博碩士論文 973203055 詳細資訊


姓名 王維鴻(Wei-hung Wang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 利用電化學加工配合動力拉提法製作針錐微電極之參數分析
(The Parametric Analysis in Manufacturing Micro Conical-shaped Electrodes by Electrochemical Machining Accompanying with Dynamic Drawing Method)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 微機電系統技術是目前科技發展的重心,近年來電化學因為可應用在製作微型元件上,所以又受到微加工技術的高度注意,此類的電化學加工被稱為微電化學加工,屬於非傳統加工。其優勢具有可加工任何金屬材料,工件表面無殘留應力,工具電極不易損耗等。在微電化學加工上,若要製作微結構元件,則需要更微細之加工電極,故本文將探討如何製作微細之針錐狀微電極。
本文研究目的為利用電化學加工配合動力拉提法製作針錐微電極,且使用單一因子法分析加工參數(如:操作電壓、電解液濃度、陽極長度、拉提速率、陰極面積、電極旋轉速率)對於製作針錐微電極之影響性,得知當操作電壓和電解液改變時會影響加工表面精度,且陽極浸入長度、拉提速率及電極旋轉速率對於加工微電極成型之錐度與深寬比有重要的影響性,本文在參數範圍內找出一組較合宜之參數。
將直徑510 μm的鎢棒製作成針錐狀電極,其加工時間約為20分鐘,刃長大約3.2 mm,前端針尖之直徑小於15 μm,且錐度極小及深寬比大。且將此針錐狀微電極應用在微電化學工加鑽孔上,其微孔洞之直徑與精度凸顯此針錐微電極在微電化學加工技術的貢獻與突破。
摘要(英) The technology of MEMS has being the main part of current technology. Recently ECM has been applied in micro-components, and it gets high attention from the technology of micro manufacture. This sort of electrochemical machining called EMM belongs to the non-traditional machining.
The ECM not only possesses the capability of machining all kinds of metal materials but also remains no residual stress on its surface. More over, the electrode of tool couldn’t easily break. In the process of EMM, to manufacture micro-structures, more tiny micro electrodes are needed in machining. This thesis will intends to investigate the manufacture of a micro conical-shaped electrode.
The purpose of this thesis is to use electrochemical machining accompanying with dynamic drawing method to manufacture conical-shaped electrodes. We discussed and analyzed the effect of working parameters, such as applied voltage, electrolyte concentration, anode length, draw up rate, cathode area, rotational rate of electrode, on the conical-shaped electrode.
Brief description about the experimental results is needed. A tungsten rod with diameter of 510 μm is need to manufacture the micro conical-shaped electrode. The resulting electrode has edge’s length of 3.2 mm, and the diameter of apex is less than 15 μm. Besides, the cone angle is extremely tiny and the aspect ratio is high.
We will use this micro conical-shaped electrode in the EMM drilling, and the resulting micro hole’s diameter and precision shows the potential application of the micro conical-shaped electrode in EMM.
