳性質★ 柱狀微結構對液珠熱毛細運動之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在奈微米製程越來越成熟的環境下,石英晶圓所佔的比例還是遠小於矽晶圓的比重,不過因石英晶體其材料與物理特性上有其他材料無法超越的優良特徵,故在半導體製程鏈與微機電系統製程上的應用,漸漸比重越來越大。而石英的等向性蝕刻(isotropic etching)與非等向性蝕刻(anisotropic etching)的技術製程,也隨著需求尺寸的縮小而逐漸受到重視與普及。而蝕刻也是必須且重要性的一環製程步驟,在半導體製程中經由塗佈得到薄膜,再逐步逐層的經由沉積、顯影後,就是進行乾式蝕刻(Dry Etching)或是濕式蝕刻(Wet Etching)進而將晶圓,蝕刻成所需求的結構切向與角度,依照微結構、微感測器、微傳感器等不同需求的元組件,進行後段的鍵合與封裝製程後,即可完成半導體的元件。本篇論文研究將以二氟化氫銨NH4HF2 (Ammonium Bifluoride)為主要蝕刻液,並以飽和濃度(saturated)與55℃下進行石英晶片的非等性向性蝕刻,配合不同的光罩圖形設計透過掃描式電子顯微鏡(scanning electron microscope , SEM)去觀察各溝槽的蝕刻切面與不同結構的發展情形,進可得知非等向性相關蝕刻資訊。而單一結構切向面是以往常見的應用結構,而本論文研究主要想在單一晶向的石英晶圓上,經蝕刻製程得到不同晶向切面的結構,而為了達到預測不同切向結構與蝕刻前後的形狀改變,材料晶格特性的選用及蝕刻特性的參數也就越顯重要,非等向性的蝕刻就是利用各個晶格的特殊切面或非自然晶格面其不同的蝕刻速率,配合上光罩圖形的設計作為預測與觀察蝕刻後的微結構,並透過二維與三維的觀察紀錄詳細瞭解到各特殊面的蝕刻速率,以其造成不同方位的交錯與結構面發展情形,得知二維與三維蝕刻率相關數據資料,用以建立石英晶圓的蝕刻速率資料庫並利用其改良與模擬未知的二維與三維蝕刻斜面結構、長時間與大深度的微結構面變化情形,藉由蝕刻得到所需的特殊結構面,並使這些特殊結構面的機械、電子、光學特性,得以在未來石英晶體的應用上有著更加寬廣的應用與結合。
摘要(英) It’s had to come to maturity in micromechanics and microengineering, but the proportion of quartz wafer is less than silicon wafer in use. It’s gradually increasing the proportion of quartz wafer, cause the physical properties and characteristics of its materials better than others. It’s attaches great importance to isotropic etching and anisotropic etching of quartz, advances in technology make the size of various components is gradually shrinking. Etching is the most important process in MEMS and Semiconductor Manufacturing; through the spin coating we get the thin film and deposition, developed then wet(dry) etching the microstructure to get the microsensor, microtransducer in order to complete the semiconductor components.
We used a NH4HF2(ammonium bifluoride)saturated solution as an etchant in this paper and the etching temperature were selected with 55°C. The microstructure formation of image was take by SEM (scanning electron microscope), it can get more information about the anisotropic etching rate through various patterns in mask. It’s common to see the single cut of structure; otherwise we think about that use etching progress to get complex cut structure of quartz in this research, and the picking of crystal characteristic is the main point. The anisotropic etching which means that the etch rate is dependant on the crystal orientation, the structure development independently of the initial shape’s design of the etch mask. Experiments obtain more etch rate of specific crystal plane by observation two and three dimensional image of structure. Finally we can construct the database of etching rate for simulation the quartz structure, improve the defects to acquire the accurate etching data and forecast three dimensional structures. By etching get the special structure of quartz, and that these special surface structure. The mechanical, electronic, optical properties, to be in the future the application of quartz crystal have a broader application and integration.
