博碩士論文 973203094 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:18.118.32.213
姓名 陳宗毅(Tzug-yi Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 微滾軋製程應用於高分子材料轉印微結構之研究
(Transfer the micro structure of polymer materials using micro-rolling process to research)
相關論文
★ 微流體系統應用於機械力刺激人體膀胱癌細胞之研究★ 多重微流體晶片機械應力刺激細胞培養之研究
★ 藉由熱接合、表面改質與溶劑處理方法 封閉於環狀嵌段共聚物與環烯烴共聚物材料上 微流道之研究★ Development of A Label-Free Imaging Droplet Sorting System with Machine Learning-Support Vector Machine (SVM)
★ 複合式物理力的生物反應器自動化與控制設計★ 外部致動之微流體機電控制平台
★ 以微铣削進行高分子微流體裝置之製程整合★ 奈米矽質譜晶片於質譜檢測之應用研究
★ 矽奈米結構對於質譜離子化效率探討之研究★ 設計微流體晶片應用於人體胎盤幹細胞的物理/化學誘導分化之研究
★ 利用熱壓製造類多孔隙介質之 微流道模型研究★ 單晶矽材料電化學放電鑽孔及同軸電度之研究
★ 微流道中液滴成形及滴落現象之模擬分析★ 兆聲波輔助化學溶液清潔晶圓表面汙染顆粒研究
★ 真空加熱矽奈米結構晶片對於提升質譜檢測靈敏度與離子化機制探討與應用★ 應用磁性粒子於微流體裝置之可逆接合
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 熱滾軋製程是一種高效率的製程,其具有的加工連續的特性可將微結構複製於高分子薄膜上,因此在高分子薄膜應用於微流體的概念上開闢了新機遇,而使用薄膜於滾軋製程中,其具有靈活的基板有卷到卷加工的優勢,這樣可以生產出具有潛力與非常便宜的產品,因此在近期滾軋壓印製造微米應用部分受到相當的重視,在本文中我們研究開發附有微米尺寸幾何圖騰的滾軋輪,並利用黃光製程製作滾軋模,文本討論了影響製程參數,主要包括滾軋壓力、溫度和速率,藉由以上不同参數對於加熱滾軋後聚合材料所產生的形貌特徵,可以獲得製程運作中所產生熱變形與剪應力變形的細微關係,此外,關鍵的因素可能會影響轉印成品的精確度,因此藉由以上參數和形貌進行了探討,其主要目標是實現製程最佳化。最後利用滾軋製程所製作微流體晶片進行微混合進行了可行性評估。
摘要(英) The hot roller embossing is an efficient process to continuously imprint microstructures on polymer film. Therefore, the concept of using hot roller to replicate polymer film opens up new opportunities in microfluidics application; In addition, hot roller embossing process present several advantages of making flexible polymer film in reel-to-reel format to increase throughput and reduce fabrication cost. Therefore, applying hot roller embossing to fabricate micro-parts draws lots of research interests in recent years. In this thesis, we demonstrated the development of the embossing roll with geometries stamps of micron scales and we tried to employ the embossing roll mould by using the lithography process. The thesis discusses the effects of process parameters such as roller embossing temperature, loading force and rolling speed to the resulting polymer film morphology and depth variation from thermal deformation and shear stress deformation. An optimized process parameter was also investigated from the systematic process parameter research. Finally, a micromixer design was demonstrated to evaluate the hot roller embossing process feasibility in microfluidic application.
