博碩士論文 973203030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:54.227.157.163
姓名 劉建昌(Jian-Chang Liou)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 利用鉻薄膜為濕蝕刻遮罩製備石英奈米針狀結構之研究
(Fabrication of Quartz Nanoneedles by Using Cr Thin Films as Wet Etching Masks)
相關論文
★ 以流體式數值模擬直流磁控電漿濺鍍系統之磁場影響★ 石英蝕刻微結構之非等向性研究
★ 具有微結構之石英表面聲波感測器之共振頻率數值模擬與分析★ 以數值模擬方法探討電感耦合式電漿輔助製程之氣體溫度與腔體熱分析
★ 石英柱狀微結構濕蝕刻製程之研究★ 利用暫態熱微影技術製備高分子微結構
★ 石英柱狀微結構之表面聲波感測器之研製與特性分析★ 利用電子束微影製作高密度石英柱狀結構
★ 利用暫態熱線法之微型熱傳導係數量測元件之設計與製備★ 石英微結構對表面接觸角與潤濕性影響之研究
★ 石英奈米針狀結構表面之潤濕性及遲滯性研究★ 利用示差掃描熱量分析與雷射閃光熱擴散法 研究牛血清蛋白之熱變性
★ MOCVD噴淋式腔體沉積模擬與進氣系統分析★ The Deposition and Microstructure of Tungsten Oxide Films by Physical Vapor Deposition
★ 利用聲子波茲曼方程式分析非對稱多孔矽之熱傳性質★ 柱狀微結構對液珠熱毛細運動之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著奈米科技的興起發展,矽材的應用較廣泛,而石英基材卻相對少有奈米結構的研究及應用。本研究主要藉由鉻(chromium, Cr)金屬薄膜做為蝕刻遮罩(Etch mask)覆蓋於Z-cut石英晶片上,利用濕式蝕刻(wet etching)方式,於不同蝕刻時間將石英晶片上蝕刻出奈米針狀結構(nanoneedle)。研究針對其針狀長度及外形進行分析以了解其機制,並於不同切向之晶片進行相同實驗,觀察其變化和差異。
研究中主要以蒸鍍(evaporation)方式沉積1 nm、2 nm及3 nm鉻薄膜蝕刻遮罩。鉻薄膜在石英晶片上,其原子堆積方式會以島狀成長(island growth)的方式形成,此時利用薄膜還未形成連續膜(continuous film)時,於島狀與島狀間的縫隙,在溫度40 ℃時以飽和濃度之二氟化氫銨(ammonium bifluoride)溶液為蝕刻液(etchant)對石英晶片進行蝕刻,其中以薄膜做為蝕刻遮罩及蝕刻液具有非等向性(anisotropic)的特性,在不同遮罩厚度和蝕刻時間下,使其形成針狀結構,並利用掃描式電子顯微鏡(scanning electron microscope, SEM)觀察針狀結構x方向和y方向之外形及其角度。
研究結果得知,藉濕蝕刻方式及不同厚度之蝕刻遮罩可成功蝕刻出奈米針狀結構,並由掃描式電子顯微鏡可觀察到由於不同遮罩厚度而使得針狀結構形成的速度、長度及輪廓外形都有所差異;也可得知以不同切向之石英晶片蝕刻亦會得到針狀結構,但會因不同切向外形輪廓而有所改變。
摘要(英) This paper presents a study of the fabrication of quartz nanoneedles by wet etching. Using Chromium thin films as etching masks, the quartz nanoneedles are fabricated on Z-cut wafers with different etching time. The lengths and shapes of nanoneedles are observed using scanning electron microscope (SEM) to study the anisotropy of the quartz etching and the mechanism of the needle formation. Nanoneedles fabricated on other orientation quartz wafer are also demonstrated.
In the present study, 1 nm, 2 nm and 3 nm Cr thin films are deposited on quartz wafers as etching masks by evaporation. Accumulation of atoms form metal layers from individual Cr islands to continuous films. Ammonium bifluoride is used as the etchant to etch quartz chip at 40℃. With quartz anisotropic etching, nanoneedles are formed with different mask thickness and etching time.
In conclusion, we have successfully fabricated the quartz nanoneedles by wet etching. From the study, we observe the relationship between anisotropic etching and the shapes of the nanoneedles. This study may help for future development in quartz MEMS.
