博碩士論文 973203058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.129.249.105
姓名 郭展維(Chan-Wei Kuo)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 磁場對電解水產氫效率之研究
(The improvement of water electrolysis efficiency by magnetic forces)
相關論文
★ 迴轉式壓縮機泵浦吐出口閥片厚度對性能影響之研究★ 鬆弛時間與動態接觸角對旋塗不穩定的影響
★ 電化學製作針錐微電極之製程研究與分析★ 蚶線形滑轉板轉子引擎設計與實作
★ 利用視流法分析金屬射出成形脫脂製程中滲透度與毛細壓力之關係★ 應用離心法實驗探求多孔介質飽和度與毛細力之關係
★ 利用網絡模型數值模擬粉末射出成形製程毛細吸附脫脂機制★ 轉注成形充填過程之巨微觀流數值模擬
★ 二維熱流效應對電化學加工反求工具形狀之分析★ 金屬粉末射出成形製程中胚體毛細吸附脫脂之數值模擬與實驗分析
★ 飽和度對金屬射出成形製程中毛細吸附脫脂之影響★ 轉注成型充填過程巨微觀流交界面之數值模擬
★ 轉注成型充填過程中邊界效應之數值模擬★ 鈦合金整流板電化學加工技術研發
★ 射出/壓縮轉注成型充填階段中流場特性之分析★ 脈衝電化學加工過程中氣泡觀測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 電解水產氫(water electrolysis)是目前製造氫氣常用之方法,具有高效能、產生氫氣純度高、使用便利等特色。而氫氣在釋放能源的過程中,並不會產生二氧化碳等造成溫室效應之氣體,基於近年來對於環保之重視及其獨有之優勢,未來相當具發展淺力。
本實驗利用鐵磁性(ferromagnetism)材料鎳、順磁性(paramagnetism)材料白金、逆磁性(diamagnetism)材料石墨等不同磁性之電極材料,及特製電解裝置,在不額外浪費能源下,由恆電位儀所記錄得到的資料,探討電解液濃度、電壓、電極間距加入不同方向磁場後受磁流體動力學(MHD)中勞侖茲力(Lorentz force)之影響。
在常溫下對於電解水加入磁場之實驗,由拍攝圖片顯示出,垂直於固定電流方向之兩個不同磁力方向,所形成之勞侖茲力使電解液產生向上及向下之流場對流效應,實驗結果顯示加入磁場狀態下:鐵磁性材料受到磁力作用,其磁化之效應較順磁材料及逆磁材料來的大,因此與勞侖茲力有相加或相乘之效果亦大。
常溫下、電極間距2mm、電壓4V,加入磁場狀態下:鐵磁性磁料鎳電極所提升效率為14%;順磁材料之白金電極提升之效率為10%;逆磁材料之石墨電極則為極小之增加值。
摘要(英) Among the methods of hydrogen production, water electrolysis has many advantages, such as high efficiency, high purity in producing hydrogen, easy in use, etc., and thus becomes one of popular methods. During the process of releasing energy, hydrogen produces no green-house-effect gas and has potential as a energy carrier in the future.
In this study, we use ferromagnetism material (nickel), paramagnetism material (platinum), and diamagnetism material (graphite) as electrodes, respectively. Experimental set-up are modified to study the effects of working parameters, such as concentration of electrolyte, current, voltage, electrode distance and magnetic field on the water electrolyies. As water electrolysis is conduced with an electric field perpendicular to a magnetic field, Lorenz force will produce magnetohydrodynamic (MHD) convection and effect the gas bubble evolution.
At 25oC, water electrolysis is operated in a static, uniform magnetic field, which is superimposed perpendicular to the current direction in order to make upward and downward MHD convection. The results of experiment show that magnetization of ferromagnetism material is influenced greatly than the others by magnetic field.The maximum current density enhancement of ferromagnetism material(Ni) is about 14% , while it is about 14% for paramagnetism material(Pt) , The current density enhancement of diamagnetism material (C)is few.
