博碩士論文 973203051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:54.91.4.56
姓名 葉家豪(Chia-Haw Yeh)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以流體式數值模擬直流磁控電漿濺鍍系統之磁場影響
(A Fluid Approach of Numerical Study on the Effect of Magnetic Field in DC Magnetron Discharge)
相關論文
★ 利用鉻薄膜為濕蝕刻遮罩製備石英奈米針狀結構之研究★ 石英蝕刻微結構之非等向性研究
★ 具有微結構之石英表面聲波感測器之共振頻率數值模擬與分析★ 以數值模擬方法探討電感耦合式電漿輔助製程之氣體溫度與腔體熱分析
★ 石英柱狀微結構濕蝕刻製程之研究★ 利用暫態熱微影技術製備高分子微結構
★ 石英柱狀微結構之表面聲波感測器之研製與特性分析★ 利用電子束微影製作高密度石英柱狀結構
★ 利用暫態熱線法之微型熱傳導係數量測元件之設計與製備★ 石英微結構對表面接觸角與潤濕性影響之研究
★ 石英奈米針狀結構表面之潤濕性及遲滯性研究★ 利用示差掃描熱量分析與雷射閃光熱擴散法 研究牛血清蛋白之熱變性
★ MOCVD噴淋式腔體沉積模擬與進氣系統分析★ The Deposition and Microstructure of Tungsten Oxide Films by Physical Vapor Deposition
★ 利用聲子波茲曼方程式分析非對稱多孔矽之熱傳性質★ 柱狀微結構對液珠熱毛細運動之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著半導體工業的發展,電漿製程的開發受到大量關注,在金屬鍍膜製程上,平板式直流濺鍍製程已不足以供應業界在金屬化製程所需之製程速度,需要開發更高的電漿源提升濺鍍率及沉積速度。利用直流磁控式濺鍍系統,以外加磁場大幅增加靶材區之電漿密度,藉由大量離子轟擊提升靶材濺鍍率與沉積率,但由於磁場分佈所導致靶材上離子轟擊分佈不均,會造成靶材使用率不佳與沉積分佈不均等問題,必需藉由磁場之設計與改良來修正。本文主要對直流磁控式濺鍍之開發,磁鐵盤之設計對電漿密度的影響進行研究與探討,利用電漿模擬方式,討論單環及多環磁鐵盤截面上磁鐵排列方式不同,磁力分佈對電漿密度與靶材濺鍍率之影響。
本文採用流體式模擬方法,搭配有限元素分析軟體COMSOL Mutiphysics多重物理偶合模組做為電漿模型之建立。為了使模擬更符合真時物理情況,文中同時也考慮到溫度與氬氣激發態粒子之影響。氣體溫度、電子溫度之上升,使得整體電漿密度下降;電子溫度會隨著磁力線分佈有相同之趨勢,且在40 eV ~ 70 eV有最大之游離產生率發生;而當考慮氬氣激發態之碰撞影響,對電子、離子密度皆有提升之作用。
模擬結果顯示,帶電粒子受到磁力作用下,會在磁力線平行極板處聚集,在單環磁鐵盤模擬中,帶電粒子會在兩磁鐵中間區集中,而衍伸至多環磁鐵盤模擬時,離子集中處會隨著磁鐵盤剖面上磁鐵數之不同而改變。當截面為七個磁鐵時,靶材受離子轟擊之集中處在兩外環中間區;而在六個磁鐵排列下,離子轟擊靶材則轉往兩內環中間區集中。文中最後對靶材濺鍍率及侵蝕剖面進行計算,並探討壁面磁絕緣之模型,分散離子轟擊之峰值數量及位置,提供一改良電漿製程之方法。
摘要(英) The plasma fabrication process attracts more and more attentions in the semiconductor industry in recent years. In the metallization process, the sputtering rate and deposition rate of the Planer DC Sputtering process is not enough to satisfy the semiconductor industry. It’s more necessary to develop the high density plasma system to improve the sputtering rate and deposition rate.
In the DC Magnetron Sputtering, an external magnetic field is applied to enhance the plasma density around the target. The sputtering rate and deposition rate will rise by additional ion bombardment, but it still has the problem that the ion bombardment flux distribution is not smooth along the target. It causes the non-uniformity of target erosion and the surface deposition. It is very important to have an appropriate design of the magnetic fields.
In this thesis, we numerically study the discharge phenomena of a DC Magnetron Sputtering system, including the effects of different magnet plate design and how it affects the plasma density. The plasma distributions and the relationships of ion bombardment on the target are discussed for the one-ring magnet plate and the multi-ring magnet plate.
In the plasma simulation, we use the fluid model method to reduce the computational time and make it more convenient to set up the plasma parameters. To make the plasma simulations more close to the reality, we also consider the effects of the gas temperature and the argon metastable atoms. When the gas temperature and the electron temperature increase, it causes the plasma density decreasing. The electron temperature distribution is same as the magnet line of force distribution. When the electron temperature in the region of 40 eV ~ 70 eV, it causes the maximal ionization rate and excitation rate. Considering the argon metastable atoms contribution, it makes the simulation more close to the real situation and causes the plasma density increasing.
