博碩士論文 973203031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.204.56.97
姓名 黎修甫(Hsiu-Fu Li)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 孔徑尺寸與銀擔載量對於二氧化鈦奈米管在0.5 M硫酸中之氧還原催化之影響
(The effect of diameter and Ag loading on the Self-organized TiO2 nanotube for oxygen reduction reaction catalytic performance in 0.5 M H2SO4)
相關論文
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
★ 微陽極引導電鍍與監測★ 鍍金層對Bi-43Sn與Sn-9Zn BGA銲料迴銲後之接點強度影響及二元銲錫在不同溶液之電解質遷移行為
★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究★ 光電化學蝕刻製作n-型(100)矽質微米巨孔 陣列及連續壁結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在本研究中,採用兩極式陽極氧化電化學法在含氟蝕刻液中,藉由改變工作偏壓(5V~30V)、電解液氟離子濃度(0.1M~0.7M)、蝕刻液pH值(pH1~pH7)、蝕刻液溫度(20~80℃)、蝕刻液添加甘油量(0~10M),來探討製程參數對二氧化鈦奈米管管徑之影響。結果顯示:二氧化鈦奈米管之管徑會隨工作偏壓(5V~20V)、蝕刻液中氟離子濃度(0.1M~0.7M)及蝕刻液溫度(20~40℃) 增加而增大,其直徑範圍在65~134 nm。但直徑會隨蝕刻液中之pH值(pH1~pH7)及甘油添加濃度(0M~10M)增加而減小。
陽極氧化所得之二氧化鈦奈米管經為非晶態,經480℃、3小時熱處理後成為銳鈦礦(anatase)為主和金紅石(rutile)為副晶體之混合,經浸泡於0.2M硝酸銀溶液中15、30、45與60分鐘用以擔載不同濃度之銀,或浸泡0.5g SnCl2+0.56M HCl 浸泡5分鐘,接著再以0.05M PdCl2+0.5M HCl 浸泡1分鐘,以擔載鈀,分別於0.5 M硫酸溶液中進行氧還原(oxygen reduction reaction ,ORR)催化反應,藉以比較其ORR催化反應之活性。結果顯示:非晶質二氧化鈦奈米管不具活性,經480℃、3小時熱處理後,結晶性二氧化鈦奈米管開始具有活性,其活隨奈米管孔徑由100縮小至65nm而增加活性。若奈米管擔載銀,其ORR之起始電位(Eonset)上升至較正值,表示催化活性增大,還原電流隨銀含量之增多而增大,表示增加銀擔載量,有增進催化速率之結果,管徑在65nm之奈米管經1小時之紫外光(λ=254nm)還原銀觸媒可得最高之催化反應電流(242μA/cm2)。在相同中擔載量下,鈀擔載於二氧化鈦奈米管中比擔載銀的活性更高、催化速率更快。
摘要(英) Self-organized titanium dioxide nanotube was fabricated on titanium foils by electrochemical anodization in fluoride solution at room temperature. The effect of voltage employed, fluoride concentration, pH of the bath and the temperature of the bath on the diameter of the nanotubes was of interest. The result revealed that the diameter of nano tubes increases (from 30 to 100 nm) with increasing the voltage from 5 to 20 V. It also increases (from 70 to 134 nm) with an increase of the fluoride concentration from 0.1 to 0.7 M. The diameter of the nano tubes increases with increasing the bath temperature (from 20 to 80℃), whereas it decreases (from 100 to 45 nm) with increasing the pH value of the bath (from 1 to 7). The addition of glycerol causes a decrease in the diameter of the nano tubes, with increasing glycerol from 0 to 5.0 M, the diameter of the tubes decreases from 100 nm to 87 nm. The anodized nanotubes were amorphous and they turned out to be a mixture of anatase and rutile after exerting a heat-treatment at 480 ℃ for 3 h. The heat-treated nano tubes were immersed in 0.2M silver nitrate for 15、30、45 and 60 minutes to be loaded with various silver contents. And they were immersed in a mixture of 0.5M SnCl2+0.05M PdCl2 for 5 minutes to be loaded with Pd. All kinds of nano tubes were put in 0.5 M sulfuric acid solution to conduct oxygen reduction reaction (ORR) and compare their onset potential (Eonset) and cathodic current density. The results revealed that amorphous TiO2 is inactive to ORR, heat-treated at 480℃ for 3 h turning the amorphous nano tubes into crystalline to become active. The reactivity of the nano tubes increases with decreasing the diameter from 100 to 65nm. In the presence of Ag loading, the onset potential (Eonset) of ORR becomes more positive so that the catalytic activity is higher, and the cathodic current density increases with increasing the Ag-loading. Obviously, Ag-load on the crystal TiO2 nano tubes enhances the catalytic activity. For instance, For nano tubes with diameter at 65nm illuminated by UV-light(λ=254nm) for 1 h to be loaded with silver leads to highest cathodic current density (242μA/cm2) for ORR。At the same loading level, Pd-loaded nano tubes are better than Ag-loaded nano tubes to reveal higher catalytic activity.