關鍵字(中) ★ 微電極
★ 微電化學加工
★ 針錐
★ 鎢棒
★ 動力拉提
關鍵字(英) ★ dynamic drawing
★ conical-shaped
★ tungsten
★ micro electrode
★ electrochemical micro-machining
論文目次 目錄
摘要 ............................................................................................................. I
Abstract ...................................................................................................... II
符號說明 ................................................................................................. XII
第一章 序論 ........................................................................................ 1
1-1 前言 ........................................................................................ 1
1-2 電化學加工 ............................................................................ 3
1-3 文獻回顧 ................................................................................ 5
1-3-1 微電極製作之文獻回顧 ........................................................ 6
1-3-2 電化學加工之文獻回顧 ........................................................ 9
1-4 研究目的 .............................................................................. 15
第二章 理論基礎 .............................................................................. 17
2-1 電化學拋光 .......................................................................... 17
2-2 液相質傳動力學 .................................................................. 20
2-3 電化學基本定律 .................................................................. 22
2-3-1 電流分佈 .............................................................................. 23
2-3-2 電流密度與電流效率 .......................................................... 24
2-3-3 電解液導電度 ...................................................................... 25
2-4 電化學反應式 ...................................................................... 26
2-5 電雙層理論 .......................................................................... 28
2-6 極化 ...................................................................................... 29
第三章 實驗設備與步驟 .................................................................. 32
3-1 實驗設備 .............................................................................. 32
3-1-1 機台結構設計 ...................................................................... 32
3-1-2 刀具進給控制系統 .............................................................. 33
3-1-3 電源供應器 .......................................................................... 34
3-1-4 導電度量測儀器 .................................................................. 35
3-1-5 伺服馬達 .............................................................................. 35
3-1-6 恆溫加熱器 .......................................................................... 36
3-2 實驗材料 .............................................................................. 36
3-2-1 陰極電極片 .......................................................................... 36
3-2-2 陽極電極工件 ...................................................................... 37
3-2-3 電解液─氫氧化鈉NaOH ................................................... 37
3-3 實驗步驟及注意事項 .......................................................... 38
第四章 結果與討論 .......................................................................... 40
4-1 動力拉提法(Dynamic Drawing Method) ............................ 42
4-2 操作電壓 .............................................................................. 44
4-2-1 溶解成型與斷針成型 .......................................................... 46
4-2-2 微電極成型之加工過程 ...................................................... 47
4-3 電解液濃度 .......................................................................... 48
4-4 電極拉提速率 ...................................................................... 50
4-5 陽極長度(浸入長度) ........................................................... 52
4-6 陰極面積 .............................................................................. 56
4-7 電極旋轉速率 ...................................................................... 57
4-8 實驗成果 .............................................................................. 59
第五章 結論 ...................................................................................... 62
5-1 結論 ...................................................................................... 62
5-2 未來展望 .............................................................................. 64
參考文獻 ................................................................................................... 65