關鍵字(中) ★ 石英晶體
★ 微結構
★ 非等向性蝕刻
★ 濕蝕刻
關鍵字(英) ★ wet etch
★ quartz microstructure
★ anisotropic etching
論文目次 摘要Ⅰ
Abstract Ⅱ
致謝Ⅲ
目錄Ⅳ
圖目錄Ⅶ
表目錄.Ⅷ
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的. 3
1-3 文獻回顧. 5
1-3-1 矽晶圓的蝕刻預測與應用 5
1-3-2 石英晶體的非等向性蝕刻 5
1-3-3 石英晶圓的製程應用. 7
1-4 論文架構. 8
第二章 理論基礎. 9
2-1 石英晶體之材料性質 9
2-2 石英晶體的切向 11
2-3 石英晶體的特殊切面與相對關係 13
2-3-1 石英晶體的軸向表示與晶格定義 13
2-3-2 石英晶體晶格面的計算與驗證. 17
2-4 石英晶體之材料應用 21
2-5 蝕刻機制原理 24
2-5-1 石英晶體的濕式蝕刻(Wet Etching) 25
2-5-2 石英晶體的乾式蝕刻(Dry Etching) 28
2-6 濕式蝕刻製程控制. 31
2-7 Arrhenius equation(阿瑞尼斯方程式) . 32
第三章 研究方法 35
3-1 研究架構 35
3-2 石英晶圓基材的規格與使用 36
3-3 光罩設計(Mask Design). 38
3-4 實驗步驟 39
3-4-1 晶圓清洗. 39
3-4-2 烘烤 40
3-4-3 鍍膜 40
3-4-4 黃光微影製程 43
3-4-5 金屬層的蝕刻 46
3-4-6 蝕刻液的調配 49
3-4-7 石英晶體的蝕刻. 50
3-4-8 表面輪廓量測與SEM的觀察. 51
第四章 結果與討論. 52
4-1 蝕刻角度面的訂定. 52
4-1-1 蝕刻面的訂定:X-groove (X軸向溝槽). 53
4-1-2 蝕刻面的訂定:Y-groove (Y軸向溝槽) 55
4-1-3 蝕刻面的晶格座標 58
4-2 蝕刻後幾何結構外型繪製 59
4-2-1 二維模型蝕刻面的數據建立 60
4-2-2 二維結構模型的繪製與預測 72
4-2-3 二維蝕刻面過切分析 75
4-3 蝕刻面與光罩設計配合的應用. 78
4-4 二維蝕刻結構面分析法則 78
4-5 蝕刻液濃度比例與蝕刻速率的參照計算 81
4-6 三維結構模型的還原與建立 85
4-6-1 複斜面幾何外型與其方程式的建立 86
4-6-2 複斜面的蝕刻趨勢與向量數值分析 100
4-6-3 複斜面的速度分析. 106
4-7 三維蝕刻結構面分析法則. 108
4-8 蝕刻結構的預測與應用 110
4-9 實驗與設計的誤差分析 113
4-9-1 SEM觀測載台放置誤差 113
4-9-2 成像量測的誤差 114
4-9-3 結構還原繪製的誤差 114
4-9-4 實驗與設計誤差的改善 115
第五章 結論與未來工作 116
5-1 結論 116
5-2 未來與展望 117
參考文獻 118
參考文獻 [1] John Boyd,"Epson Toyocom的QMEMS元件將石英晶體帶進21世紀"Seiko Epson Corp.(2007)
[2] P.Rangsten, C.Hedlund, I.V. Katardjiev and Y.B‥acklund.“Etch rates of crystallographic planes in Z-cut quartz - experiments and simulation”, J. Micromech. Microeng. pp.1–6.(1998)
[3] K.Sato, K.Asaμmi, G.Kobayashi, Y.Iriye,M.Shikida,“Development of an orientation-dependent anisotropic etching simulation system MICROCAD”, Electronics and Communications in Japan, Part 2, Vol.83, No.4, pp.13-22.(2000)
[4]...D.Cheng, K.Sato, M.Shikida, A.Ono, KenjilSato, K.Asaμmiland Y.Iriye. “Development of Quartz Etching Database and 3-D Micromaching Simulation System” , international symposimm on micro mechatronics and human science, IEEE, pp.281-285.(2003)
[5] J.S.Danel and G.Delapierre, “Quartz:A Material for Microdevices”, J. Micromech Microeng , Vol.,pp.187-198(1991)
[6] R.J.Jaccodine. “Use of Modified Free Energy Theorems to Predict Equilibriμm Growing and Etching Shapes”, Bell Telephone Laboratories, Inc. Allentown,Pennsylvania. pp.2643-2647(1962)
[7] “Basic Technology of Quartz Crystal Resonators” , Fortiming Corporation,
Trigen Industries Ltd. 三代電子有限公司(2001)
[8] Hermann Jean,”Torsional mode CT or DT cut quartz resonator”,United States Patent(1978)
[9] 呂亞林,"石英晶體微天平研究進展與展望",北京大學口腔醫院(2004)
[10] John R.Vig, Tutorial on Quartz Crystal Resonators and Oscillators (2001)
[11] Sungkyu LEE,“Photolithography and Selective Etching of an Array”, Jpn.J.Appl.Phys. Vol.40 pp.5480-5484(2001)
[12] C.Hedlund, Ulf.Lindberg, Urban Bucht,and Jan Soderkvist. “Anistropic etching of Z-cut quartz”,J.Micromech.Microeng , pp.65-73.(1993)
[13] A.C.McLaren, D.R.Pitkethly, “The Twinning Microstructure and Growth of Amethyst Quartz”, Plays Chem Minerals,pp.128-135(1982)
[14] J. D. H. Donnay,Yvon Le Page, “The Vicissitudes of the Low-Quartz Crystal Setting or the Pitfalls of Enantiomorphism”,pp.584-594(1978)