關鍵字(中) ★ 微滾軋製程 關鍵字(英) ★ Roller process
論文目次 中文摘要 i
Abstract ii
致謝 iii
第一章 緒論 1
1.1 前言 1
1.2 微機電系統與微流體晶片 2
1.3 文獻回顧 3
1.4 研究動機與目的 16
1.5 論文架構 17
第二章 滾軋製程與技術 19
2.1 滾軋模的製造與材料 19
2.1.1 微模具概論 19
2.1.2 微結構材料 20
2.1.3 滾軋模基材(Roller Mould Substrate) 22
2.2 高分子材料 23
2.2.1 熱塑性塑膠 23
2.2.2 雙甲基矽氧烷材料(PDMS) 24
第三章 實驗方法與步驟 25
3.1 材料 25
3.2 黃光製程 25
3.1.1 光罩設計 26
3.1.2 光阻塗佈 (Spin Coating) 27
3.1.3 軟烤 (Soft Bake) 28
3.1.4 曝光 (Expose) 29
3.1.5 曝後烤 (Post Expose Bake) 29
3.1.6 顯影 (Develop) 30
3.1.7 硬烤 (Hard Bake) 30
3.2 滾軋製程 31
3.3 量測方式 34
3.3.1 壓力感測器原理 34
3.3.2 壓電感測器工作特性 35
3.3.3 輪廓量測 37
3.4 接合方式 40
3.5 微流體元件測試實驗 41
第四章 實驗結果與討論 43
4.1 滾軋製程之加熱溫度數對於高分子材料的型態影響 43
4.1.1 滾軋製程之加熱溫度應用於PVC、PC與COC薄膜所產生的深度影響 43
4.1.2 滾軋製程之加熱溫度應用於PVC、PC與COC薄膜所產生的型貌影響 45
4.2 滾軋製程之滾軋速率参數對於高分子材料的型態影響 55
4.2.1 滾軋製程之滾軋速率應用於PVC、PC與COC薄膜所產生的深度影響 55
4.2.2 滾軋製程之滾軋速率應用於PVC、PC與COC薄膜所產生的形貌影響 57
4.3 滾軋製程之滾軋速率参數對於高分子材料的型態影響 66
4.3.1 滾軋製程之滾軋壓力應用於PVC、PC與COC薄膜所產生的深度影響 66
4.3.2 滾軋製程之滾軋壓力應用於PVC、PC與COC薄膜所產生的形貌影響 67
4.4 熱接合法實驗與微流體元件測試結果 76
第五章 結論與建議 79
参考文獻 81
附錄 86
參考文獻 [1] A. Manz, N. Graber, and H. M. Widmer, "Miniaturized Total Chemical-Analysis Systems - a Novel Concept for Chemical Sensing," Sensors and Actuators B-Chemical, vol. 1, pp. 244-248, 1990.
[2] J. D. L. Shapley and D. A. Barrow, "Novel patterning method for the electrochemical production of etched silicon," Thin Solid Films, vol. 388, pp. 134-137, 2001.
[3] M. Campas and I. Katakis, "DNA biochip arraying, detection and amplification strategies," Trac-Trends in Analytical Chemistry, vol. 23, pp. 49-62, 2004.
[4] K. C. Young, H. M. Lien, C. C. Lin, T. T. Chang, G. B. Lee, and S. H. Chen, "Microchip and capillary electrophoresis for quantitative analysis of hepatitis C virus based on RT-competitive PCR," Talanta, vol. 56, pp. 323-330, 2002.
[5] B. P. M. S. M. J. S. Y. Y. S. H. K. J. H. L. S. Yang, "Continuous cell cross over and lysis in a microfluidic device," Microfluid Nanofluid, 2009.
[6] D. Graham, "Biochips to Bavarian cows," vol. Vol.19, pp. pp.199~200, 2001.
[7] E. Szili, H. Thissen, J. P. Hayes, and N. Voelcker, "A biochip platform for cell transfection assays," Biosensors & Bioelectronics, vol. 19, pp. 1395-1400, 2004.
[8] K. Y. Lien, W. Y. Lin, Y. F. Lee, C. H. Wang, H. Y. Lei, and G. B. Lee, "Microfluidic systems integrated with a sample pretreatment device for fast nucleic-acid amplification," Journal of Microelectromechanical Systems, vol. 17, pp. 288-301, 2008.
[9] P. Bley, "The Liga Process for Fabrication of 3-Dimensional Microscale Structures," Interdisciplinary Science Reviews, vol. 18, pp. 267-272, 1993.
[10] T. Hanemann, R. Ruprecht, and J. H. Hausselt, "Photomolding in microsystem technology.," Abstracts of Papers of the American Chemical Society, vol. 216, pp. U95-U95, 1998.
[11] M. A. Jesus M. Ruano-Lopez, Garbi~ne Olabarria, Dolores Verdoy,b Dang D. Bang, Minqiang Bu,d Anders Wolff, Anja Voigt, Jan A. Dziuban, Rafa1 Walczak and Javier Berganzo, "The SmartBioPhone , a point of care vision under development through two European projects: OPTOLABCARD and LABONFOIL," pp. 1495–1499, 2009.
[12] H. Becker and C. Gartner, "Polymer microfabrication technologies for microfluidic systems," Analytical and Bioanalytical Chemistry, vol. 390, pp. 89-111, 2008.
[13] M. Worgull, J. F. Hetu, K. K. Kabanemi, and M. Heckele, "Hot embossing of microstructures: characterization of friction during demolding," Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 14, pp. 767-773, 2008.
[14] T. R. Hsu, "Packaging design of microsystems and meso-scale devices," Ieee Transactions on Advanced Packaging, vol. 23, pp. 596-601, 2000.
[15] C. Liu, "Recent developments in polymer MEMS," Advanced Materials, vol. 19, pp. 3783-3790, 2007.
[16] P. P. Shiu, M. Ostojic, G. K. Knopf, and S. Nikumb, "Rapid fabrication of polymethylmethacrylate micromold masters using a hot intrusion process," Journal of Micro-Nanolithography Mems and Moems, vol. 7, pp. -, 2008.
