博碩士論文 973203065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.147.104.248
姓名 高慈妤(Tzu-Yu Kao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 儲熱系統之熱流特性研究
(Study on the flow and thermal characteristics of heat storage system)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文主旨為利用數值方法探討圓柱內相變化材料的總熔化時間、熔化情形與熱流現象。數值模擬所考慮的相關參數及其範圍:貝克勒數Pe=1.6×10^2~6.4×10^3 、史蒂芬數Ste=0.001~1、縱橫比=2~8 、熱傳導係數比值k*=0.001~500;最後探討不同工作流體與相變化材料對系統內熱流現象的影響。
結果發現高貝克勒數、高史蒂芬數、高熱傳導係數的情況下,液體流動現象明顯,相變化材料的平均溫度較高、熔化速度較快,因而整體熔化時間較少。而幾何參數的縱橫比則是數值越大,熔化完的流體受重力影響的自然對流現象明顯,而使流動速度增大。另外,工作流體與相變化材料的關係中,中溫與高溫的工作流體,若以總熔化時間與儲熱量兩方考量下,KF為最佳使用的材料。
最後可以推導出總無因次熔化時間與貝克勒數Pe、史蒂芬數Ste、縱橫比、熱傳導係數比值k*的關係式。
摘要(英) This study investigates the thermal and flow characteristics of an energy storage system using phase-change materials (PCM). The governing dimensionless equations of the problem and boundary conditions are formulated and solved numerically by using the enthalpy-porosity method with the control volume approach. The melting process, the total melting time, and the effects of several parameters are discussed. The dimensionless parameters considered include the Peclet number, the Stefan number, the aspect ratio, and the thermal conductivity ratio of the PCM to the heat transfer fluid.
Results show that, for cases of high Peclet number, high Stefan number or high thermal conductivity ratio, the melting time is reduced due to the enhancement of heat transfer and the circulation of the PCM. For intermediate and high temperature PCM energy storage systems, KF is the best material to use.
Correlations between the dimensionless total melting time of the PCM and the Peclet number, Stefan number, aspect ratio and the thermal conductivity ratio are also derived for different conditions.
關鍵字(中) ★ 儲熱系統
★ 相變化材料
★ enthalpy-porosity
★ 無因次熔化時間
關鍵字(英) ★ enthalpy-porosity method
★ phase change material
★ heat storage system
論文目次 中文摘要 ……………………………………………………………i
英文摘要 …………………………………………………………ii
致謝 ………………………………………………………………iii
目錄 ………………………………………………………………iv
表目錄 …………………………………………………………viii
圖目錄 ……………………………………………………………x
符號說明 ………………………………………………………xv
第一章、 緒論 ……………………………………………………1
1-1 前言 ………………………………………………………1
1-2 研究動機 …………………………………………………4
第二章、 文獻回顧 ………………………………………………5
2-1 儲熱方式 ………………………………………………5
2-1-1 顯熱儲存 …………………………………………5
2-1-2 潛熱儲存 …………………………………………6
2-1-3 化學能儲存 ………………………………………6
2-1-4 結論 ………………………………………………7
2-2 相變化材料的介紹 ……………………………………8
2-2-1 依材料組成區分 …………………………………8
2-2-1.1 無機相變材料 ………………………………8
2-2-1.2 有機相變材料 ………………………………9
2-2-1.3 複合相變材料 ………………………………10
2-2-2 依溫度區分 ………………………………………12
2-2-2.1 低溫相變化材料 ……………………………12
2-2-2.2 高溫相變化材料 ……………………………12
2-2-3 相變化材料的選取 ……………………………13
2-3 相變化儲熱相關文獻 ………………………………15
2-3-1 實驗相關文獻 ……………………………………15
2-3-2 數值模擬相關文獻 ………………………………16
2-4 研究主題 ………………………………………………19
第三章、 理論分析 ……………………………………………20
3-1 相變傳熱問題 …………………………………………20
3-2 固液相變解法 …………………………………………20
3-2-1 移動邊界方法 ……………………………………21
3-2-2 固定邊界方法 ……………………………………21
3-2-3 enthalpy-porosity …………………………………22
3-3 幾何模型 ………………………………………………22
3-4 統御方程式 ……………………………………………22
3-5 初始與邊界條件 ………………………………………26
第四章、 數值方法與驗證 ……………………………………28
4-1 數值方法 ……………………………………………28
4-1-1 能量方程式 ………………………………………28
4-1-2 連續與動量方程式 ………………………………29
4-1-3 壓力修正方程式 …………………………………32
4-2 文獻驗證 ………………………………………………35
4-2-1文獻驗證一 …………………………………………35
4-2-2 文獻驗證二 ………………………………………36
4-3 格點與 測試 ……………………………………………37
