博碩士論文 973203054 詳細資訊


姓名 吳俊輝(Chun-Hui Wu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 非球形顆粒體在振動床中流動行為之研究
(An investgation of the flow behaviour of non-spherical particles in vibrating beds.)
檔案 [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文旨在研究非球形顆粒體在振動床中之流動行為,探討振動條件(振動加速度與頻率)對非球形顆粒體輸送性質之影響,並比較在相同振動條件下球形與非球形顆粒體在振動床中之流動行為。實驗採用的非球形顆粒體為雙球形體顆粒,係由兩顆尺寸相同之POM球形顆粒黏接而成。本研究採用改良式粒子追蹤法(Improved Particle Tracking Velocimetry)量測雙球形顆粒體之平移速度及旋轉速度,進而計算顆粒體輸送性質(例如:局部平均速度、局部擾動速度、局部粒子溫度、擾動速度分佈、擴散係數、無因次質量流率及整體粒子溫度與整體平均動能)。研究結果顯示改良式粒子追蹤法能精確地量測振動床中雙球形顆粒體的平移速度及旋轉速度。本研究展示雙球形顆粒體之迴流現象,另由旋轉擾動速度分佈得知顆粒旋轉在振動床中頗為顯著。
  在固定振動頻率下,雙球形顆粒體的平移速度或旋轉速度皆隨著無因次振動加速度的增加而增加,顆粒體間之碰撞增加,進而增加顆粒體擾動速度,以致擾動速度分佈趨於扁平。同時,雙球形顆粒體的無因次質量流率隨著無因次振動加速度與振動速度之增加而增加。同樣地,整體粒子溫度隨著無因次振動加速度與振動速度之增加而增加。雙球形顆粒體的無因次質量流率亦隨著整體粒子溫度之增加而增加。在相同振動條件下,球形顆粒體之無因次質量流率與整體粒子溫度皆高於雙球形顆粒體之無因次質量流率與整體粒子溫度,此乃雙球形顆粒體之間產生互鎖效應,降低無因次質量流率與整體粒子溫度。
摘要(英) This thesis investigates the flow behaviour of non-spherical particles in vibrating beds, studies the influence of vibration conditions on the flow behaviours and compares the flow behaviour between spherical and non-spherical particles. At the preliminary tests, paired POM particles (one of the non-spherical particles), made by gluing two single POM beads, were studied. The improved Particle Tracking Velocimetry (PTV) was employed to measure the translational and rotational velocities of these non-spherical particles in a vibrating bed. The transport properties of the paired POM particles in a vibrated bed, such as local average velocities, local fluctuation velocities, granular temperatures, fluctuation velocity distributions, self-diffusion coefficients and dimensionless convection flow rates, were evaluated from the experimental results and discussed. The study has shown that the improved PTV technique has the ability to measure more accurately the velocity field of non-spherical particulate systems and that the particle rotation can play a significant role in a vibrated granular bed.
 The dimensionless convection flow rates and global granular temperatures in the non-spherical granular vibrated bed increase with the increase of the vibration acceleration and velocity. The dimensionless convection flow rates also increase with increasing the global granular temperatures. The dimensionless convection flow rates and global granular temperatures in a spherical granular system are larger than those in a non-spherical granular system since the POM paired particles studied here induce a particle inter-locking than spherical particles.