[17] S. W. Youn, H. Goto, M. Takahashi, S. Oyama, Y. Oshinomi, K. Matsutani, and R. Maeda, "A replication process of metallic micro-mold by using parylene embossing and electroplating," Microelectronic Engineering, vol. 85, pp. 161-167, 2008.
[18] M. J. Madou, Fundamentals of Micro fabrication. New York, 2002.
[19] J. S. Liu, C. Liu, J. H. Guo, and L. D. Wang, "Electrostatic bonding of a silicon master to a glass wafer for plastic microchannel fabrication," Journal of Materials Processing Technology, vol. 178, pp. 278-282, 2006.
[20] M. T. Koesdjojo, Y. H. Tennico, and V. T. Reincho, "Fabrication of a microfluidic system for capillary electrophoresis using a two-stage embossing technique and solvent welding on poly(methyl methacrylate) with water as a sacrificial layer," Analytical Chemistry, vol. 80, pp. 2311-2318, 2008.
[21] J. Steigert, S. Haeberle, T. Brenner, C. Muller, C. P. Steinert, P. Koltay, N. Gottschlich, H. Reinecke, J. Ruhe, R. Zengerle, and J. Ducree, "Rapid prototyping of microfluidic chips in COC," Journal of Micromechanics and Microengineering, vol. 17, pp. 333-341, 2007.
[22] L. Yi, X. D. Wang, and Y. Fan, "Microfluidic chip made of COP (cyclo-olefin polymer) and comparion to PMMA (polymethylmethacrylate) microfluidic chip," Journal of Materials Processing Technology, vol. 208, pp. 63-69, 2008.
[23] J. M. Li, C. Liu, X. D. Dai, H. H. Chen, Y. Liang, H. L. Sun, H. Tian, and X. P. Ding, "PMMA microfluidic devices with three-dimensional features for blood cell filtration," Journal of Micromechanics and Microengineering, vol. 18, pp. -, 2008.
[24] M. Sahli, C. Millot, C. Roques-Carmes, and C. K. Malek, "Experimental analysis and numerical modelling of the forming process of polypropylene replicas of micro-cavities using hot embossing," Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 15, pp. 827-835, 2009.
[25] J. M. Li, C. Liu, H. C. Qiao, L. Y. Zhu, G. Chen, and X. D. Dai, "Hot embossing/bonding of a poly(ethylene terephthalate) (PET) microfluidic chip," Journal of Micromechanics and Microengineering, vol. 18, pp. -, 2008.
[26] M. Heckele and W. K. Schomburg, "Review on micro molding of thermoplastic polymers," Journal of Micromechanics and Microengineering, vol. 14, pp. R1-R14, 2004.
[27] D. G. Yao, P. Nagarajan, L. Li, and A. Y. Yi, "A two-station embossing process for rapid fabrication of surface microstructures on thermoplastic polymers," Polymer Engineering and Science, vol. 47, pp. 530-539, 2007.
[28] S. Fatikow, Rembold, U, Microsystem technology and micro- robotics. New York: Springer, 1997.
[29] M. T. Gale, "Replication techniques for diffractive optical elements," vol. 34 pp. 321-339 1997.
[30] T. Velten, H. Schuck, M. Richter, G. Klink, K. Bock, C. K. Malek, S. Roth, H. Scho, and P. J. Bolt, "Microfluidics on foil: state of the art and new developments," Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, vol. 222, pp. 107-116, 2008.
[31] O. Nezuka, D. G. Yao, and B. H. Kim, "Replication of microstructures by roll-to-roll UV-curing embossing," Polymer-Plastics Technology and Engineering, vol. 47, pp. 865-873, 2008.
[32] J. Han, S. Choi, J. Lim, B. S. Lee, and S. Kang, "Fabrication of transparent conductive tracks and patterns on flexible substrate using a continuous UV roll imprint lithography," Journal of Physics D-Applied Physics, vol. 42, pp. -, 2009.
[33] S. H. Ng and Z. F. Wang, "Hot roller embossing for microfluidics: process and challenges," Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 15, pp. 1149-1156, 2009.
[34] L. P. Yeo, S. H. Ng, Z. F. Wang, H. M. Xia, Z. P. Wang, V. S. Thang, Z. W. Zhong, and N. F. de Rooij, "Investigation of hot roller embossing for microfluidic devices," Journal of Micromechanics and Microengineering, vol. 20, pp. -, 2010.
[35] A. C. S. H. D. Rowland, P .R. Schunk , W. P. King,H. D. Rowland, A. C. Sum, P .R. Schunk , W. P. King,, "Impact of polymer film thickness and cavity size on polymer flow during embossing: toward process design rules for nanoimprint lithography," Micromech. Microeng, vol. Vol. 15, pp. pp2414-2425, 2005.