關鍵字(中) ★ 氧還原反應
★ 電化學陽極氧化
★ 奈米管
★ 二氧化鈦
關鍵字(英) ★ oxygen reduction reaction
★ Titanium dioxide
★ nanotube
★ andization
論文目次 中文摘要 Ι
Abstract Ⅲ
圖目錄 Ⅸ
表目錄 XIV
第一章 前言 1
1-1研究背景 1
1-2研究動機與目的 2
第二章 文獻回顧 3
2-1奈米材料簡介 3
2-2二氧化鈦奈米管簡介 3
2-3二氧化鈦晶體結構 4
2-4二氧化鈦製作方式 5
2-5二氧化鈦奈米管蝕孔機制 7
2-6氧氣還原反應(Oxygen Reduction Reaction,ORR) 9
第三章 研究方法 11
3-1試片準備 11
3-2陽極處理實驗參數 11
3-3陽極處理實驗裝置 12
3-4 擔載銀與鈀試片製備 12
3-4-1 擔載銀試片之製備 12
3-4-2 擔載鈀試片之製備 13
3-5循環伏安法(CV) 13
3-6本實驗所使用之儀器 13
第四章 研究結果 15
4-1 蝕刻液特性 15
4-1-1不同氟離子含量實驗前蝕刻液之導電度與黏度量測 15
4-1-2不同蝕刻液pH值實驗前導電度與黏度量測 15
4-1-3不同蝕刻液溫度實驗前蝕刻液之導電度與黏度量測 15
4-1-4不同甘油含量實驗前之導電度與黏度量測 16
4-2 偏壓對於二氧化鈦奈米管結構之結果 16
4-3 氟離子濃度對於二氧化鈦奈米管結構之結果 17
4-4蝕刻液的pH值對於二氧化鈦奈米管結構之結果 18
4-5蝕刻液溫度對於二氧化鈦奈米管結構之結果 19
4-6不同甘油含量對於二氧化鈦奈米管結構之結果 20
4-7在甘油含氟溶液中不同偏壓對於二氧化鈦奈米管形貌之影響 21
4-8熱處理後擔載銀、鈀試片分析 22
4-9 循環伏安法(CV)結果 23
4-9-1 熱處理試片對氧還原催化能力之循環伏安之結果 23
4-9-2 不同孔徑試片擔載銀之循環伏安結果 23
4-9-3不同孔徑試片擔載相同濃度鈀之循環伏安結果 24
4-9-4擔載不同銀含量試片之循環伏安結果 24
第五章 討論 25
5-1 陽極氧化參數對於二氧化鈦奈米管結構之影響 25
5-1-1偏壓對於二氧化鈦奈米管結構之影響 25
5-1-2 氟離子濃度對於二氧化鈦奈米管結構之影響 25
5-1-3蝕刻液pH值對於二氧化鈦奈米管結構之影響 26
5-1-4 溫度對於二氧化鈦奈米管結構之影響 27
5-1-5不同甘油含量與純甘油對於二氧化鈦奈米管結構之影響 28
5-2擔載銀、鈀於不同孔徑二氧化鈦奈米管後對其在0.5M H2SO4 之氧還原催化活性之影響 30
第六章 結論與未來展望 32
6-1結論 32
6-2 未來展望 33
第七章 參考文獻 34
參考文獻 1. 南台科技大學機械工程系:奈米科技簡介。取自http://elearning.stut.edu.tw/m_facture/Nanotech/Web/ch7.htm
2. V. Zwilling , M. Aucouturier , Electrochimica Acta,Vol 45,November 1999
3. Dawei Gong, Craig A. Grimes, Oomman K. Varghese, Zhi Chen, Wenchong Hu, Elizabeth C. Dickey, J. Mater. Res., Vol. 16, No. 12, Dec 2001
4. Jan M. Macák, Hiroaki Tsuchiya, Dr., Patrik Schmuki, Angew. Chem. Int. Ed. 2005, 44, 2100 –2102
5. J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer and P. Schmuki, Current Opinion in Solid State and Materials Science ,Vol 11,pp 4-8,Augest 2007
6. Hua Long, Aiping Chen, Guang Yang , Yuhua Li and Peixiang Lu ,Thin Solid Films ,Vol 517, pp 5601-5604, August 2009
7. Jan M.Macak,Patrik Schumki,Electrochimica Acta ,Vol 52, pp 1262 ,August 2006
8. Blumberg, J. Starosvetsky, D. Bilanovic and R. Armon ,Vol 336, pp 107-110, August 2009
9. Yu-Chuan Hsu, Huang-Ching Lin, Chien-Wei Lue, Yi-Ting Liao and Chia-Min Yang ,Applied Catalysis B: Environmental,Vol 89, pp 309-314, July 2009
10. N. Masahashi , Y. Mizukoshi, S. Semboshi and N. Ohtsu
Applied Catalysis B: Environmental,Vol 90, pp 255-261 , July 2009
11. E.C. Bucharsky, G. Schell, R. Oberacker and M.J. Hoffmann ,Journal of the European Ceramic Society ,Vol 29, pp 1955-1961 , July 2009