4-3-1 格點測試 …………………………………………37
4-3-2 測試 ……………………………………………37
第五章、 結果與討論 …………………………………………38
5-1 Peclet number 之影響 ………………………………38
5-1-1 入口流量之影響 …………………………………40
5-2 Stefan numerber 之影響 ………………………………41
5-2-1 入口溫度之影響 …………………………………44
5-3縱橫比之影響 ……………………………………………45
5-4熱傳導係數比值之影響 …………………………………46
5-5無因次時間整理 …………………………………………49
5-6幾何參數之影響 …………………………………………50
5-6-1 R1之影響 …………………………………………51
5-6-2 R2之影響 …………………………………………51
5-6-3 l之影響 …………………………………………52
5-7相變化材料與工作流體之影響 …………………………52
5-7-1 低溫工作流體 ……………………………………53
5-7-1.1鹽類 …………………………………………53
5-7-1.2 金屬 …………………………………………53
5-7-2 中溫工作流體 ………………………………………54
5-7-3 高溫工作流體 ……………………………………55
第六章、 結論與建議 …………………………………………57
6-1 結論 ……………………………………………………57
6-2 未來研究方向與建議 …………………………………58
參考文獻 ………………………………………………………59
參考文獻 1. Mehling, H., and Luisa, F. C., Heat and cold storage with PCM., Springer., Berlinm, 2008
2. Lorsch, H. G., “Thermal energy storage for solar heating” American Society of Heating,Refrigeratimg and Air-Conditioning Engineering Journal, Vol 17, pp.47-52,1975
3. Loef, G.O.G., “Cost of house heating with solar system,” Solar Energy, Vol 14, pp. 253-278, 1973
4. Dhifaoui, B., Jabrallah, S. B., and Belghith, A., Corriou, J. P., “Experimental study of the dynamic behavior of a porous medium submitted to a wall heat flux in view of thermal energy storage by sensible heat” International Journal of Thermal Sciences, Vol 46, pp. 1056-1063, 2007
5. Nallusamy, N., Sampath, S., and Velraj, R., “Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources,” Renewable Energy, Vol 32, pp. 1206-1227, 2007
6. Alva, L. H. S., Gonzalez, J. E., and Dukhan, N., “Initial analysis of PCM Integrated Solar Collectors,” Journal of Solar Energy Engineering, Vol. 128, No. 2, pp.173-177, 2006
7. Fatih Demirbas M., “Thermal energy storage and phase change materials:An overview,” Energy Sources, Part B: Economics, Planning and Policy, Vol. 1, No. 1, pp. 85-95, 2006
8. Kaygusuz, K., “The Viability of Thermal energy storage,” Energy Sources, Vol. 21, No. 8, pp. 745-755, 1999
9. Kanamori, M., Matsuda, H., and Hasatani, M., “Heat storing releasing characteristics of a chemical heat storage unit of electricity using a Ca(OH)2/CaO reaction,” Heat Transfer-Japanese Research, Vol. 25, No. 6, pp. 400-409, 1996
10. 邢玉明,袁修干,王長和,「空間站高溫固液相變蓄熱器熱熔器的實驗研究」,航空動力學報,Vol. 16, No. 1, pp.75-80, 2001。
11. Xing, Y. M., Xu, X., Yuan, X. G., Cui, H. T., and Zhang, Y. H., “Numerical simulation of high temperature phase change heat storage system,” Heat Transfer—Asian Research, Vol. 33, No. 1, pp. 32-41, 2004
12. 皮啟鐸,「太陽池水和鹽相變熱得探討」,太陽能學報,Vol. 15, No. 11, pp.8-13, 1994
13. 黃志光,「聚光太陽爐用金屬相變儲能裝置的研究」,太陽能學報,Vol. 13, No.3, pp.271-276,1992
14. Terry, C. D., “Composite salt ceramic media for thermal energy storage application,” Proceedings of 17th IECEC Meeting, pp. 2043-2048, Los Angeles, USA, 1982
15. Petri, R., Ong, E. T., and Kardas, A., “Development of composite latent/sensible heat storage media,” Technical report, December 1990
16. Randy, J., and Petri, R., “High-temperature salt/ceramic thermal storage phase change,” Proceeding 17th IECEC Meeting, Vol. 4, pp. 1769-1774, Auguest 1983
17. Hame, E., Taut, U., and Grob, Y., “Salt ceramic thermal energy storage for solar thermal central receiver plants,” Proceedings Solar World Congress, Vol. 2, No.1, pp. 937-942, 1992