附表 ........................................................................................................... 70
附圖 ........................................................................................................... 72
表目錄
表3-1 氫氧化鈉(NaOH)各濃度之導電度 ........................................... 70
表4-1 最佳化參數之微電極尺寸 ........................................................ 70
表4-2 本文之微電極應用於微電化學鑽孔之微孔洞深度與直徑 .... 71
圖目錄
圖1-1 微電化學加工系統示意圖[5] ................................................... 72
圖1-2 加工時質量黏稠層示意圖[10] ................................................. 72
圖1-3 電化學拋光之電壓-電流(V-I)曲線圖[12] ........................ 73
圖1-4 掉落法與動力拉提法加工差別示意圖[16] ............................. 73
圖1-5 COMSOL模擬圓柱型電極之電場範圍 ................................... 74
圖1-6 COMSOL模擬針錐型電極之電場範圍 ................................... 74
圖2-1 電化學拋光之黏稠層[37].......................................................... 75
圖2-2 加工過程電極表面示意圖 ........................................................ 75
圖2-3 電雙層[14] ……………………………………………………76
圖2-4 電雙層效應之等效電路 ............................................................ 76
圖3-1 實驗裝置設備圖 ........................................................................ 77
圖3-2 3-D懸臂式機械手臂 .................................................................. 77
圖3-3 3-D實體加工機台 ...................................................................... 78
圖3-4 直流電源供應器 ........................................................................ 78
圖3-5 數位示波器(上)與脈衝產生器(下) ........................................... 79
圖3-6 導電度量測儀器 ........................................................................ 79
圖3-7 恆溫加熱器 ……………………………………………………80
圖3-8 實驗流程圖 ……………………………………………………80
圖4-1 純鎢棒在不同NaOH 電解液濃度下之電壓電流曲線圖 ....... 81
圖4-2 量測位置示意圖 ........................................................................ 81
圖4-3 傳統掉落法電極浸入電解液之液氣間腐蝕示意圖 ................ 82
圖4-4 相同參數下掉落法與動力拉提法製作微電極外型之比較 .... 82
圖4-5 在不同電極拉提速率下,操作電壓和底部直徑之關係圖 .... 83
圖4-6 在不同電極拉提速率下,操作電壓和柄部直徑之關係圖 .... 83
圖4-7 電極拉提速率1.60 μm/sec下,各操作電壓之微電極外型 ... 84
圖4-8 在不同電極拉提速率下,操作電壓與直徑差之關係圖........85
圖4-9 以溶解完成加工與斷針完成加工之DE和DS比較示意圖 ....... 85
圖4-10 在電壓1.6 V的參數下,不同加工時段之陽極鎢棒外型 ...... 86
圖4-11 在不同電極拉提速率下,濃度和底部直徑DE之關係圖 ....... 87
圖4-12 在不同電極拉提速率下,濃度和柄部直徑DS之關係圖 ........ 87
圖4-13 電極拉提速率1.33 μm/sec時,不同濃度下之微電極外型 ... 88
圖4-14 在不同電極拉提速率下,濃度和直徑差DS-DE之關係圖 ... 88
圖4-15 電極拉提速率和底部直徑DE之關係圖 .................................... 89
圖4-16 電極拉提速率和柄部直徑DS之關係圖 .................................... 89
圖4-17 電極拉提速率和直徑差DS-DE之關係圖 ............................... 90
圖4-18 在不同電極拉提速率下,陽極長度和底部直徑之關係圖 .... 90
圖4-19 在不同電極拉提速率下,陽極長度和柄部直徑之關係圖 .... 91
圖4-20 電極拉提速率1.60 μm/sec時,不同陽極長度加工完成的示意圖………………………………………………………………91
圖4-21 電極拉提速率2.67 μm/sec時,不同陽極長度加工完成的示意圖……………………………………………………………....92
圖4-22 在不同電極拉提速率下,陽極長度和直徑差之關係圖 ........ 92
圖4-23 在不同電極拉提速率下,陰極面積和底部直徑之關係圖 .... 93
圖4-24 在不同電極拉提速率下,陰極面積和柄部直徑之關係圖 .... 93
圖4-25 在不同電極拉提速率下,陰極面積和直徑差之關係圖 ........ 94
圖4-26 電極旋轉速率和底部直徑DE之關係圖 .................................... 94
圖4-27 電極旋轉速率和柄部直徑DS之關係圖 .................................... 95
圖4-28 電極旋轉速率和直徑差DS-DE之關係圖 ............................... 95
圖4-29 不同旋轉速率參數下其微電極之外型比較 ............................ 97
圖4-30 不同旋轉速度下電極外形變化[35] ......................................... 97
圖4-31 適當參數組合下製作的微電極外型SEM圖 ............................ 98
圖4-32 適當參數組合下製作的微電極針尖之SEM圖 ........................ 99
圖4-33 加工深度50 μm之微孔洞 ....................................................... 100
圖4-34 在刀具不旋轉時加工深度50 μm之微孔洞 ........................... 101
圖4-35 加工深度80 μm之微孔洞 ....................................................... 102
圖4-36 加工深度100 μm之微孔洞 ..................................................... 103
圖4-37 加工深度120 μm之微孔洞 ..................................................... 104
參考文獻 1. 楊龍杰編著,認識微機電,滄海書局(2001).
2. D.J. Nagel and M.E. Zaghloul, MEMS : Micro Techanology: Mega Impact, IEEE Circuit Devices Magazine, Vol. 28, pp. 14-25 (2001).
3. Nadim Maluf 著,李世鴻譯著,微機電系統工程,五南圖書(2003).
4. J.A. McGeough, Principles of Electrochemical Machining, Chapman Hall, London. (1974).
5. S. H. Ahn, S. H. Ryu, D. K. Choi and C. N. Chua, Electro-chemical Micro Drilling Using Ultra Short Pulses, Precision Engineering, Vol. 28, pp. 129-34 (2004).
6. X. Jiawena, Y. Naizhang, T. Yangxin and K.P. Rajurkar, The modelling of NC-electrochemical Contour Evolution Machining Using a Rotary Tool-cathode, Journal of Materials Processing Technology, Vol. 159, pp. 272-277 (2005).
