博碩士論文 973204009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:34.231.21.123
姓名 蔡孟甫(Meng-fu Tsai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討Sulfobetaine高分子的水合性質及分子間之作用力與其在生物相容性方面之研究
(Effect of the Hydration Properties and Molecular Interaction of Sulfobetaine Polymer on Its Biocompatibility)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 三團聯共聚物及鎂離子對微脂粒物理穩定性之影響及其機制探討★ 微卡計在固液吸附機制的研究-嵌印高分子及離子交換樹脂在近等電點時的吸附機制
★ 微卡計於液膜交互作用力量測之應用----微脂粒系統穩定度之探討★ Ribonuclease A 於逆微胞系統中的復性及其界面現象之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於雙離子性的sulfobetaine methacrylate高分子具有良好的抗血小板或抗血漿蛋白質貼附的能力,因此很有潛力成為一個具備良好生物相容性的高分子生醫材料。然而許多研究指出材料本身與水的作用性質或水合作用和生物相容性息息相關,因此本研究選用了不同分子量(5~300kDa)的高分子聚合物poly(sulfobetaine methacrylate) PSBMA來進行水合作用的量測與分析,進一步的了解其與生物相容性的關聯性。
為了了解PSBMA與水的作用性質,本研究選用不同分子量的PSBMA,利用動態濕氣吸附分析儀(DVS)、動態雷射散射粒徑分佈儀(DLS)和恆溫滴定微卡計(ITC)來量測PSBMA與水的作用性質,期待能以以上實驗之結果與不同分子量PSBMA生物相容性之關係做出說明。藉由DVS來量測PSBMA在不同溼度下的吸脫水行為。結果顯示,隨著PSBMA分子量的增加,吸脫水速率下降,推測隨著分子鏈逐漸增長而造成自身分子鏈聚集摺疊,使得水分子不易與PSBMA分子鏈上的親水基團作用。然而在分子量為23 kDa時,其吸脫水速率卻介於小分子量(10kDa、37kDa)和大分子量(60kDa~300kDa)之間。
我們也利用動態雷射散射粒徑分佈儀和恆溫滴定微卡計來探討PSBMA於水溶液中分子間的作用力。結果顯示,小分子量(除了23kDa、25kDa)和大分子量PSBMA在溶液中水力半徑隨著溫度增加都有明顯降低的趨勢,而23kDa和25kDa的PSBMA溶於水中在DLS實驗的溫度範圍內都沒有觀察到明顯的水力半徑變化的情形。而由ITC實驗進行高分子溶液稀釋焓之量測,發現分子量在兩萬附近的PSBMA相較於其他分子量的PSBMA具有吸熱量較多的稀釋焓。
綜合以上DVS、DLS和ITC實驗,推論隨著PSBMA分子量的增加,PSBMA在溶液中從分子間(interchain)作用力逐漸轉變為分子內(intrachain)與分子間皆具之作用力。而PSBMA分子量在兩萬左右時,PSBMA在溶液中自身分子內吸引力轉強,其溶於水時和溶液中水分子之間的作用力較接近dipole-dipole的弱作用力,分子鏈與水形成的水合基團較少,PSBMA溶於水時所需結合的水分子較少,較不易影響到溶液中水分子間的氫鍵鍵結,高分子與水分子的作用力較接近水分子與水分子間的作用力。
而從溶血和凝血實驗結果可以發現,分子量在兩萬左右的PSBMA對人類紅血球的破壞程度較低以及可以延長凝血時間,展現出較佳的血液相容性。綜合材料水合性質與其生物相容性的實驗結果,本研究之結論對高分子材料生物相容性之定性的描述可為若是高分子材料能溶於水中,且較不易影響到溶液中水分子間的氫鍵鍵結,而高分子與水分子的作用力若能接近水分子與水分子間的作用力,此高分子材料就能擁有較良好的生物相容性。更深入的研究需進一步利用不同高分子材料與其他能進一步量測水分子於材料之性質之儀器設備才足以能有更完整之說明。
摘要(英) The zwitterionic poly(sulfobetaine methacrylate) (PSBMA) has potential to be a good biomaterial owing to high biocompatibility arisen from its adhesion resistances for platelet or plasma proteins from previous researches. In this study, the hydration behaviors of different molecular weights of zwitterionic PSBMA were investigated and the correlation between hydration behaviors of the polymers and its biocompatibility was further examined.