18. Gliick, A., “Development and testing of advanced TES materials for solar thermal central receiver plants,” Proceedings Solar World Congress, Vol. 2, No.1, pp. 943-948, 1991
19. Tamme, R., Tant, U., and Streuber, C., “Energy storage development for solar thermal process,” Solar Energy Materials and solar cells, Vol. 24, No. 1, pp. 386, 1991
20. Notter, W., Lechner, T., and Grob, U., “Thermophysical properties of the composite ceramic-salt system(SiO2/Na2SO4),”Thermochimica Acta, Vol. 218, pp. 445-453, 1993
21. Notter W., and Hahne E., “Thermal expansion models for polycrystalline salt-ceramics,” Thermochimica Acta, Vol. 290, No. 1, pp. 93-100, 1996
22. Steinei, D., “Development and investigation of thermal energy storage systems for the media temperature range,” Proceedings IECEC Meeting, Vol. 193,1995
23. Sehwerin, M., and Listle, W., Development of a latent heat storage system with ceramic matrix for utilization of industrial waste heat, ALPH labor, GmbH, Ismaning(DE), 1998
24. Hadjieva M., “Composite salt-hydrate concrete system for building energy,” Renewable Energy , Vol. 19, No. 1-2, pp. 111-115, 2000
25. 張仁元,柯秀芳,李愛菊, 「無機鹽/陶瓷基複合儲能材料的製備和性能」, 材料研究學報,Vol. 14, No.6, pp. 652-656,2000
26. Hoshi, A., Mills, D. R., Bittar, A., and Saitoh, T. S., “Screening of high melting point phase change materials(PCM) in solar thermal concentrating technology based on CLFR,” Solar Energy, Vol. 79, pp. 332-339, 2005
27. Kenisarin, M., and Mahkamov K., “Solar energy storage using phase change material,” Renewable and Sustainable Energy Reviews, Vol. 11, pp. 1913-1965, 2007
28. Velraj, R., Seeniraj, R. V., Hafner, B., Faber, C., and Schwarzer, K., “Heat transfer enhancement in a latent heat storage system,” Solar Energy, Vol. 65, pp.171-180, 1999
29. Sparrow, E. M., Larsen, E. D., and Ramsey, J. W., “Freezing on a finned tube for either conduction-controlled or natural-convection-controlled heat transfer,” International Journal of Heat Mass Transfer ,Vol. 24, pp. 273-284, 1981
30. Smith, R. N., and Koch, J. D., “Numerical solution for freezing adjacent to a finned surface,” In Proceedings of the 7th International Heat Transfer Conference, pp. 69-74 ,1982
31. Lacroix, M., “Study of the heat transfer behavior of a latent heat thermal energy unit with a finned tube,” International Journal of Heat Mass Transfer , Vol. 36, pp. 2083-2092, 1993
32. Padmanabhan, P. V., and Krishna, M. V., “Outward phase change in a cylindrical annulus with axial fins on the inner tube,” International Journal of Heat Mass Transfer, Vol. 19, pp. 1855-1866, 1986
33. Velraj, R., Seeniraj, R. V., Hafner, B., Faber, C., and Schwarzer, K., “Experimental analysis and numerical modeling of inward solidification on a finned vertical tube for a latent heat storage unit,” Solar Energy , Vol. 60, pp. 281-290, 1997
34. Sauer, E., Energietransport-speicherung und verteilung, Technischer Verlag Resch, Kollenberg ,Gemermy, 2004
35. Eftekhar, J., Shekh, A. H., and Lou, D. Y. S., “Heat transfer enhancement in a paraffin wan thermal storage system,” Journal of Solar Energy Engineering, Vol. 106, pp. 299-306, 1984
36. Hafner, B., and Schwarzer, K., “Improvement of the heat transfer in a phase-change-materials storage,” In Proceedings of the 4th workshop of IEA ECES IA annex 10, Bendiktbeuern, Germany, 1999