7. 木本康雄著,賴耿陽譯著,精密加工之電學應用,復漢出版社(1982).
8. 佐藤敏一著,賴耿陽譯著,金屬腐蝕加工技術, 復漢出版社(1986).
9. Y. M. Lim and S. H. Kim, An Electrochemical Fabrication Method for Extremely Thin Cylindrical Micropin, International Journal of Machine Tools & Manufacture, Vol. 41, pp. 2287-2296 (2001).
10. Y. M. Lim, H. J. Lim, J. R. Liu and S. H. Kim, Fabrication of Cylindrical Micropins with Various Diameters Using DC Current Density Control, Journal of Materials Processing Technology, Vol. 141, pp. 251-255 (2003).
11. Z. Wang, B. Zhu and G. Cao, Fabricating Microelectrode by Electrochemical Micromachining, Proceedings of SPIE, Vol. 6041, pp. 1-5 (2006).
12. 陳裕豐,高潔淨閥件之流道表面處理-電解拋光(EP)技術,機械工業雜誌,198 期, 230-240 頁,9 月,(1999).
13. S. H. Choi, S.H. Ryu and C.N. Chu, Fabrication of WC Micro-shaft by Using Electrochemical Etching, International Journal of Advanced Manufacture Technology, Vol. 31, pp. 682-687 (2007).
14. E. S. Lee, S. Y. Baek, and C. R. Cho, A study of the Characteristics for Electrochemical Micromachining with Ultrashort Voltage Pulses, International Journal of Advanced Manufacture Technology, Vol. 31, pp. 762-769 (2007).
15. D. Zhu, K. Wang and N. S. Qu, Micro Wire Electrochemical Cutting by Using in Situ Fabricated Wire Electrode, CIRP Annals - Manufacturing Technology, Vol. 56, pp. 241-244 (2007).
16. R. Hobara, S. Yoshimoto, and S. Hasegawa, Dynamic Electrochemical Etching Technique for Tungsten Tips Suitable for Multi-tip Scanning Tunneling Microscopes, Journal of Surface Science and Nanotechnology, Vol. 5, pp. 94-98 (2007).
17. R. Maeda, K. Chikamori and H. Yamamoto, Feed Rate of Wire Electrochemical Machining Using Pulsed Current, Precision Engineering, Vol. 31, pp. 193-199 (1984).
18. R. Schuster, V. Kirchner and P. Allongue, Electrochemical Micro- Machining, Science, Vol. 289, No. 5, pp. 98-101 (2000).
19. M. Kock, V. Kirchner and R. Schuster, Electrochemical Micromachining with Ultrashort Voltage Pulses a Versatile Method with Lithographical Precision, Electrochemical Action, Vol. 48, pp. 3213-3219 (2003).
20. B. Bhattacharyya and J. Munda, Experimental Investigation on the Influent of Electrochemical Machining Parameters on Machining Rate and Accuracy in Micromachining Domain, International Journal of Machine Tool and Manufacture, Vol. 43, pp. 1301-1310 (2003).
21. Y. Li, Y. Zheng, G. Yang and L. Q. Peng, Localized Electrochemical Micromachining with Gap Control, Sensors and Actuators, A 108, pp. 144-148 (2003).
22. H. Hocheng,Y. H. Sun, S. C. Lin and P.S. Kao, A Material Removal Analysis of Electrochemical Machining Using Flat-End Cathode, Journal of Material Processing Technology, Vol. 140, pp. 264-268(2003).
23. B. H. Kim, S. H. Ryu, D. K. Choi, and C. N. Chu, Micro Electrochemical Milling, Journal of Micromechanics and Microengineering, Vol. 15, No. 1, pp. 124-129 (2004).
24. P. Allongue, P. Jiang, V. Kirchner, A. L. Trimmer and R. Schuster, Electrochemical Micromachining of p-Type Silicon, Journal of Physical Chemistry B, Vol. 108, pp. 14434-14439 (2004).
