博碩士論文 973203062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:87 、訪客IP:3.238.118.78
姓名 楊振泓(Chen-hung Yang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 交流電發光二極體之接面溫度量測
(Measure the junction temperature of alternating current light-emitting diodes.)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析
★ KY法生長大尺寸氧化鋁單晶之數值模擬分析★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析
★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究★ CZ法生長大尺寸藍寶石單晶之熱流場與溶質數值模擬研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 目前量測LED接面溫度的量測方法有顯微拉曼光譜法、光致發光法、電致發光法、非接觸法、順向偏壓法。目前最常被使用的為順向偏壓法,因為順向偏壓法較容易使用並具有較高的準確度。順向偏壓法容易使用於量測定電流操作的DC LED,但通過AC LED的電壓隨時間快速的改變,因此較難使用順向偏壓法量測AC LED。由於AC LED的發熱情形與DC LED在穩定的直流電操作有所差異,而目前對於AC LED之接面溫度量測方法的相關研究甚少。
為了量測AC LED之接面溫度,本論文開發出一套量測AC LED接面溫度的方法,從Shockley方程式推導出電流與溫度的線性關係。並透過實驗找出起始電壓所對應電流與溫度的關係來驗證推導的結果。利用起始電壓所對應電流的初始值與達準穩態時的電流值配合實驗量測所得的線性關係計算出AC LED之平均接面溫度與最大接面溫度。並定義了AC LED接面至基板熱阻的計算方法,以及計算AC LED有效電功率的方法。使用熱阻推算法來驗證本文AC LED平均接面溫度量測的準確度。最後利用最大接面溫度與輸入有效功率之關係推算AC LED 接面溫度隨時間的變化。
摘要(英) There are several methods employed to measure junction temperature using Micro-Raman spectroscopy, electroluminescence, photoluminescence, noncontact method, and forward voltage method. The forward voltage method is most popularly used today because it is easy to operate and has the better accuracy. Forward voltage method can be easily used in DC LED device due to the constant current input, but it is very difficult to be extended for measuring the junction temperature of AC LED because the AC LED device is driven by a time varying voltage. The condition of heat generation in AC LED for AC operation is different from that in DC LED for constant DC input. But little investigation on the measurement of junction temperature for AC LED was proposed.
In this study, the method for measuring the junction temperature of AC LED is proposed. The linear relationship between the temperature and the input current is derived from the Shockley equation. The variation of threshold current with temperature under the threshold voltage is performed experimentally to confirm this linear relation. The average and maximum junction temperature of AC LED at the quasi-steady state can be determined by using the linear temperature dependence of the threshold current and measuring the threshold currents at both initial and quasi-steady states. The thermal resistance of AC LED and the effective input power are defined in this study. The accurate of the average junction temperature measurement can be verified by the thermal resistance of AC LED. Finally, the relation between maximum junction temperature and the effective input power can be used to calculate the junction temperature vary with time.
關鍵字(中) ★ 交流電發光二極體
★ 接面溫度量測
★ 發光二極體
關鍵字(英) ★ AC LED
★ junction temperature
★ LED
論文目次 中文摘要 ............................................... i
Abstract .............................................. ii
致謝 ................................................. iii
目錄 .................................................. iv
圖目錄 ................................................ vi
表目錄 .............................................. viii
符號說明 .............................................. ix
第一章  緒論 ......................................... 1
 1-1 研究背景 ........................................ 1
 1-2 AC LED之發展 .................................... 2
 1-3 研究動機與目的 .................................. 4
第二章  AC LED 接面溫度量測原理 ..................... 13
 2-1 AC LED與DC LED之差異 ........................... 13
 2-2 AC LED 接面溫度量測原理 ........................ 16
 2-3 AC LED熱阻的定義 ............................... 18
第三章  AC LED 接面溫度量測系統與實驗步驟 ........... 24
 3-1 AC LED 接面溫度量測系統 ........................ 24
 3-2 AC LED 溫度敏感參數定義方法 .................... 24
 3-3 AC LED 平均接面溫度與熱阻量測方法 .............. 25
 3-4 AC LED 瞬時最大接面溫度量測方法 ................ 26
第四章  結果與討論 .................................. 30
 4-1 AC LED平均接面溫度量測結果 ...................... 30
4-2 實驗驗證 ....................................... 31
4-3 AC LED 瞬時最大接面溫度量測結果 ................ 31
4-4 溫度震盪分析 ................................... 32
第五章  結論與未來發展 .............................. 43
參考文獻 .............................................. 44
參考文獻 1.Z. Y. Fan, J. Y. Lin, and H.X. Jiang, “III-nitride micro-emitter arrays : development and applications,” J. Phys. D : Appl. Phys. Vol.41, pp.094001, 2008.