關鍵字(中) ★ 濕式蝕刻
★ 奈米針
★ 奈米顆粒
★ 石英
關鍵字(英) ★ nanoneedles
★ nanoparticle
★ wet etching
★ quartz
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XIII
第一章 緒論1
1-1 研究背景1
1-2 研究動機與目的 2
1-3 文獻回顧 3
1-4 論文架構 4
第二章 理論基礎 5
2-1 石英晶格結構及特性 5
2-2 石英的切割角度 7
2-3 石英蝕刻技術 8
2-3-1 石英乾式蝕刻 9
2-3-2 石英濕式蝕刻 13
2-4 薄膜成長 18
2-4-1 蒸鍍凝聚成長理論 19
2-4-2 薄膜之成長樣式 20
2-4-3 成核理論 22
第三章 研究方法 26
3-1 研究架構 26
3-2 實驗步驟 28
3-2-1 基板清洗 30
3-2-2 沉積金屬膜 30
3-2-3 蝕刻液配製 31
3-2-4 蝕刻試片 31
3-2-5 試片分析 33
第四章 結果與討論 35
4-1 蝕刻遮罩鉻薄膜製程之研究 35
4-2 蝕刻機制 37
4-3 針狀結構在不同厚度蝕刻遮罩之影響 40
4-3-1 一奈米厚度蝕刻遮罩實驗結果 41
4-3-2 二奈米厚度蝕刻遮罩實驗結果 45
4-3-3 三奈米厚度蝕刻遮罩之結果 52
4-4 結構頂部附著鉻遮罩之結果 56
4-5 針狀結構角度 59
4-5-1 不同厚度蝕刻遮罩其針狀結構X方向角度之結果 60
4-5-2 不同厚度蝕刻遮罩針狀結構Y方向角度之結果 64
4-6 針狀輪廓外形預測 68
4-7 AT-cut 石英試片實驗結果 73
4-7-1 AT-cut二奈米厚度蝕刻遮罩實驗結果 74
4-7-2 AT-cut針狀結構角度 78
第五章 結論與未來工作 82
5-1 結論 82
5-2 未來與展望 83
參考文獻
參考文獻 [1] H. Chang, "石英元件技術系列(1)石英元件的過去、現在與未來,台灣區電機電子工業同業公會電子報," vol. 93, 2009.
[2] 鄭建銓, "以固態黏著型共振器建構雙頻之π階梯式與耦合式體聲波濾波器," 2008.
[3] J. C. a. P. Curie, "Development by pressure of polar electricity in hemihedral crystals with inclined faces," Bull. Soc. Min. de France, vol. 3, pp. 903, 1880.
[4] V. E. Bottom, "Piezoelectric effect and applications in electrical communication," Proc. IRE,, vol. 50, pp. 929-931, 1962.
[5] S. Fujishima, "The history of ceramic filters," IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 47, pp. 1-7, 2000.
[6] M. E. Motamedi, "Acoustic sensor technology," IEEE MTT-S Int’l Microwave Symp. Digest,, vol. 1, pp. 521-524, 1994.
[7] K. S. Kao, C. C. Cheng, and Y. C. Chen, "Synthesis of c-axis-oriented aluminum nitride films by reactive RF magnetron sputtering for surface acoustic wave," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 40, pp. 4969-4973, 2001.
[8] M. K. H. P. Lobl, C. Metzmacher, W. Brand, R. Milsom, P. Lok, and F. V. Straten, "Piezoelectric materials for BAW resonators and filters," IEEE Ultrason. Symp, vol. 1, pp. 807-811, 2001.
[9] G. Cao, "NANOSTRUCTURES & NANOMATERIALS”Synthesis﹐Properties&Applications."
[10] 李英群1,謝志誠2,李冠霖1, "石英基材之奈米加工技術及其在 壓印上的應用," 農業機械學刊, 2006.
[11] S. Lee, "Photolithography and selective etching of an array of surface mount device 32.768 kHz quartz tuning fork resonators: Definition of side-wall electrodes and interconnections using stencil mask," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 40, pp. 5480-5484, 2001.
[12] H. Y. T Kogai, "Liquid Sensor Using SAW and SH-SAWOn Quartz," IEEE Ultrasonics Symposium, 2006.
[13] T. Abe and M. Esashi, "One-chip multichannel quartz crystal microbalance (QCM) fabricated by Deep RIE," Sensors and Actuators a-Physical, vol. 82, pp. 139-143, 2000.
[14] Y. Morikawa, T. Koidesawa, T. Hayashi, and K. Suu, "A novel deep etching technology for Si and quartz materials," Thin Solid Films, vol. 515, pp. 4918-4922, 2007.
[15] U. L. C Hedlund , U Bucht and J Soderkvist "Anisotropic etching of Z-cut quartz " Journal of Micromechanics and Microengineering, vol. 3, pp. 65-73, 1993.
[16] J. S. D. a. G. Delapierre, "Quartz: a material for microdevices," Journal of Micromechanics and Microengineering, vol. 1, pp. 187-198, 1991.