關鍵字(中) ★ 電解水
★ 勞侖茲力
★ 磁流體動力學(MHD)
★ 磁性材料
關鍵字(英) ★ Lorenz force
★ magnetization
★ MHD(magnetohydrodynamic)
★ water electrolysis
論文目次 目錄
摘要..................................................................................................I
ABSTRACT..................................................................................................II
目錄..................................................................................................III
表目錄..................................................................................................VII
圖目錄..................................................................................................VIII
符號說明..................................................................................................XI
第一章 序論...........................................................................................1
1-1 前言 ............................................................................................ 1
1-2 文獻回顧..........................................................................................3
1-3 研究目的與動機 .................................................................................. 5
第二章 理論基礎.......................................................................................7
2-1 電解水產氫之基本原理 ............................................................................ 7
2-2 電解電壓........................................................................................ 10
2-3 電解液溫度對電解反應之影響 ..................................................................... 10
2-4 法拉第電解定律 ................................................................................. 11
2-5 極化作用........................................................................................ 11
2-5-1 濃度極化 ..................................................................................... 12
2-5-2 活性極化(activation polarization) ............................................................ 14
2-5-3 歐姆極化 ..................................................................................... 16
2-6 勞侖茲力(Lorentz force) ........................................................................ 17
2-7 物質之磁化 ..................................................................................... 20
2-7-1 順磁性材料(paramagnetism) .................................................................... 21
2-7-2 鐵磁性材料(ferromagnetism) ................................................................... 21
2-7-3 逆磁性材料(diamagnetism) ..................................................................... 22
2-7-4 磁滯現象 ..................................................................................... 22
2-8 電導度 ......................................................................................... 23
2-9 線性掃描伏安法 ................................................................................. 24
2-10 塔弗方程式 ........................................................................... 25
2-11 電流效率 ................................................................................ 25
2-12 分解電壓之測定 ................................................................... 26
第三章 實驗裝置......................................................................................27
3-1 實驗簡述 ................................................................................. 27
3-2 實驗材料及藥品 ..................................................................... 27
3-2-1 實驗材料 ...................................................................... 27
3-2-2 實驗藥品 ...................................................................... 28
3-3 電極材料 ................................................................................. 28
3-3-1 鐵磁性電極材料-鎳電極(Ni) .................................... 29
3-3-2 順磁性電極材料-白金電極(Pt)................................. 29
3-3-3 逆磁性電極材料-石墨電極(C) ................................. 29
3-4 實驗儀器 ................................................................................. 30
3-4-1 恆電位儀 ...................................................................... 30
3-4-2 導電度測量器 .............................................................. 31
3-4-3 溫度測量器 .................................................................. 31
3-5 實驗架構 ................................................................................. 31
3-6 實驗變因 ................................................................................. 32
3-7 實驗步驟 ................................................................................. 32
3-8 注意事項 ................................................................................. 33
第四章 結果與討論..............................................................................34
4-1 無磁場效應時各實驗參數對產氫之影響分析 .................... 34
4-1-1 電極材料之影響 .......................................................... 34
4-1-2 電極間距之影響 .......................................................... 35