2.胡凡勳,“發光二極體晶片之熱電耦合分析”,中央大學機,博士論文,民國九十八年。
3.M. B¨urmen, F. Pernuš and B. Likar, “LED light sources: a survey of quality-affecting factors and methods for their assessment,” Meas. Sci. Technol. Vol.19, pp.122002, 2008.
4.N. Holonyak, Jr. and S. F. Bevacqua, “Coherent (Visible) Light Emission From Ga(As1-xPx) Junction,” Appl. Phys. Lett. , Vol.1, pp.4, 1962.
5.周志敏,周紀海,記愛華,LED驅動電路設計與應用,五南圖書出版公司,台北,民國九十七年。
6.劉如熹,紀喨勝,紫外光發光二極體用螢光粉介紹,全華科技圖書,台北,民國九十二年。
7.A. Laubsh, M. Sabathil, J. Baur, M. Peter, and B. Hahn, “High-Power and High-Efficiency InGaN-Based Light Emitter,” IEEE T. Electron. Dev., Vol.57, pp.79, 2010.
8.H. H. Yen, W. Y. Yeh, and H. C. Kuo, “GaN alternating current light-emitting device,” Phys. Stat. Sol. (a), Vol.204,pp.2077, 2007.
9.T. Tamura, T. Setomoto, T. Taguchi, “Illumination characteristics of lighting array using 10 candela-class white LEDs under AC 100 V operation,” J. Lumin. , Vol.87, pp.1180, 2000.
10.J. P. Ao, H. Sato, T. Mizobuchi , K. Morioka, S. Kawano, Y. Muramoto, Y. B. Lee, D. Sato, Y. Ohno, and S. Sakai, “Monolithic Blue LED Series Arrays for High-Voltage AC Operation,” Phys. Stat. Sol. (a), Vol.194, pp.376, 2002.
11.J. Cho, J. Jung, J. H. Chae, H.-G. Kim, H.-S. Kim, J. W. Lee, S. Yoon, C. Sone, T. Jang, Y. Park, and E. Yoon, “Alternating-current Light Emitting Diodes with a Diode Bridge Circuitry,” Jpn. J. Appl. Phys. , Vol.46, pp.L1194, 2007.
12.H. H. Yen, H. C. Kuo, and W. Y. Yen, “Characteristics of Single-Chip GaN-Based Alternating Current Light-Emitting Diode,” Jpn. J. Appl. Phys. , Vol.47, pp.8808, 2008.
13.G. A. Onushkin, Y. J. Lee, J. J. Yang, H. K. Kim, J. K. Son, G. H. Park, and Y. J. Park, “Efficient Alternating Current Operated White Light-Emitting Diode Chip,” IEEE Photonic. Tech. Lett., Vol.21, pp.33, 2009.
14.N. Narendran, Y. Gu, J. P. Freyssinier, H. Yu, L. Deng, “Solid-state lighting:failure analysis of white LEDs,” J. Cryst. Growth, Vol.268, pp.449, 2004.
