博碩士論文 973203063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:18.224.44.21
姓名 盧泰昌(Tai-chang Lu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以電液動技術增強垂直放置鰭片空氣對流熱傳性能研究
(An experimental investigation of convective heat transfer enhanced by electrohydrodynamics in vertical fin)
相關論文
★ 冷卻水溫度與冰水溫度對離心式冰水主機性能影響之實驗分析★ 不同結構與幾何形狀對熱管性能之影響
★ 油冷卻器熱傳與壓降性能實驗分析★ 水對冷媒R22在板式熱交換器內之性能測試分析
★ 水對水在不同板片型式之板式熱交換器性能測試分析與比較★ 油冷卻器性能測試分析與比較
★ 空調機用水簾式暨光觸媒空氣清淨機 研製及測試★ 水對空氣在板式熱交換器之性能測試分析
★ 板片入出口及入出口管路壓降估計對板式熱交換器壓降性能影響分析★ 微熱交換器之設計與性能測試
★ 板式熱交換器之入出口壓降實驗分析★ 液體冷卻系統中之微熱交換器性能分析與改良
★ 直接模擬蒙地卡羅法於高低速流場之模擬★ 液體微熱交換器之熱傳增強研究
★ 冷媒R22在板式熱交換器內之凝結熱傳及壓降性能實驗分析★ 不同參數對燒結式熱管性能之影響研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用電液動技術(EHD)增強垂直放置的垂直平板與垂直鰭片,在固定相同正向面積條件下,改變鰭片的高度以及型式,比較四種不同型式鰭片:垂直平板、高度15 mm垂直鰭片、高度29 mm垂直鰭片,單一長度125 mm斷續型鰭片,在自然對流與EHD熱傳增強情況下各參數對熱傳性能的影響。
 垂直平板在自然對流與EHD熱傳增強下因為可以直接跟四周冷空氣做熱交換所以有最高的熱傳係數,但因為熱傳面積最小,總熱傳量最低。
 影響垂直鰭片的熱傳性能主要來自鰭片間的邊界層發展,在自然對流情形下,兩種高度的垂直鰭片因為邊界層過早形成完全發展,熱傳性能沒有太大差異;在EHD熱傳增強下,邊界層受到離子風影響較晚形成完全發展,高度較低的鰭片外界冷空氣較容易進到流道裡增加熱傳性能,高度15 mm垂直鰭片比高度29 mm垂直鰭片熱傳系數高10 ~ 15 %。斷續型鰭片因為流動阻力與邊界層形成完全發展的關係,熱傳係數與高度29 mm垂直鰭片相似,沒有增強的效果。
摘要(英) Heat transfer of vertical oriented flat plate and straight fin enhanced by electrohydrodynamics (EHD) is experimental investigated in this work. Heat transfer of four types of fin having the same frontal area are discussed under natural convection and EHD enhancement, including flat plate, straight fin with different height, and offset strip fin.
 Heat transfer coefficient of flat plate is the highest among other fins under both natural convection and EHD enhancement, but the heat transfer rate of flat plate is the lowest due to the smallest heat transfer area. The major reason affecting heat transfer of straight fin is the boundary layer development between fins. Under natural convection, heat transfer coefficient of straight fin - H29 and straight fin - H15 are almost the same due to boundary layer between fins becomes fully development early. Under EHD enhancement, heat transfer coefficient of straight fin - H15 is higher than straight fin - H29 by 10 ~ 15 %. Boundary layer is thinner under corona wind and becoming fully development at late of the fin length. Cold air can enter the channel of straight fin with lower fin height easier than higher fin height. Thus the heat transfer is higher with straight fin - H15 than straight fin - H29. Heat transfer of offset strip fin has no improvement due to the effect of increased flow resistant and boundary layer fully developed.