關鍵字(中) ★ 改良式粒子追蹤法
★ 振動條件
★ 顆粒體輸送性質
★ 非球形顆粒
★ 振動床實驗
關鍵字(英) ★ Transport property
★ Vibration conditions
★ Improved PTV
★ Vibrated bed
★ Non-spherical particulate system
論文目次 摘要 i
Abstract iii
目錄 v
附表目錄 vii
附圖目錄 viii
符號說明 xv
第一章 緒論 1
  1.1 顆粒流 1
  1.2 顆粒體在振動床中之流動行為 2
   1.2.1 垂直振動床內的迴流現象 3
   1.2.2 振動床內運動現象之轉變 6
  1.3 研究動機與目的 7
第二章 實驗設備、量測技術與實驗步驟 9
  2.1 實驗設備 9
  2.2 量測技術 14
   2.2.1 改良式粒子追蹤影像處理技術 14
   2.2.2 影像分析流程 17
  2.3 實驗步驟 18
第三章 振動顆粒床之輸送性質 21
  3.1 局部平均速度及局部擾動速度 21
  3.2 局部粒子溫度 22
  3.3 擾動速度分佈 22
  3.4 擴散係數 23
  3.5 無因次質量流率 24
  3.6 整體粒子溫度與整體平均動能 25
第四章 實驗結果與討論 27
  4.1 非球形顆粒體在振動床中之迴流行為 27
  4.2 振動條件對非球形顆粒體輸送性質的影響 31
  4.3 球形與雙球形顆粒體在振動床中流動行為之比較 42
第五章 結論 46
參考文獻 48
參考文獻 [1] S.S. Hsiau, L.S. Lu, C.H. Tai, Experimental investigations of granular temperature in vertical vibrated beds, Powder Technol. 182 (2008) 202-210.
[2] C.C. Liao, S.S. Hsiau, Influence of interstitial fluid viscosity on transport phenomenon in sheared granular materials, Chemical Engineering Science 64 (2009) 2562 – 2569.
[3] C.C. Liao, S.S. Hsiau, Experimental analysis of dynamic properties in wet sheared granular matter, Powder Technol. 197 (2010) 222–229.
[4] E. Clement, J. Duran, J. Rajchenbach, Experimental study of heaping in a two-dimensional “sandpile”, Phys. Rev. Lett. 69 (1992) 1189-1192.
[5] J. Lee, Heap formation in two-dimensional granular media, J. Phys. A: Math. Gen. 27 (1994) L257-L262.
[6] T. Shinbrot, Competition between randomizing impacts and inelastic collisions in granular pattern formation, Nature 389 (1997) 574-576.
[7] C. Bizon, M.D. Shattuck, J.B. Swift, W.D. McCormick, H.L. Swineey, Pattern in 3D vertically oscillated granular layers: simulation and experiment, Phys. Rev. Lett. 80 (1998) 57-60.
[8] K. Kim, H.K. Pak, Coarsening dynamics of striped patterns in thin granular layers under vertical vibration, Phys. Rev. Lett. 88 (2002) 204303.
[9] D.I. Goldman, M.D. Shattuck, S.J. Moon, J.B. Swift, H.L. Swinney, Lattice dynamics and melting of a nonequilibrium pattern, Phys. Rev. Lett. 90 (2003) 104302.
[10] J.B. Knight, H.M. Jaeger, S.R. Nagel, Vibration-induced size separation in granular media: the convection connection, Phys. Rev. Lett. 70 (1993) 3728-3731.
[11] G.C. Barker, A. Mehta, Size segregation mechanisms, Nature 364 (1993) 486-487.
[12] S.S. Hsiau, H.Y. Yu, Segregation phenomena in a shaker, Powder Technol. 93 (1997) 83-88.
[13] S.C. Yang, Segregation of cohesive powders in a vibrated granular bed, Chem. Eng. Sci. 61 (2006) 6180-6188.
[14] S.S. Hsiau, W.C. Chen, Density effect of binary mixtures on the segregation process in a vertical shaker, Adv. Powder Technol. 13 (2002) 301-315.
[15] S.C. Yang, Density effect on mixing and segregation processes in a vibrated binary granular mixture, Powder Technol. 164 (2006) 65-74.
[16] H. Pak, R. Behringer, Surface waves in vertically vibrated granular materials, Phys. Rev. Lett. 71 (1993) 1832-1835.
[17] F. Melo, P. Umbanhowar, H. Swinney, Transition to parametric wave patterns in a vertically oscillated granular layer, Phys. Rev. Lett. 72 (1994) 172-175.
[18] Y. Lan, A.D. Rosato, Convection related phenomena in granular dynamics simulations of vibrated bed, Phys. Fluids. 9 (1997) 3615-3624.
[19] S.S. Hsiau, M.H. Wu, C.H. Chen, Arching phenomena in a vibrated granular bed, Powder Technol. 99 (1998) 185-193.