15.L. Bechou, O. Rehioui, Y. Deshayes, O. Gilard, G. Quadri, Y. Ousten, “Measurement of the thermal characteristic of packages double-heterostructure lighe emitting diodes for space applications using spontaneous optical spectrum properties,” Opt. Laser Technol., Vol.40, pp.589, 2008.
16.http://www.philipslumileds.com/products/luxeon-rebel-white
17.http://www.osram-os.com/osram_os/EN/Products/Product_Promotions/DRAGON_Family/Golden_DRAGON/index.html
18.L. Kim, J. H. Choi, S. H. Jang, and M. W. Shin, “Thermal Analysis of Multi-chip LED Packages,” Proc. Of SPIE, Vol.6355, pp.63550E-1, 2006.
19.L. Q. Yang, S. H. Jang, W. G. Hwang, M. W. Shin, “Thermal analysis of high power GaN-based LEDs whith ceramic package,” Thermochim. Acta, Vol.455, pp.95, 2007.
20.Y. C. Hsu, Y. K. Lin, M. H. Chen, C. C. Tsai, J. H. Kuang, S. B. Huang, H. L. Hu, Y. I. Su, and W. H. Cheng, “Failure Mechanisms Associated With Lens Shape of High-Power LED Modules in Aging Test,” IEEE T. Electron. Dev., Vol. 55, pp.689, 2008.
21.Y. W. Cheng, H. H. Chen, M. Y. Ke, C. P. Chen, J. J. Huang, “Effect of selective ion-implanted p-GaN on the junction temperature of GaN-based light emitting diodes,” Opt. Commun., Vol.282, pp.835, 2009.
22.S. Todoroki, M. Sawai, and K. Aiki, “Temperature distribution along the striped active region in high-power GaAlAs visible lasers,” J. Appl. Phys., Vol.58, pp.1124, 1985.
23.D. C. Hall, L. Goldberg, and D. Mehuys, “Technique for lateral temperature profiling in optoelectronic devices using a photoluminescence microprobe,” Appl. Phys. Lett., Vol.61, pp.384, 1992.
24.P. W. Epperlein, and G. L. Bona, “Influence of the vertical structure on the mirror facet temperatures of visible GaInP quantum well lasers,” Appl. Phys. Lett., Vol.62, pp.384, 1993.
25.Y. Gu, and N. Narendran, “A Non-contact Method for Determining Junction Temperature of Phosphor-Converted White LEDs,” Proc. Of SPIE, Vol.5187, pp.107, 2004.
26.J. Park, M. W. Shin, and C. C. Lee, “Measurement of temperature profiles on visible light-emitting diodes by use of a nematic liquid crystal and an infrared laser,” Opt. Lett., Vol.29, pp.2656, 2004.
27.Y. Xi, and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Appl. Phys. Lett., Vol.85, pp.2163, 2004.
28.F. S. Hwu, G. J. Sheu, M. T. Lin, J. C. Chen, “Method for determining the junction temperature of alternating current light-emitting diodes,” IET Sci. Meas. Technol., Vol.3, pp.159, 2009.
29.A. Keppens, W. R. Ryckaert, G. Deconinck, and P. Hanselaer, “High power light-emitting diode junction temperature determination from current-voltage characteristics,” J. Appl. Phys., Vol.104, pp.093104-1, 2008.
30.E. F. Schubert, Light-Emitting Diodes, Second Edition, Camcridge University Press, Camcridge, England, 2006.
31.J. M. Shah, Y. L. Li, Th. Gessmann, and E. F. Schubert, “Experimental analysis and theoretical model for anomalously high ideality factors (n≧2.0) in AlGaN/GaN p-n junction diodes,” J. Appl. Phys., Vol.94, pp.2627, 2003.
32.EIA/JEDEC Standard : “EIA/JEDEC51-2” , Electronic Industries Alliance, Engineering Department, Arlington, 1995.
33.G. N. Ellison, Thermal Computations For Electronic Equipment, Van Nostrand Reinhold Company, New York, 1984.
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2010-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明