In the result of this thesis, we find out that the plasma species follow the magnet lines of force and concentrate near the target surface, where the magnet lines of force are parallel to the electrode in the one-ring magnet situation. In the case of the seven-magnet plasma distribution, there are two concentration picks of ion bombardment near the edge of the target, while in the case of the six-magnet plasma distribution, the ion bombardment picks are located near the center of the target. Finally, we calculate the sputtering rates and the target erosion profiles. A special case with magnetic isolated boundary is discussed, which enhances the plasma density and the uniformity of target erosion.
關鍵字(中) ★ 磁控式濺鍍
★ 流體式模型
★ 電漿模擬
關鍵字(英) ★ fluid model
★ magnetic sputtering
★ plasma simulation
論文目次 摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1-1 研究背景與目的 1
1-2 文獻回顧 2
1-3 本文架構 5
第二章 理論背景 6
2-1 電漿模擬 6
2-2 粒子式模擬 7
2-2-1 Monte Carlo與PIC模擬 9
2-3 流體式模擬 11
2-4 混合式模擬(Hybrid Model) 13
2-5 濺鍍(Sputtering) 15
2-5-1 直流磁控式濺鍍(DC Magnetron Sputtering ) 17
第三章 數值模擬方法 19
3-1 研究架構 19
3-2 模擬系統之建立與簡化 21
3-3 電子傳輸方程式 23
3-3-1 電子傳輸受磁場之影響 26
3.4 離子與中性粒子傳輸方程式 30
3.5 電場方程式 33
3.6 磁場方程式 35
3.7 溫度與電子能量方程式 37
3.8 邊界條件 39
3.8.1 電場邊界條件 39
3.8.2 電子邊界條件 40
3.8.3 離子邊界條件 41
3.8.4 磁場邊界條件 41
3.8.5 溫度邊界條件 42
第四章 結果與討論 43
4-1 一維電漿模擬 43
4-1-1 系統與邊界條件設定 44
4-1-2 模擬網格測試 45
4-1-3 文獻對照 46
4-1-4 溫度對電漿粒子密度分佈之影響 49
4-2 二維單環磁控式電漿模擬 53
4-2-1 系統與邊界條件設定 54
4-2-2 磁場控制體積與網格設定 56
4-2-3 文獻對照 59
4-3 二維多環磁控式電漿模擬 63
4-3-1 系統與邊界條件設定 64
4-3-2 磁場控制體積與網格設定 66
4-3-3 電子與離子密度分佈 70
4-3-4 多環無中心磁鐵之磁控式電漿 77
4-3-5 電子溫度與粒子密度分佈之關係 84
4-3-6 壁面磁絕緣之影響 87
4-4 濺鍍率與靶材侵蝕分析 94
第五章 結論與未來工作 99
5-1 結論 99
5-2 未來工作與展望 101
參考文獻 102
參考文獻 [1] T. E. Sheridan, M. J. Goeckner and J. Goree, “Model of energetic electron transport in magnetron discharge,” J. Vac. Sci. Technol., A8(1), pp. 30-37, 1990.
[2] Dimitris P. Lymberopoulos and Demetre J. Economou, “Fluid simulations of glow discharge: Effect of metastable atoms in argon,” J. Appl. Phys. 73 (8), pp. 3668 – 3679, 1993.
[3] M.Surendra and D.B.Graves, “Self-consistent dc glow-discharge simulation applied to diamond film deposition reactors,” J. Appl. Phy. 71(10), pp. 5189 - 5198, 1992.
[4] A. Bogaerts and R. Gijbels, “Hybrid Monte Carlo-fluid model of a direct current glow discharge,” J. Appl. Phys. 78 (4), pp. 2233 – 2241, 1995.
[5] A. Bogaerts and R.Gijbels, “Modeling of metastable argon atoms in a direct-current glow discharge,” Physical Review A,vol.52, no.5, pp. 3743-3751, 1995.
[6] A. Bogaerts and R. Gijbels, “Hybrid Modeling of a Capacitively Coupled Radio Frequency Glow Discharge in Argon: Combined Monte Carlo and Fluid Model,” Jpn. J. Appl. Phys. vol. 38, pp. 4404-4415, 1999.
[7] Y. Yammura. and M. lshida, “Monte Carlo simulation of the thermalization of sputtered atoms and reflected atoms in the magnetron sputtering discharge,” J. Vac. Sci .Tehnol. A, 13(1), pp. 101-112, 1995.
[8] Yi-hung Lin, Raymond A. Adomaitis, “A global basis function approach to DC glow discharge simulation,” Physics Letters A, 243, pp.142-150, 1998.
[9] C.H.Shon and J.K.Lee, “Modeling of magnetron sputtering plasma,” Applied Surface Science, 192, pp.258-269, 2002.
[10] C Costin, L Marques, G Popa and G Gousset, “Two-dimensional fluid approach to the dc magnetron discharge,” Plasma Sources Sci. Technol. 14 , pp.168–176, 2005.