[15]...William Fortune Smith,“Principles of materials science and engineering”,Chapter 3(2007)
[16] C. M. R. Fowler, “ The solid earth: an introduction to global geophysics”(2004)
[17] Hans-Rudolph Wenk,Andrei Bulakh“Minerals-Their Constitution and Origin” (2004)
[18] W.E.Lee and K.P.D.Lagerlof,“Structural and Electron Diffraction Data for Sapphire (a-Al2O3) ”, Journal of Electron Microscopy technique, pp247-258 (1985)
[19] F.Pascal-Delannoy,B.Sorli,A.Boyer,“Quartz Crystal Microbalance(QCM) used as hμmidity sensor”,Sensors and Actuators 84,pp.285–291(2000)
[20] Erich Uttenthaler, Michael ScHRand Johannes Mandel, “Ultrasensitive quartz crystal microbalance sensors for detection of M13-Phages in liquids”,Biosensors & Bioelectronics 16,pp.735-743(2001)
[21] "微機電系統技術與應用",國家實驗研究院儀器科技研究中心。(2003)
[22] S.H.Jones, D.K. Walker ,“Highly Anisotropic Wet Chemical Etching of GaAs Using NH4OH:H2O2:H2O”, Journal of The Electrochemical Society.Vol.137 pp.1653-1654(1990)
[23] J. Wang, H. Niino, A. Yabe,“Micromachining of quartz crystal with excimer lasers by laser-induced backside wet etching”, Appl. Phys. A 69.pp.S271–S273 (1999)
[24] Kopitkovas G, Lippert T, David C, Wokaun A, Gobrecht J,“ Fabrication of micro-optical elements in quartz by laser induced backside wet etching”, Microelectronic Engineering,Vol.67-8 , pp.438-444 (2003)
[25] P.Suda, A.E. Zμmsteg and W.Zingg , “Anisotropic of Etching Rate For Quartz in Ammonimm Bifluoride”, OMEGA,Quartz Division, Bienne/Switzerland, (1979)
[26] G. Dahm, I.W. Rangelow, P. Hudek a, H.W.P. Koops b“Quartz etching for phase shifting masks”, Microelectronic Engineering, pp.263-266.(1995)
[27] Takayuki Fukasawa,Yasuhiro Horiike,“Deep Dry Etching of Quartz Plate Over 100 μm in Depth Employing Ultra-Thick Photoresist (SU-8)”, Jpn.J.Appl.Phys.42,pp.3702-3706(2003)
[28] 李世鴻,"積體電路製程技術",五南圖書公司(2003)
[29] Yasuhiro Morikawa,Tooru Koidesawa,Toshio Hayashi,Koukou Suu,“A novel deep etching technology for Si and quartz materials”, Institute for Semiconductor Technologies,pp.4918–4922(2006)
[30] Keith J. Laidler,”The Development of the Arrhenius Equation“, Journal of Chemical Education,pp.494-498(1984)
[31] Miguel A.Gosalvez, Risto M.Nieminen and Kazuo Sato,“ Arrhenius and Non-Arrhenius Behaviour During Anisotropic Etching“, Sensors and Materials,Vol.17,No.4,pp.189 - 199 (2005)
[32] 余志成,"光罩設計與非等向蝕刻模擬",國立高雄第一科技大學機械系(2007)
[33] Stephen D. Senturia, “Microsystem design”,Boston : Kluwer Academic Publishers, 2001.
[34]..Microposit S1800 Series Photo Resist Datasheet, SIPLEY
[35] Kirt R.Williams, Senior Member, IEEE, Kishan Gupta, Student Member, IEEE, and Matthew Wasilik, “Etch Rates for Micromachining Processing-Part II”, Microelectro Mechanical Systems, IEEE pp.772.(2003)
[36] Hajime Ugajin, Hayato Iwamoto, Kei Kinoshita “Direct Mixing Cleaning Method of AquaRegia on Wafer”, Solid State Phenomena, Vols.103-104, pp.245-248(2005)
[37] Peter Van Zant著,姜庭隆譯 "半導體製程" p.275-276
[38]"石英晶體频率和温度特性",石英晶體行業門戶網站http://www.xtaler.com (2007)
指導教授 洪銘聰(Ming-tsung Hung) 審核日期 2011-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明