關鍵字(中) ★ 垂直平板
★ EHD熱傳增強
★ 垂直鰭片
★ 斷續型鰭片
關鍵字(英) ★ flat plate
★ EHD enhancement
★ offset strip fin
★ vertical fin
論文目次 目 錄
摘要 i
Abstract ii
目 錄iii
表 目 錄 vi
圖 目 錄 vii
符 號 說 明 xi
第一章 前言 1
1.1研究動機 1
1.2電液動力學原理介紹 2
1.3研究目的 4
第二章 文獻回顧 9
2.1垂直平板(Flat plate)長度對熱傳性能影響 9
2.2垂直鰭片(Straight fin)熱傳性能的影響參數 12
2.2.1鰭片長度(L) 12
2.2.2鰭片間距(S) 12
2.2.3鰭片高度(H) 15
2.2.4垂直鰭片總結 16
2.3斷續型鰭片(Offset strip fin, OSF)熱傳性能影響參數 17
2.4 EHD應用於熱傳增強 18
2.4.1 電壓(V)和電極距離(He) 19
2.4.2 電極間距(Se) 22
2.4.3 電極極性 23
2.4.4 電極形狀 24
2.5 總結 25
第三章 實驗方法 48
3.1 散熱鰭片幾何尺寸設計 48
3.1.1 垂直平板(Flat plate) 48
3.1.2 垂直鰭片(Straight fin) 49
3.1.3斷續型鰭片(Offset strip fin, OSF) 50
3.2 實驗系統 50
3.2.1 測試段 50
3.2.2 測試腔體 51
3.2.3 外加電極裝置 52
3.3 實驗量測儀器與設備 54
3.3.1 溫度量測和校正 54
3.3.2 加熱功率量測 55
3.3.3資料擷取系統 55
3.3.4 電極高壓 56
3.4 實驗步驟 56
3.5 數據換算 57
3.5.1 熱傳率 57
3.5.2 熱損 57
3.5.3 局部空氣溫差 58
3.5.4 平均熱傳係數 59
3.5.5局部熱傳係數 59
3.5.6熱傳增強比(Enhance Ratio) 59
第四章 實驗結果與討論 78
4.1垂直平板(Flat plate) 78
4.1.1局部空氣溫度分布 78
4.1.2不同加熱量下的平均熱傳係數(have)與增強比(ER) 81
4.1.3不同熱傳量下的局部熱傳係數 82
4.2垂直鰭片(Straight fin)與斷續型鰭片(Offset strip fin,OSF) 83
4.2.1局部空氣溫度分布 83
4.2.2不同加熱量下的平均熱傳係數與增強比 85
4.2.3不同熱傳量下的局部熱傳係數 88
4.3垂直平板與各式鰭片綜合比較 90
4.3.1加熱量與平均溫差的關係 90
4.3.2散熱量與平均溫差的關係 91
4.3.3平均溫差對平均熱傳係數的影響 92
第五章 結論 123
參 考 文 獻 125
附錄、實驗誤差分析 129
參考文獻 Aibara, T., 1968, “Natural Convective Heat Transfer in Vertical Parallel Fins of Rectangular Profiles,” The Japan Society of Mechanical Engineers (JSME), Vol. 34. Quoted in Yeh, L. T., Chu, R. C., 2002, Thermal Management of Microelectronic Equipment, ASME Press, New York.
Bar-Cohen, A., and Rohsenow, W. M., 1984, “Thermally Optimum Spacing of Vertical, Natural Convection Cooled, Parallel Plates,” Journal of Heat Transfer, Vol. 106, pp. 116-123.
Bejan, A., 2003, “Optimal Internal Structure of Volumes Cooled by Single Phase Forced and Natural Convection,” ASME Journal of Electronic Packaging, Vol. 125, pp. 200-207.
Cebeci, T., and Bradshaw, P., 1987, Convective heat Transfer, Mir Press, Moscow. Quoted in Martynenko, and Khramtsov, [2005]
Chen, T. S., Tien, H. C., and Armaly, B. F., 1986, “Naturnal Convection on Horizontal , Inclined, and Vertical Plate with Variable Surface Temperature or Heat Flux,” International Journal of Heat and Mass Transfer, Vol. 29, pp. 1465-1478.
Churchill, S, W., and Ozoe, H., 1973, “A Correlation for Laminar Free Convection From a Vertical Plate,” Journal of Heat Transfer, Vol. 95, pp. 540-541. Quoted in Aydin, O., and Guessous, L., 2001, “Fundamental Correlations for Laminar and Turbulent Free Convection From a Uniformly Heated Vertical Plate,” International Journal of Heat and Mass Transfer, Vol. 44, pp. 4605-4611.
Churchill, S. W., and Chu, H. H. S., 1975, “Correlating Equations for Laminar and Turbulent Free Convection From a Vertical Plate,” International Journal of Heat and Mass Transfer, Vol. 18, pp. 1323-1329.
Elenbaas, W., 1942, “Heat Dissipation of Parallel Plates by Free Convection,” Physica, Vol. 9, No. 1, pp. 1-28. Quoted in Incropera, F. P., and DeWitt, D. P., 2002, Fundamentals of Heat Mass Transfer, 4th ed., John Wiley & Sons, New York.