[20] J.S. Olafsen, J.S. Urbach, Two-dimensional melting far from equilibrium in a granular monolayer, Phys. Rev. Lett. 95 (2005) 098002.
[21] A. Gotzendorfer, C.H. Tai, C.A. Kruelle, I. Rehberg, S.S. Hsiau, Fluidization of a vertically vibrated two-dimensional hard sphere packing: a granular meltdown, Phys. Rev. E 74 (2006) 011304.
[22] P. Eshuis, K.V.D. Weele, D.V.D. Meer, D. Lohse, Granular Leidenfrost effect: experiment and theory of floating particle clusters, Phys. Rev. Lett. 95 (2005) 258001.
[23] S.C. Tai, S.S. Hsiau, Movement mechanisms of solid-like and liquid-like motion states in a vibrating granular bed, Powder Technol. 194 (2009) 159-165.
[24] M. Faraday, On a peculiar class of acoustical figures and on certain forms assumed by groups of particles upon vibrating elastic surface, Philos. Trans. R. Soc. London 52 (1831) 299.
[25] E.E. Ehrichs, H.M. Jaeger, G.S. Karczmar, J.B. Knight, V.Y. Kuperman, S.R. Nagel, Granular convection observed by magnetic resonance imaging, Science 267 (1995) 1632-1634.
[26] J.B. Knight, E.E. Ehrichs, V.Y. Kuperman, J.K. Flint, H.M. Jaeger, S.R. Nagel, Experimental study of granular convection, Phys. Rev. E 54 (1996) 5726-5738.
[27] J.B. Knight, External boundary and internal shear bands in granular convection, Phys. Rev. E 55 (1997) 6016-6023.
[28] S. S. Hsiau and C. H. Chen, Granular convection cells in a vertical shaker, Powder Technology. 111 (2000) 210–217.
[29] S.S. Hsiau, P.C. Wang, C.H. Tai, Convection cells and segregation in a vibrated granular bed, AIChE J. 48 (2002) 1430-1438.
[30] C.H. Tai, S.S. Hsiau, Dynamic behaviors of powders in a vibrating bed, Powder Technol. 139 (2004) 221-232.
[31] E.L. Grossman, Effects of container geometry on granular con¬vection, Phys. Rev. E 56 (1997) 3290-3300.
[32] S.C. Yang, S.S. Hsiau, Self-diffusion analysis in a vibrated granular bed, Advanced Powder Technol. 12 (2001) 61-77.
[33] S.S. Hsiau, S.C. Yang, Numerical simulation of self-diffusion and mixing in a vibrated granular bed with the cohesive effect of liquid bridges, Chem. Eng. Sci. 58 (2003) 339-351.
[34] L.S. Lu, S.S. Hsiau, Mixing in vibrated granular beds with the effect of electrostatic force, Powder Technol. 160 (2005) 170-179.
[35] L.S. Lu, S.S. Hsiau, Mixing in a vibrated granular bed: Diffusive and convection effects, Powder Technol. 184 (2008) 31-43.
[36] Y. Tatemoto, Y. Niwa, T. Takeshita, Circulation of particles in a vibrated bed with an inner tube, Powder Technol. 192 (2009) 279-286.
[37] M. Majid, P. Walzel, Convection and segregation in vertically vibrated granular beds, Powder Technol. 192 (2009) 311-317.
[38] Y.C. Chung, S.S. Hsiau, H.H. Liao, J.Y. Ooi, An improved PTV technique to evaluate the velocity field of non-spherical particles, Powder Technology 202 (2010) 151–161.
[39] M. Sonka, V. Hlavac and R. Boyle, Image porcessing, analysis and machine vision. PWS Publishing, 1999
[40] S.S. Hsiau, Y.M. Shieh, Fluctuations and self-diffusion of sheared granular material flows, J. Rheol. 43 (1999) 1049-1066.
[41] R.D. Wildman, J.M. Huntley, J.P. Hansen, Self-diffusion of grains in a two-dimensional vibrofluidized bed, Phys. Rev. E 60 (1999) 7066-7075.
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2010-8-17

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