博碩士論文 973203057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.142.156.67
姓名 曾廣彬(Guang-bin Tzeng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 板式熱交換器之流場模擬與流動分佈不均勻態分析
(Numerical analysis of flow and flow maldistribution in plate heat exchangers)
相關論文
★ 以數值模擬探討微管流之物理效應★ 微管流之層流與紊流模擬
★ 銅質均熱片研製★ 熱差式氣體流量計之感測模式及氣流道效應分析
★ 低溫倉儲噴流系統之實驗量測與數值模擬研究★ 壓縮微管流的熱流分析
★ 微小圓管的層流及熱傳數值模擬★ 微型平板流和圓管流的熱流特性:以數值探討壓縮和稀薄效應
★ 微管道電滲流物理特性之數值模擬★ 電滲泵內多孔介質微流場特性之數值模擬
★ 被動式微混合器之數值模擬★ 電滲泵的製作與性能測試
★ 叉合型流場於質子交換膜燃料電池之陰極半電池的參數探討★ 無動件式高流率電滲泵的製作與特性分析
★ 微電滲泵之暫態熱流研究★ 高解析熱氣泡式噴墨頭墨滴成形觀測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 大多數板式交換器的實驗研究僅量測板式熱交換器之性能,並無觀測板式熱交換器內部流場,故本文以FLUENT套裝軟體針對K050、K070及K200山型紋板片進行三維數值模擬分析,首先針對K070板片以不同紊流模型進行模擬分析,結果顯示Realizable k-ε模式最準確;模擬的摩擦因子與實驗最大誤差僅8%,具有相當高地準確性;並測試定溫、定熱通量及對流邊界條件之差異,得知採用對流邊界條件最接近實際流場。
本文之數值模擬經驗證對於板式熱交換器熱流場具有一定精確度,接著探討K050、K070及K200流場及流動分布不均勻之現象;由模擬結果顯示K050及K070板片在低雷諾數(302)時流場大多為十字交叉流,當雷諾數提高為4075時則可發現部份流場轉變為曲折流;K200板片在大範圍的雷諾數(從302至4187)皆維持十字交叉流。各板片中以K200板片分布不均勻現象最明顯,若能針對入出口區波紋的配置做改良,則可降低接近入出口區不均勻流動之現象。本文之模擬結果可作為熱交換器之設計人員設計與改良板式熱交換器的依據。
摘要(英) In the present study, the thermal convection characteristics and pressure drop in a corrugated chevron plate of real-size plate heat exchangers have been investigated. A commercial CFD code FLUENT is employed to simulate the water through the channel. The consequence of comparison the different turbulent model with empirical correlations for friction factor shows that Realizable k-ε model has better accuracy, the maximum error is only 8%. This study also test the performance of three thermal boundary conditions (constant wall temperature, heat flux and convection type conditions), and find the convection boundary condition is the most realistic for a plate heat exchanger.
Through a series of verification, the accuracy of numerical model in this work has been established. The numerical result shows the flow and temperature pattern and flow maldistribution. The flow patterns are cross flow for the plates of K070 and K050 when Reynolds number is 302. When Reynolds number increases upto 4075, the zig-zag flow could be found for the cases of K070 and K050. On the other hand, The flow pattern is kept as cross flow type for K200 plate for whole range of Reynolds number (from 302 upto 4178). The K200 case has the most severe maldistribution among theee plates. Based on numerical study, adjust the layout of corrugation can reduce the level of flow maldistribution. The simulation results can provide a valuable design guide on improving the performance the plate heat exchanger.
關鍵字(中) ★ 流動分布不均勻
★ 壓降
★ 山型紋板片
★ 板式熱交換器
★ 計算流體力學
關鍵字(英) ★ Computational fluid dynamics
★ Plate heat exchanger
★ Chevron plate
★ Flow maldistribution
★ Pressure drop
論文目次 中文摘要 .................................................................................................................................Ⅰ
英文摘要 .................................................................................................................................. II
致謝 .................................................................................................................................III
目錄 .................................................................................................................................IV
圖目 錄 .................................................................................................................................VI
表目 錄 .................................................................................................................................. X
符號說明.................................................................................................................................XI
第一章緒論 ..............................................................................................................................1
1.1 研究動機.....................................................................................................................1
1.2 研究背景.....................................................................................................................2
1.3 文獻回顧.....................................................................................................................7
1.4 研究目的...................................................................................................................12
第二章計算分析 ....................................................................................................................13
2.1 計算流體力學簡介...................................................................................................13
2.2 幾何外型...................................................................................................................13
2.3 基本假設...................................................................................................................17
2.4 統御方程式...............................................................................................................17
2.5 紊流模型...................................................................................................................18
2.6 壁面函數...................................................................................................................22
2.7 邊界條件...................................................................................................................28
2.8 計算方法...................................................................................................................30
2.9 無因次參數的計算...................................................................................................31
第三章模擬驗證 ....................................................................................................................33
3.1 網格測試...................................................................................................................33
3.2 不同紊流模式的比較...............................................................................................35
3.3 流場分析...................................................................................................................36
3.4 不同熱邊界條件模擬結果比較...............................................................................47
第四章不同板片性能比較 ....................................................................................................52
4.1 參數分析...................................................................................................................52
4.2 流場分析...................................................................................................................54
4.3 流動分佈不均勻態分析...........................................................................................60
4.4 入出口壓降分析.......................................................................................................70
第五章結論 ............................................................................................................................74
5.1 結論...........................................................................................................................74
5.2 未來改進方向...........................................................................................................75
參考文獻.................................................................................................................................76
附錄.........................................................................................................................................78
參考文獻 ANSYS (2009) “ANSYS Fluent user’s guide, ” ANSYS, Inc.