Franke, M. E., and Houge, L. E., 1991, “Electrostatic Cooling of a Horizontal Cylinder,” Journal of Heat Transfer, Vol. 113, pp. 544-548.
Gebhart, B., Jaluria, Y., Mahajan, R. L., and Sammakia, B., 1988, Buoyancy-In-
duced Flows and Transport, Hemisphere Publishing, Washington, DC.
Huang, R. T., Sheu, W. J., and Wang C. C., 2009, “Heat Transfer Enhancement by Needle-Arrayed Electrodes - An EHD Integrated Cooling System,” Energy Conversion and Management, Vol. 50, pp. 1789-1796.
Kalman, H., and Sher, E., 2001, “Enhancement of Heat Transfer by Means of a Corona Wind Created by a Wire Electrode and Confined Wings Assembly,” Applied Thermal Engineering,”, Vol. 21, pp. 265-282.
Kasayapanand, N., 2006, “Numerical Modeling of the Effect of Number of Electrodes on Natural Convection in An EHD Fluid,” Journal of Electrostatics, Vol. 65, pp. 465-474.
Ledezma, G. A., and Bejan, A., 1997, “Optimal Geometric Arrangement of Staggered Vertical Plates in Natural Convection,” ASME Journal of Heat Transfer, Vol. 119, pp. 700-708.
Martynenko, O. G., and Khramtsov, P. P., 2005 Free Convection Heat Transfer, 1st ed., Springer Berlin Heidelberg, New York.
McAdams, W. H., 1954, Heat Transmission, 3rd ed., McGraw-Hill, New York.
O’Brien, R. J., and Shine, A. J., 1967, “Some Effects of Electric Fields on Heat Transfer From a Vertical Plate in Free Convection,” ASME Journal of Heat Transfer, Vol. 89, pp. 114-115
Ohadi, M. M., Nelson, D. A., and Zia, S., 1991, “Heat Transfer Enhancement of Laminar and Turbulent Pipe Flow via Corona Discharge,” International Journal of Heat and Mass Transfer, Vol. 34, pp.1175-1187.
OSRAM Opto Semiconductors, 2004, “Display Backlighting with LEDs,”
Owsenek, B. L., Seyed-Yagoobi, J., and Page, R. H., 1995, “Experimental Investigation of Corona Wind Heat Transfer Enhancement With a Heated Horizontal Flat Plate,” Journal of Heat Transfer, Vol. 117, pp. 309-315.
Owsenek, B. L., and Seyed-Yagoobi, J., 1997, “Theoretical and Experimental Study of Electrohydrodynamic Heat Transfer Enhancement through Wire-Plate Corona Discharge,” Journal of Heat Transfer, Vol. 119, pp. 604-610.
Philips Lumileds, 2010, “Data Sheet DS65: Luxeon Rebel Direct Color Portfolio,”
Qureshi, Z. M., and Gebhart, B., 1978, “Transition and Transport in a Buoyancy Driven Flow in Water Adjacent to Vertical Uniform Flux Surface,” International Journal of Heat and Mass Transfer, Vol. 21, pp. 1467-1479
Rashkovan, A., Sher, E., and Kalman, H., 2002, “Experimental Optimizatio of An Electric Blower by Corona Wind,” Appiled Thermal Engineering, Vol. 22, pp. 1587-1599.
Tanda, G., 1993, “Natural Convection Heat Transfer From a Staggered Vertical Plate Array,” ASME Journal of Heat Transfer, Vol. 115, pp. 938-945.
Van de Pol, D. W., and Tierney, J. K., 1973, “Free Convection Nusselt Number for Vertical U-Shaped Channels,” Journal of Heat Transfer, Vol. 95. Quoted in Yeh, L. T., Chu, R. C., 2002, Thermal Management of Microelectronic Equipment, ASME Press, New York.
Velkoff, H. R., and Godfrey, R., 1979, “Low-Velocity Heat Transfer to a Flat Plate in The Presence of a Corona Discharge in Air,” Journal of Heat Transfer, Vol. 101, pp. 157-163.
黃政德,2005,以EHD技術增加LED散熱效率之研究,國立清華大學動力機械工程學系碩士論文,新竹。
李冠賢,2010,垂直放置鰭片之自然對流熱傳性能實驗研究,國立中央大學機械工程學系碩士論文,中壢。
指導教授 楊建裕(Chien-yuh Yang) 審核日期 2011-1-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明