In this study, the hydration kinetics and affinity of different molecular weights of zwitterionic PSBMA were investigated by dynamic vapor sorption (DVS). The results indicated that the hydration and dehydration rates decrease as molecular weight increases. We inferred that with the increasing of PSBMA molecular weight, polymer aggregation made water difficult to interact with the hydrophilic groups of the polymer chain. However, the hydration and dehydration rates of 23 kDa PSBMA were slower because of stronger intrachain interaction compared with other low molecular weights(10、37kDa) PSBMA.
The molecular interaction of different molecular weights PSBMA in aqueous solution was investigated by dynamic light scattering (DLS) and isothermal titration calorimetry (ITC). The results showed that the hydrodynamic radius of PSBMA decrease with increased temperature. However, the hydrodynamic radius of PSBMA near 20kDa did not show obviously change at the temperature range of DLS experiment. Furthermore, the molecular weight of PSBMA near 20kDa showed higher dilution heat than those of other polymers in ITC experiment.
Combined the results of DVS、DLS and ITC experiments, we inferred that with the increasing of PSBMA molecular weight, the interchain interactions turned into intrachain interactions in aqueous PSBMA solution. When the molecular weight of PSBMA near 20kDa, the stronger intrachain interaction compared with other low molecular weights(10、37kDa) PSBMA made a few water molecules interact with the polymer chain. Therefore, the few bounded water molecules in polymer are needed as PSBMA solved in aqueous solution, PSBMA polymer had a very small effect on the structure of the hydrogen-bonded network of water molecules in aqueous solution.
This study also investigated the anticoagulant activity and the antihemolytic activity tests of different molecular weight of PSBMA. PSBMA performed higher blood compatibility when molecular weight near 20kDa. Compared with the hydration properties and biocompatibility of PSBMA, we inferred that if polymer had smaller effect on the structure of the hydrogen-bonded network of water molecules in aqueous solution, it seemed to give biocompatibility to the polymer.
關鍵字(中) ★ Sulfobetaine高分子
★ 水合能力
★ 分子交互作用力
★ 生物相容性
關鍵字(英) ★ hydration property
★ molecular interaction
★ biocompatibility
★ Sulfobetaine polymer
論文目次 中文摘要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 緒論 1
第二章 文獻回顧 2
2.1 生物相容性材料 2
2.1.1 聚乙烯乙二醇之簡介與發展 5
2.1.2 仿生雙離子性高分子之簡介與發展 7
2.1.2.1 PC 類雙離子性高分子 9
2.1.2.2 SB 類雙離子性高分子 13
2.1.2.3 CB 類雙離子性高分子 18
2.1.3 刺激應答型高分子 20
2.1.3.1 溫度應答型高分子Poly(NIPAAm) 21
2.1.3.2 SB類雙離子性高分子之溶液性質 22
2.1.3.3 雙重溫度應答型高分子 24
2.2 生物相容性 26
2.2.1 組織相容性 27
2.2.1.1 生物材料與發炎 27
2.2.1.2 生物材料與腫瘤 28
2.2.2 血液相容性 29
2.2.2.1 血液之組成 31
2.2.2.2 血液組成與表面的交互作用 33
2.2.2.3 材料與血液的相互關係 35
2.2.2.4 血小板 36
2.2.2.5 生物材料與血小板的相互關係 38
2.2.2.6 凝血機制 38
2.2.2.7 生物材料與凝血機制的相互關係 41
2.3 研究目的 42
第三章 實驗藥品、儀器及方法 48
3.1 實驗藥品 48
3.2 儀器設備 49
3.3 實驗方法 54
3.3.1 PSBMA高分子合成 54
3.3.2 動態雷射散射粒徑分佈儀之操作步驟 54
3.3.3 示差掃描熱卡計操作步驟 55
3.3.4 vp-ITC 操作步驟 58
3.3.5 溶血與凝血實驗 60
第四章 結果與討論 61
4.1 PSBMA之水合性質 61
4.2 PSBMA在溶液中分子間之作用力 67
4.3 材料生物相容性與其水合性質之關聯性 77
第五章 結論 87
第六章 參考文獻 89
第七章 附錄 97
參考文獻 1. Chen, Q. Z., Harding, S. E., Ali, N. N., Lyon, A. R., Boccaccini, A. R., Biomaterials in cardiac tissue engineering, Ten years of research survey. Materials Science & Engineering R-Reports 2008, 59, (1-6), 1-37.
2. Gorbet, M. B., Sefton, M. V., Biomaterial-associated thrombosis, roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 2004, 25, (26), 5681-5703.