37. Siegel, R., “Solidification of low conductivity material containing dispersed high conductivity particles,” International Journal of Heat Mass Transfer, Vol (20), pp. 1087-1089, 1977
38. Hoogendoorn, C. J., and Bart, G. C. J., “Performance and modeling of latent heat stores,” Solar Energy , Vol. 48, pp. 53-38, 1992
39. Khan, M. A., and Rohatgi, P. K., “Numerical solution to a moving boundary problem, in a composite medium,” Numerical Heat Transfer, Vol. 25, pp. 209-221, 1994
40. Alexiades, V., and Solomon, A. D., Mathematical modeling and freezing processes, Hemisphere, Washington, DC, 1993
41. Lane, G., Solar heat storage: latent heat material, CRC Press, Boca Raton, FL, United States, 2008
42. Lamberg, P., Lehtiniemi, R., and Henell A. M., “Numerical and experimental investigation of melting and freezing process in phase change material storage,” International Journal of Thermal Sciences, Vol. 43, No. 3 , pp. 277-287, 2004
43. Voller, V. R., and Cross, M., “Accurate solution of moving boundary problems using the enthalpy method,” International Journal of Heat and Mass Transfer ,Vol. 24, No. 3, pp. 545-556, 1981
44. Voller, V. R., “A fixed grid numerical modeling methodology for convection-diffusion mushy region phase-change problems,” International Journal of Heat and Mass Transfer ,Vol 30, No. 8, pp. 1709-1719, 1987
45. Bertrand, O., Binet, B., and Combeau, H., “Melting driven by natural convection,” International Journal of Thermal Sciences, Vol. 38, pp. 5-26, 1999
46. Zivkovic, B., and Fujii, I., “An analysis of isothermal phase change of phase change material within rectangular and cylindrical containers,” Solar Energy, Vol. 70, pp. 51-61, 2001
47. Elgafy, A., Mesalhy, O., and Lafdi, K., “Numerical and experimental investigation of melting and solidification processes of high melting point PCM in a cylindrical enclosure,” Journal of Heat Transfer , Vol. 126, pp. 869-875, 2004
48. Guo, C., and Zhang, W. J., “Numerical simulation and parametric study on new type of high temperature latent heat thermal energy storage system,” Energy Conversion and Management , Vol. 49, pp. 919-927, 2008
49. Assis, E., “Numerical and experimental study of melting in a spherical shell,” Internation Journal of Heat and Mass Transfer ,Vol. 50, pp. 1790-1804, 2007
50. Shatikian, V., Ziskind, G., and Letan, R., “Numerical investigation of a PCM-based heat sink with internal fins: constant heat flux,” Internation Journal of Heat and Mass Transfer , Vol. 51, pp. 1488-1493, 2008
51. Voller, V. R., and Swaminathan, C. R., “General source-based method for solidification phase change,” Numerical Heat Transfer, part B, Vol. 19, pp. 175-189, 1991
52. Smith, W. R., “The Propagation and basal solidification of two-dimensional and axisymmetric viscous gravity currents,” Journal of Engineering Mathematics, Vol. 50, pp. 359-378, 2004
53. Ho, C. J., Chiu, S. Y., and Lin, J. F., “Heat transfer characteristic of a rectangular natural circulation loop containing solid-liquid phase change material suspensions,” Heat Transfer Characteristics, Vol. 15, No. 5 , pp. 441-461, 2004
54. Adinberg, R., Zvegilsky, D., and Epstein, M., “Heat transfer efficient thermal energy storage for steam generation,” Energy Conversion and Management, Vol. 51, pp. 9-15, 2010
指導教授 曾重仁(Chung-jen Tseng) 審核日期 2010-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明