4-1-3 電解液濃度之影響 ...................................................... 37
4-2 磁場效應對產氫效率之影響 ................................................ 38
4-2-1 磁場方向及電極材料對磁場效應之影響 .................. 38
4-2-2 磁場效應對電極材料之影響 ...................................... 40
4-2-3 電極間距對磁場效應之影響 ...................................... 41
4-2-4 電解液濃度對磁場效應之影響 .................................. 43
4-3 電解產氫中電極材料選用之探討 ........................................ 45
第五章 結論與建議..............................................................................47
5-1 結論 ......................................................................................... 47
5-2 未來研究方向與建議 ............................................................. 48
參考文獻.......................................................................................49
表目錄
表(1-1) 氫氣物理特性表 ........................................................................ 53
表(1-2) 能量密度 .................................................................................... 53
表(2-1) 常見逆磁材料之磁化率[27] ...................................................... 54
表(2-2) 濃度為1N 的電解質溶液分解電壓(Pt 為電極)[20] ................ 54
表(3-1) 各種材料之導電度 .................................................................... 55
表(3-2) 各電極在KOH 電解液中氧過電壓與分解電壓[28] ............... 56
表(4-1) 25℃時KOH 導電度 .................................................................. 57
圖目錄
圖(1-1) 水分子磁化後鍵角變化情形 ................................................... 57
圖(2-1) 不加磁場時,原子磁偶極矩不規則分布之示意圖[24] ........ 58
圖(2-2) 加一向右之磁場時,原子磁偶極矩順磁場方向排列之示意圖[24] ................................. 58
圖(2-3) 電子之軌道運動示意圖[24] ..................................................... 59
圖(2-4) 電子之自旋及自旋磁偶極距之示意圖[24]............................. 59
圖(2-5) 典型之磁滯曲線[25] ................................................................. 60
圖(2-6) 磁導率較大之磁滯曲線圖[26]................................................. 60
圖(2-7) 磁導率較小之磁滯曲線圖[26]................................................. 61
圖(2-8) 25℃時,KOH 導電度和濃度之關係圖 .................................. 61
圖(2-9) 極化曲線示意圖[20] ................................................................. 62
圖(2-10) 分解電壓示意圖 ....................................................................... 62
圖(3-1) 實際電解槽照片 ....................................................................... 63
圖(3-2) 恆電位儀 ................................................................................... 63
圖(3-3) 導電度量測計 ........................................................................... 64
圖(3-4) 溫度量測計 ............................................................................... 64
圖(3-5) 實驗架構示意圖 ....................................................................... 65
圖(3-6) 實驗步驟流程圖 ....................................................................... 66
圖(4-1) 不同電極之電壓-電流曲線(電極間距2mm、電解液濃度30wt%)....................................................................................... 67
圖(4-2) 鎳電極在不同間距時的電壓-電流曲線(30wt%) .................... 67
圖(4-3) 白金電極在不同間距下之電壓-電流曲線(30wt%) ................ 68
圖(4-4) 石墨電極在不同間距下之電壓-電流曲線(30wt%) ................ 68
圖(4-5) 鎳電極在不同濃度下之電壓-電流曲線(2mm) ....................... 69
圖(4-6) 白金電極在不同濃度下時之電壓-電流曲線(2mm) ............... 69
圖(4-7) 石墨電極在不同濃度下之電壓-電流曲線(2mm) ................... 70
圖(4-8) 白金電極在不同磁場方向時之電壓-電流曲線圖(2mm、30wt%)............................ 70
圖(4-9) 白金電極在不同磁場方向之電流差值(2mm、20wt%) ......... 71
圖(4-10) 鎳電極在不同磁場方向時之電壓-電流曲線圖 (2mm、30wt%)....................... 71
圖(4-11) 鎳電極在不同磁場方向之電流差值(2mm、20wt%) ............. 72
圖(4-12) 石墨電極在不同磁場方向之電流差值(2mm、40wt%) ......... 72
圖(4-13) 在MHD 影響下流場示意圖:(a)勞侖茲力往下時(NS 方向磁場),(b)勞侖茲力往上時(SN 方向磁場) ................................ 73
圖(4-14) 電極間距10mm、KOH、wt40%、電壓4V 時,實際拍攝電解之氣體流向圖:(a)勞侖茲力往下(b)無磁場狀態下(c)勞侖茲力往上 ................................................................................... 73
圖(4-15) 鎳電極在不同間距下、勞侖茲力向上之電壓-電流曲線 ...... 74
圖(4-16) 白金電極在不同間距下、勞侖茲力向上之電壓-電流曲線 .. 74
圖(4-17) 石墨電極在不同間距下、勞侖茲力向上之電壓-電流曲線 .. 75
圖(4-18) 不同電極材料、勞侖茲力往上與未加入磁場時電解液濃度與電流值之關係圖(10mm、4V) ................................................. 75
圖(4-19) 不同電極材料、勞侖茲力往上與未加入磁場時電解液濃度與電流值之關係圖(5mm、4V) ................................................... 76
圖(4-20) 不同電極材料、勞侖茲力往上與未加入磁場時電解液濃度與電流值之關係圖(2mm、4V) ................................................... 76
圖(4-21) 不同電極材料在3.5V 與4V 時之電流密度(無磁場、間距2mm、濃度30%) ..................................................................... 77
圖(4-22) 不同電極材料之電壓-電流曲線(勞侖茲力向上、間距2mm、濃度30%).................................................................................. 77
圖(4-23) 不同電極材料在3.5V 與4V 時之電流密度(鎳電極加入磁場,白金電極無磁場、間距2mm、濃度30%) .................... 78
參考文獻 1. 黃啟峰,二氧化碳與地球暖化,科學發展,34-39頁,五 月(2007),413期。
2. 曲新生、陳發林,氫能技術,五南出版社, 5-6頁(2006)。
3. D.Lj. Stojić, M.P. Marčeta, S.P. Sovilj, and Š.S. Miljanić, “Hydrogen generation from water electrolysis—possibilities of energy saving,” Journal of Power Sources, Vol. 118, pp. 315-319(2003).