Focke, W. W., and Knibble, P. G. (1984), Flow visualization in parallel plate ducts with corrugated walls,” CSIR Report CENC M-519.
Focke, W. W., Zachariades, J., and Oliver, I. (1985), “The effect of corrugation inclination angle on the thermohydraulic performance of plate heat exchangers,” Int. J. Heat and Mass transfer, 28: 1469 – 1479.
Huang, P., Bradshaw, P., Coakley, T. (1993), “Skin friction and velocity profile family for compressible turbulent boundary layers,” AIAA Journal, 31(9):1600-1604.
Incropera, F. P., Dewitt, D. P.(2001), Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York.
Jain, S., Joshi, A., Bansal, P. K. (2007) “A new approach to numerical simulation of small sized plate heat exchangers with chevron plates,” J. Heat Transfer, 129: 291-297.
Jayatilleke C. (1969) “The inuence of prandtl number and surface roughness on the
resistance of the laminar sublayer to momentum and heat transfer,” Prog. Heat
Mass Transfer, 1:193-321.
Kader, B. (1981) “Temperature and concentration profiles in fully turbulent boundary
layers,” Int. J. Heat Mass Transfer, 24(9):1541-1544.
Kanaris, A. G., Mouza, A. A., Paras, S. V. (2006) “Flow and heat transfer prediction in a corrugated plate heat exchanger using a CFD code,” Chem. Eng. Technol. 29(8): 923-930.
Kim, S.-E., Choudhury, D. (1995) “A near-wall treatment using wall functions sensitized to pressure gradient,” ASME FED , 217, Separated and Complex Flows.
Launder, B. E., Spalding D.B. (1972) Lectures in Mathematical Models of Turbulence, Academic Press.
Mehrabian, M. A., Poulter, R., “Hydrodynamics and thermal characteristics of corrugated channels: computational approach,” Applied Mathematical Modeling, 24: 343-364, 2000.
Muley, A., and Manglik, R. M. (1999) “Experimental study of tubulent flow heat transfer and pressure drop in a plate heat exchanger with chevron plates,” J. Heat Transfer, 121:110-117
Rao, B. P., Kumar, P. K., Das, S. K. (2002)”Effect of flow distribution to the channels on the thermal performance of a plate heat exchanger,” Chemical Engineering and Processing 41: 49-58.
Shih T. H., Liou W.W., Shabbir A., Yang Z., Zhu J. (1995) “A new k-ε eddy-viscosity model for high Reynolds number turbulent flows - model development and validation,” Computers and Fluids, 24(3):227-238.
Tsai, Y. C., Liu, F. B., Shen, P. T (2009) ”Investigations of the pressure drop and flow distribution in a chevron-type plate heat exchanger,” Int. Communications in Heat and Mass Transfer, 36:574-578.
White, F., Christoph, G. (1971) “A simple new analysis of compressible turbulent skin friction under arbitrary conditions,” Technical Report AFFDL-TR-70-133.
Wolfstein, M. (1969) “The velocity and temperature distribution of one-dimensional flow with turbulence augmentation and pressure gradient,” Int. J. Heat Mass Transfer, 12:301-318.
Yakhot V., Orszag S. A. (1986) “Renormalization group analysis of turbulence: I. basic theory,” J. Scientific Computing, 1(1):1-51.
王啟川(2001),熱交換器設計,五南圖書出版有限公司,台中。
林岳宏(2004),「水對空氣在板式熱交換器之性能測試分析」,國立中央大學機械工程研究所,碩士論文。
羅弘達(2006),「板式熱交換器之入出口壓降實驗分析」,國立中央大學機械工程研究所,碩士論文。
翁嘉鴻(2002),「水對水板式熱交換器性能測試分析」,國立中央大學機械工程研究所,碩士論文。
指導教授 吳俊諆(Jiunn-Chi Wu) 審核日期 2010-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明