[11] Hee-Jung Kim, Deuk-Chul Kwon and Nam-Sik Yoon, “An Efficient Method for One-Dimensional Fluid Simulation of DC Discharge,” Journal of the Korean Physical Society, vol. 51, no. 2, pp. 633-636, 2007.
[12] Zhao Hua-Yu and Mu Zong-Xin, “Particle-in-Cell/Monte Carlo Collision simulation of planar DC magnetron sputtering,” Chin. Phys. Soc. vol 17, no 4, 1475, 2008.
[13] Philip Thomason, Philippa Browning, James Bradley, “1-D Self-consistent Fluid Modelling of the Pulsed Magnetron Discharge,” Plasma Process. Polym, 6, S767–S775, 2009.
[14] D. J. Field, “Studyy of Electrons in Magnetron Sputtering System for Novel Thin Film Application,” PhD Thesis, University of Alberta, Canada. 2005.
[15] Francisco Jimenez, Samuel D. Ekpe and Steven K. Dew, “Modeling of Low Pressure Magnetron Plasma Discharge” Excerpt from the Proceedings of the COMSOL Conference 2007, Boston
[16] P. BartošPP, M. ŠvarcUP, J. HarvalíkP, J. BlažekP , P. Špatenka, “Fluid Computer Simulations in Plasma Physics: Electrical Charging of Micron-sized Particulates in Plasma Sheath,” 29th ICPIG, Cancún, México 2009.
[17] Cheng Jia, Ji Linhong, Zhu Yu, and Shi Yixiang, “Fluid model of inductively coupled plasma etcher based on COMSOL,” Journal of Semiconductors, vol. 31, no. 3, 2010.
[18] Gogolides, E., Mary, D., Rhallabi, A. and Turban, G., “RF plasmas in methane: prediction of plasma properties and neutral radical densities with combined gas-phase physics and chemistry model,” Jpn. J. Appl. Phys., vol. 34, pp. 261-270, 1995
[19] 陳月玉, “冷電漿沉積類鑽碳膜之製程模擬分析,” 國立中央大學機械工程研究所碩士論文, 2008.
[20] Golant, V.E., Zhilinsky, A.P., and Sakharov,I.E. “Fundamentals of plasma Physics”, JohnWiley & Sons, New York ,1980.
[21] A. L. Ward, “Effect of Space Charge in Cold-Cathode Gas Discharges,” Phys. Rev. vol. 112, pp. 1852-1857, 1958.
[22] Bird G. A., “Molecular Gas Dynamics and the Direct Simulation of Gas Flows,” Oxford Univ. Press, New York, 1994.
[23] C. K. Birdsall and A.b. Langdon, “Plasma Physics via Computer Simulation,” IOP Publishing Ltd, London, 1991.
[24] R. W. Hockney and J. W. Eastwood, “Computer Simulation Using Particles,” IOP Publishing Ltd, Bristol, 1988.
[25] C. K. Birdsall, IEEE Trans. Plasma Science, vol. 19, pp. 65, 1991.
[26] J.M. Dawson, Rev. Mod. Phy., vol. 55, pp. 403, 1983.
[27] 蘇宏迪. ”濺鍍電漿製程反應器內中性氣體動力行為之DSMC 模擬,” 國立成功大學機械工程學系碩士論文, 2005.
[28] J. H. Hsieh and C. Li, “Calculation of sputtering rate by a Monte Carlo method,” JOURNAL OF MATERIALS SCIENCE LETTERS, 22, pp.1125- 1126. 2003.
[29] J . A. TORNTON, SAE Trans. 82 , 1787, 1974.
[30] D. Depla and S. Mahieu, ”Reactive Sputter Deposition”, Springer.
[31] J . Bohdansky, Nucl. Inst. Method. Phys. Re, 132, 587, 1984.
[32] M.Surendra , D.B.Graves and G. M. Jullem, “Self-consistent model of a direct-current glow-discharge: Treatment of fast electrons,” Phys. Rev. A , vol 41 , no. 2, pp. 1112-1125 , 1990
[33] J.P. Verboncoeur, M.V. Alves, V. Vahedi, and C.K. Birdsall, "Simultaneous Potential and Circuit Solution for 1d bounded Plasma Particle Simulation Codes," J. Comp. Physics, 104, pp. 321-328, February 1993.
[34] V. Vahedi, C.K. Birdsall, M.A. Lieberman, G. DiPeso, and T.D. Rognlien, "Verification of frequency scaling laws for capacitive radio-frequency discharges using two-dimensional simulations," Phys. Fluids B 5 (7), pp. 2719-2729, July 1993.
[35] J.P. Verboncoeur, A.B. Langdon and N.T. Gladd, "An Object-Oriented Electromagnetic PIC Code", Comp. Phys. Comm., 87, May11, 1995, pp. 199-211.
[36] Hong Xiao著, 羅正忠,張鼎張 譯, “半導體製程技術導論 ” 歐亞書局, 2002.
指導教授 洪銘聰(Ming-Tsung Hung) 審核日期 2010-10-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明