12. Chi Lu and Zhi Chen, Sensors and Actuators B: Chemical ,Vol 140, pp 109-115 , June 2009
13. Ingela U. Petersson , Johanna E.L. Löberg, Anette S. Fredriksso and Elisabet K. Ahlberg Biomaterials Article in Press, Corrected Proof - Note to users
14. Fa-Min Liu, Peng Ding, Xin-An Yang and Jian-Qi Li ,Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms Article in Press, Accepted Manuscript - Note to users
15. Yijie Zhang, Xianfeng Li, Xiaoshe Hua, Naiheng Ma, Dong Chen and Haowei Wang, Scripta Materialia ,Vol 61,pp 296-299, August 2009
16. Smail Merabet, Abdelkrim Bouzaza and Dominique Wolbert
Journal of Hazardous Materials ,Vol 166, pp 1244-1249
July 2009
17. Hongyong Xie, Guilan Gao, Zhen Tian, Naici Bing and Lijun Wang,Particuology ,Vol 7 ,pp 204-210, June 2009
18. Valentin Bessergenev ,Materials Research Bulletin ,Vol 44, pp 1722-1728,August 2009,
19. Paolo Zurlini , Andrea Lorenzi , Ilaria Alfieri , Guglielmina Gnappi , Angelo Montenero, Nicola Senin , Roberto Groppetti and Paola Fabbri,Thin Solid Films ,Vol 517, pp 5881-5887, August 2009
20. Zhihuan Zhao , Jimin Fan, Shaohua Liu and Zhizhong Wang ,
Chemical Engineering Journal ,Vol 151, pp 134-140 ,August 2009,
21. Yijie Zhang, Xianfeng Li, Xiaoshe Hua, Naiheng Ma, Dong Chen and Haowei Wang ,Scripta Materialia ,Vol 61,pp 296-299, August 2009
22. Yanbiao Liu, Baoxue Zhou , Jing Bai, Jinhua Li, Jialing Zhang, Qing Zheng, Xinyuan Zhu and Weimin Cai ,Applied Catalysis B: Environmental ,Vol 89, pp142-148,July 2009
23. Y.Fu , Z.D.Wei, S.G.Chen , L. Li ,Y.C. Feng ,Y.Q. Wang , X.L. Ma , M.J. Liao ,P.K. Shen , S.P. Jiang,Journal of Power Sources ,Vol 189 ,pp 983,2009
24. Jianling Zhao,Xiaohui Wang,Renzheng Chen,Longtu Li,Solid State Communication ,Vol 134,pp 707,March 2005
25. Han Yang,Chunxu Pan,Journal of Alloys and Compounds,Vol 492, pp 2,March 2010
26. Srimala Sreekantan, , Zainovia Lockman, Roshasnorlyza Hazan, Minoo Tasbihi, Lee Keat Tong and Abdul Rahman Mohamed, Journal of Alloys and Compounds, Vol 485, pp 480,June 2009
27. Weilin Xu, Xiaochun Zhou, Changpeng Liu, Wei Xing , Tianhong Lu, Electrochemistry Communications ,Vol 9 ,pp 1002–1006
,January 2007
28.J.M Macak,F.Schmidt-Stein,P.Schmuki,Electrochemistry
Communication ,Vol 9,pp 1783-1787,April 2007
指導教授 林景崎(Jing-Chie Lin) 審核日期 2010-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明