[17] V. P. C. Shih-Wei Chang, Steven T. Boles, Caroline A. Ross, Carl V. Thompson "Densely Packed Arrays of Ultra-High-Aspect-Ratio Silicon Nanowires Fabricated using Block-Copolymer Lithography and Metal-Assisted Etching," Advanced Functional Materials, vol. 19, pp. 2495 - 2500, 2009.
[18] C. H. Pelle Rangsteny, Ilia V Katardjiev and Ylva Bäcklund . "Etch rates of crystallographic planes in Z -cut quartz—experiments and simulation.," Journal of Micromechanics and Microengineering, vol. 8, pp. 1-6, 1998.
[19] 林佳珈, "穿膜胜肽與生物細胞膜間的交互作用之探討(Ι)-膽固醇的含量對蜂毒胜肽穿膜機制之影響," 2004.
[20] 羅吉宗, "薄膜科技與應用," 全華科技圖書公司, 2005.
[21] K. P. B Spangenberga, V Orlinova, E Spasovab and G Danevb, "Reactive ion etching of crystalline quartz for SAW devices " Vacuum, vol. 39, pp. 453-461 1989.
[22] G. Delapierre, "Micromachining: A Survey of the Most Commonly Used Processes," Sens. Actuators, vol. 17, pp. 123–138, 1989.
[23] I. W. R. G. Dahmc, P. Hudeka and H.W.P. Koopsb, "Quartz etching for phase shifting masks " Microelectronic Engineering, vol. 27, pp. 263-266 1995.
[24] J. K. Vondeling, "Fluoride-based etchants for quartz " Journal of Materials Science, vol. 18, pp. 304-314, 1983.
[25] T. S. a. S. Miyazawa, "Production efficiencies enhance tuning-fork-type low-frequency quartzcrystal units," J. Electron. Eng, vol. 1, pp. 44-8, 1989.
[26] H. Kikyuama, N. Miki, K. Saka, J. Takano, I. Kawanabe, M. Miyashita, and T. Ohmi, "Principles of Wet Chemical-Processing in Ulsi Microfabrication," Ieee Transactions on Semiconductor Manufacturing, vol. 4, pp. 26-35, 1991.
[27] J. S. Judge, "A Study of the Dissolution of Si02 in Acidic Fluoride Solutions," J Electrochem. Soc, vol. 118, pp. 1772-1775, 1971.
[28] R. W. Ward, "Update on semiconductor process techniques for crystals," Proc. 4th Quartz Crystal Conf, pp. 276–287, 1982.
[29] A. E. Z. P. Suda, and W. Zingg, "Anisotropy of etching rate for quartz in ammonium bifluoride," Proc. IEEE Int. Freq. Contr. Symp.,, pp. 359–363, 1979.
[30] P. J. Holmes, "the electrochemistry of semiconductors : Academic Press," Journal of Molecular Structure pp. 170-170 1962.
[31] E. E. H. EYRING "Modern Chemical Kinetics," 1965.
[32] I. E. I. a. S. V. V, "Etching of quartz and some features of the surface layer Sou," Phys, vol. 18, pp. 651-3, 1974.
[33] L. J. W. a. F. R. L. Vig J R, "Chemically polished quartz," Proc. 31st Ann. Symp. Frequency Cnntrol, pp. 131-43, 1977.
[34] C. R. Tellier, "Some results on chemical etching of AT-cut quartz wafers in ammonium bifluoride solutions " Journal of Materials Science, vol. 17, pp. 1348-1354, 1982.
[35] 白木 靖寬/吉田 貞史 [編著]、王建義 編譯 ,“薄膜工程學”, 全華科技圖書公司 , 2006年01月,chp.1。
[36] Guozhong Cao,NANOSTRUCTURES & NANOMATERIALS Synthesis﹐Properties&Applications. chp.5。
[37] R.B. Fuller, in The Artifacts of R. Buckminster Fuller: A Comprehensive Collection of His Designs Drawings, ed. W. Marlin, Garland, New York, 1984.
[38] W.I.F. David, R.M. Ibberson, J.C. Matthewman, K. Prassides, T.J.S. Dennis, J.P. Hare, H.W. Kroto, R. Taylor, and D.R.M. Walton,Nature 353, 147 (1991).
[39] 鄭宗記 李昆峰 張憲彰,“電化學石英晶體微天平之原理及應用”, 國立成功大學 醫學工程研究所。
[40] C.R.TELLIER,“Some results on chemical etching of AT-cut quartz wafer in ammonium bifluoride”,JOURNAL OF MATERIALSSCIENCE 17 (1982) 1348-1354。
指導教授 洪銘聰(Ming-Tsung Hung) 審核日期 2010-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明