25. B. Bhattacharyya , M. Malapati and J. Munda, Advancement in Electrochemical Micro-machining, Journal of Materials Processing Technology, Vol. 169, pp. 485-492 (2005).
26. T. Kurita, K. Chikamori, S. Kubota and M. Hattori, A Study of Three-dimensional Shape Machining with an ECM system, International Journal of Machine Tools & Manufacture, Vol. 46, pp. 1311-1318 (2006).
27. B. Bhattacharyya, M. Malapati, J. Munda and A. Sarkar, Influence of Tool Vibration on Machining Performance in Electrochemical Micro-machining of Copper, Journal of Materials Processing Technology, Vol. 47, pp. 335-342 (2007).
28. M. S. Park and C. N. Chu, Micro-electrochemical Machining Using Multiple Tool Electrodes, Journal of Micromechanics and Micro-engineering, Vol. 17, No. 8, pp. 1451-1457 (2007).
29. J. A. Kenney and G.S. Hwang, Electrochemical Machining with Ultra Voltage Pulses: Modeling of Charge Dynamics and Feature Profile Evolution, Nanotechnology, Vol. 16, pp. S309-S313 (2005).
30. J. A. Kenney and G.S. Hwang, Etch Trends in Electrochemical Machining with Ultrashort Voltage Pulses, Electrochemical and Solid-State Letters, Vol. 9, No. 1, pp. D1-D4 (2006).
31. J. A. Kenney and G.S. Hwang, Computational Analysis of Intratool Interactions in Electrochemical Micromachining with Multitip Tool Electrodes, Electrochemical and Solid-State Letters, Vol. 9, No. 9, pp. D21-D23 (2006).
32. Y. F. Luo, Differential Equation for the Ultra-Fast Transient Migration in Electrolytic Dissolution, Electrochemistry Communications, Vol. 8, pp. 353-358 (2006).
33. H. S. Shin, B. H. Kim and C. N. Chu, Analysis of the Side Gap Resulting form Micro Electrochemical Machining with a Tungsten Wire and Ultrashort Voltage Pulses, Journal of Macromechanics and Microengineering, Vol. 18, pp. 1-6 (2008).
34. S. H. Ryu, Micro Fabrication by Electrochemical Process in Citric Acid Electrolyte, Journal of Materials Processing Technology, Vol. 209, pp. 2831-2837 (2008).
35. C. H. Jo, B. H. Kim and C. N. Chu, Micro Electrochemical Machining for Complex Internal Micro Features, CIRP Annals - Manufacturing Technology, Vol. 384, pp. 247-250 (2009).
36. 范智文,利用電化學加工製作微電極與鑽孔之研究與分析,國立中央大學機械工程學系,博士論文,5月(2010).
37. H. Hocheng and P.S. Pa, Electropolishing and Electrobrightening of Holes Using Different Feeding Electrodes, Journal of Materials Processing technology. Vol. 89-90, pp. 440-446 (1999).
38. M. S. Nikolova, A. Natarajan and P. C. Searson, Electrochemical Fabrication of Sharp Nickel Tips in H2SO4 Solutions, Journal of the Electrochemical Society. Vol. 144, No. 2, pp. 455-460 (1997).
39. M. Datta and D. Landolt, Fundamental Aspects and Applications of Electrochemical Microfabrication, Electrochemical Acta, Vol. 45, pp.2535–2558 (2000).
40. J.F. Thorpe and R.D. Zerkle, Theoretical Analysis of the Equilibrium Sinking of Shallow, Axially Symmetric, Cavities by Electrochemical Machining, Electrochemical Society, Princeton, pp. 1-39(1971).
41. G.J Edwards and P.R. Pearce, Comparison of AC and DC Electrochemical Etching Techniques for the Fabrication of Tungsten Whiskers, Journal of Physics. Vol. 11, pp. 761-764 (1978).
42. 田福助編著,電化學基本原理與應用,五洲出版社(2004).
43. 胡啟章編著,電化學原理與方法,五南圖書(2002).
指導教授 洪勵吾(Lih-wu Hourng) 審核日期 2010-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