4. N. Nagai, M. Takeuchi, T. Kimura, and T. Oka, ”Existence of optimum space between electrodes on hydrogen production by water electrolysis”, International Journal of Hydrogen Energy, Vol. 28, pp. 35-41(2003).
5. S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, and H. Tributsch, “Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting,”International Journal of Hydrogen Energy,Vol. 26, pp. 653-659(2001).
6. M.P. Marčeta, and D.L.. Stojić, ”Comparison of different electrode materials–energy requirements in the electrolytic hydrogen evolution process”, Journal of Power Sources, Vol. 157, pp. 758-764(2006).
7. F. de Souza, and J.C. Padilha, “Electrochemical hydrogen production from water electrolysis using ionic liquid as electrolytes: towards the best device”, Journal of Power Sources, Vol. 164, pp. 792-798(2007).
8. R.F. de Souza, and J.C. Padilha, “Dialkylimidazolium ionic liquids as electrolytes for hydrogen production from water electrolysis”, Electrochemistry Communications, Vol. 8, pp. 211-216(2006).
9. Matsushima , A. Bund, W. Plieth ,S. Kikuchi and Y. Fukunaka, “Copper electrodeposition in a magnetic field”, Electrochimica Acta,Vol.53, pp. 161–166(2007).
10. T. Weier, J. Huller, G. Gerbeth, and F.Weiss, “Lorentz force influence on momentum and mass transfer in natural convection copper electrolysis”, Chemical Engineering Science,Vol 60, pp. 293 – 298.(2005).
11. A. Bund, S. Koehler, H.H. Kuehnlein, and W. Plieth, “Magnetic field effects in electrochemical reactions”, Electrochimica Acta,Vol. 49, pp. 147–152. (2003).
12. T. Iida, H. Matsushima, and Y. Fukunaka,“Water Electrolysis under a magnetic Field”, Journal of The Electrochemical Society, Vol. 154 (8),E112-E115(2007).
13. H. Matsushimaa, D. Kiuchib,and Y. Fukunaka,“Measurement of dissolved hydrogen supersaturation during waterelectrolysis in a magnetic field” , Journal of the ElectrochimicaActa, Vol. 54 , pp. 5858-5862(2009).
14. J. Ivy, Summery of electrolytic hydrogen production: milestone completion report, National Renewable Energy Laboratory, Colorado(2004).
15. 李言涛,薛永金,”水系统的磁化处理技术及其应用”, 工業水處理,Vol. 27, No.11, pp. 11-14(2007)。
16. P. Ridge ,“Hydrogen manufacture by electrolysis, thermal decomposition and unusual techniques, ” Noyes Data corporation, New Jersey, M. S.Casper(1978).
17. 章宗穰,諾貝爾獎百年鑑運動中的分子熱力學與反應動力學,世茂出版社, pp .45, 66-67, 91(2004)。
18. 魚崎浩平,喜多英明同撰,黃忠良譯,基本電化學,復漢出版社(1983).
19. J. Koryta, J. Dvořák, and L. Kavan, Principles of electrochemistry,second edition, John Wiley, New York (1993).
20. 田福助,電化學基本原理與應用,五洲出版社 (2004)。
21. M. Kuhn, and G. Kreysa, ’’Modelling of gas-evolving electrolysis cells.The iR drop at gas-evolving electrodes,’’ Journal of Applied Electrochemistry, Vol. 19, pp. 720-728 (1989).
22. O.Darrigol, Electrodynamics from Ampère to Einstein, Oxford, [England]: Oxford University, pp. 327(2000).
23. D. J. Griffiths, Introduction to electrodynamics (3rd ed.).Prentice Hall,pp. 204, 326, 541(1998).
24. 張啟陽,電磁學,東華書局(1992)。
25. http://www.ndt-ed.org/EducationResources/CommunityCollege/MagParticle/Physics/HysteresisLoop.htm
26. M. D. Simona, L. O. Heflinger and A. K. Geim, Diamagnetically stabilized magnet levitation, American Association of Physics Teachers (2001).
27. Young, Hugh D., University Physics, 8th Ed., Addison-Wesley, 1992.
28. 田中正三郎著、賴耿陽譯著,應用電化學,應用新科技-應用電化學,復漢出版社印行(1998)。
指導教授 洪勵吾(Lih-Wu Hourng) 審核日期 2010-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明