[36] L. J. Heyderman, Schift, H., David, C., Gobrecht, J., and Schweizer, T., "Flow behaviour of thin polymer films used for hot embossing lithography," Microelectronic Engineering, vol. 54, pp. 229-245, 2000.
[37] N. S. H. Yeo L P, Wang Z F, Wang Z P and de Rooij N F.De rooij, "Micro-fabrication of Polymeric Devices Using Hot Roller Embossing," Microelectronic Engineering, vol. vol. 86(4-6),, pp. pp. 933-936, 2009.
[38] W. Kurnia and M. Yoshino, "Nano/micro structure fabrication of metal surfaces using the combination of nano plastic forming, coating and roller imprinting processes," Journal of Micromechanics and Microengineering, vol. 19, pp. -, 2009.
[39] H. D. R. a. W. P. King, "Polymer deformation and filling modes during microembossing," MICROMECHANICS AND MICROENGINEERING, vol. Vol.14, pp. pp. 1625-1632, 2004.
[40] S. M. Seo, T. I. Kim, and H. H. Lee, "Simple fabrication of nanostructure by continuous rigiflex imprinting," Microelectronic Engineering, vol. 84, pp. 567-572, 2007.
[41] Z. H. F. Daniel Olivero, "Lab on a Chip," USA 2008.
[42] H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, "SU-8: a low-cost negative resist for MEMS," Journal of Micromechanics and Microengineering, vol. 7, pp. 121-124, 1997.
[43] 楊奇勳, "利用SU-8 光阻二次塗佈製作2.5D 微結構之製程研究," in 機械所, vol. 碩士. 台灣: 交通大學, 中華民國九十年七月.
[44] C.-W. T. Æ. D. L. DeVoe, "Bonding of thermoplastic polymer microfluidics," Microfluidics and Nanofluidics, vol. 6, 2009.
[45] TOPAS®COC, "TOPAS/8007." http://www.topas.com/tds_8007f_400_e_2006.pdf
[46] G. PC, "PC film/sheet." http://www.zencatec.com/products02/Glastic_PC.html
[47] V. Solution, "Flexible PVC ".http://www.tmi-pvc.com/vinyl_solutions/flexible_pvc_film/general_purpose.html
[48] S. R. Oh, "Thick single-layer positive photoresist mold and poly(dimethylsiloxane) (PDMS) dry etching for the fabrication of a glass-PDMS-glass microfluidic device," Journal of Micromechanics and Microengineering, vol. 18, pp. -, 2008.
[49] MicroChem, "SU-8 3000 Permanent Epoxy Negative Photoresist."
[50] N. Y. Lee and Y. S. Kim, "A simple imprint method for multi-tiered polymer nanopatterning on large flexible substrates employing a flexible mold and hemispherical PDMS elastomer," Macromolecular Rapid Communications, vol. 28, pp. 1995-2000, 2007.
[51] Memstec, "Flexiforce." www.memstec.com.tw
[52] D. T. C. Noo Li Jeon, Christopher J. Wargo, Hongkai Wu, Insung S. Choi, Janelle R. Anderson and George M. Whitesides, "Microfluidics Section: Design and Fabrication of Integrated Passive Valves and Pumps for Flexible Polymer 3-Dimensional Microfluidic Systems" Biomedical Microdevices, vol. Volume 4 2002.
[53] H. Z. L. X. D. Ye, Y. C. Ding, H. S. Li, and B. H. Lu, "Research on the cast molding process for high quality PDMS molds," Microelectronic Engineering, vol. vol. 86, pp. pp. 310-313, Mar 2009.
[54] C. D. Wu, J. F. Lin, and T. H. Fang, "Molecular Dynamics Simulations of the Roller Nanoimprint Process: Adhesion and Other Mechanical Characteristics," Nanoscale Research Letters, vol. 4, pp. 913-920, 2009.
[55] C. W. Tsao and D. L. DeVoe, "Bonding of thermoplastic polymer microfluidics," Microfluidics and Nanofluidics, vol. 6, pp. 1-16, 2009.
[56] C. J. Campbell and B. A. Grzybowski, "Microfluidic mixers: from microfabricated to self-assembling devices," Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, vol. 362, pp. 1069-1086, 2004.
[57] R. H. Liu, M. A. Stremler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref, and D. J. Beebe, "Passive mixing in a three-dimensional serpentine microchannel," Journal of Microelectromechanical Systems, vol. 9, pp. 190-197, 2000.
[58] M. T. Koesdjojo, C. R. Koch, and V. T. Remcho, "Technique for Microfabrication of Polymeric-Based Microchips from an SU-8 Master with Temperature-Assisted Vaporized Organic Solvent Bonding," Analytical Chemistry, vol. 81, pp. 1652-1659, 2009.
指導教授 曹嘉文(Tsao, Chia-Wen) 審核日期 2011-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明