3. Padera R. F., Schoen, F. J., “Cardiovascular medical devices - An introduction to materials in medicine”. Biomaterials Science, Elsevier, Academic Press, San Diego, CA, 2004, 470-494.
4. Harris, J. M., “Poly(ethylene glycol) chemistry biotechnical and biomedical applications”. New York Plenum Press, 1992, 15-27.
5. Abuchowski A., van Es T., Palczuk N. C. and Davis F. F., Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J. Biol. Chem. 1977, 252, 3578-3581.
6. Lee, J.H., Lee, H.B. and Andrade, J.D., Blood Compatibility of Polyethylene Oxide Surfaces. Progress in Polymer Science 1995, 20, (6), 1043-1079.
7. Georgiev, G. S., Karnenska, E. B., Vassileva, E. D., Kamenova, I. P., Georgieva, V. T.; Iliev, S. B., Ivanov, I. A., Self-assembly, anti polyelectrolyte effect, and nonbiofouling properties of polyzwitterions. Biomacromolecules 2006, 7, (4), 1329-1334.
8. Singer S. J., Nicolson G. L., The fluid mosaic model of the structure of cell membrane. Science 1972, 1, (75), 720-731.
9. Lewis, A.L., Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids and Surfaces B-Biointerfaces 2000, 18, (3-4), 261-275.
10. Holmlin, R. E., Chen, X. X., Chapman, R. G., Takayama, S., Whitesides, G. M., Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir 2001, 17, (9), 2841-2850.
11. Prime, K. L., Whitesides, G. M., Adsorption of Proteins onto Surfaces Containing End-Attached Oligo(Ethylene Oxide) - a Model System Using Self-Assembled Monolayers. Journal of the American Chemical Society 1993, 115, (23), 10714-10721.
12. Kadoma Y., Nakabayashi N., Masuhara E., Yamauchi J., Synthesis and hemolysis test of polymer containing phophorylcholine groups. Koubunshi Ronbunshu (Jpn J Polym Sci Technol) 1978, 35, 423–427
13. Ishihara, K., Ueda, T., Nakabayashi, N., Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polymer Journal 1990, 22, (5), 355-360.
14. Ishihara, K., Bioinspired phospholipid polymer biomaterials for making high performance artificial organs. Science and Technology of Advanced Materials 1 2000, 1, (3), 131-138.
15. Ishihara, K., Iwasaki, Y., Ebihara, S., Shindo, Y., Nakabayashi, N., Photoinduced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on polyethylene membrane surface for obtaining blood cell adhesion resistance. Colloids and Surfaces B-Biointerfaces 2000. 18, (3-4), 325-335.
16. Katakura, O., Morimoto, N., Iwasaki, Y., Akiyoshi, K., Kasugai, S., Evaluation of 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer-coated dressing on surgical wounds. Journal of Medical and Dental Sciences 2005, 52, 115-121.
17. Zhang, Z., Chao, T., Chen, S. F., Jiang, S. Y., Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir 2006, 22, (24), 10072-10077.
18. Chang, Y., Chen, S. F., Zhang, Z., Jiang, S. Y., Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. Langmuir 2006, 22, (5), 2222-2226.
19. Zhang, Z., Chen, S. F., Chang, Y., Jiang, S. Y., Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. Journal of Physical Chemistry B 2006, 110, (22), 10799-10804.
20. Cheng, G., Zhang, Z., Chen, S. F., Bryers, J. D., Jiang, S. Y., Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 2007, 28, (29), 4192-4199.
21. Chang, Y., Liao, S. C., Higuchi, A., Ruaan, R. C., Chu, C. W., Chen, W. Y., Highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for-plasma protein repulsion. Langmuir 2008, 24, (10), 5453-5458.
22. Zhang, Z., Chen, S. F., Jiang, S. Y., Dual-functional biomimetic materials, Nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules 2006, 7, (12), 3311-3315.
23. Liu, S.Q., Y.W. Tong, and Y.Y. Yang, Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(D,L-lactide-co-glycolide) with varying compositions. Biomaterials 2005, 26, (24), 5064-5074.
24. Lee, E.S., K. Na, and Y.H. Bae, Super pH-sensitive multifunctional polymeric micelle. Nano Letters 2005, 5, (2), 325-329.
25. Zhang, Y.J., Furyk, S., Bergbreiter, D.E., Cremer, P.S., Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series. Journal of the American Chemical Society 2005, 127, (41), 14505-14510.
26. Schulza, D. N., Agarwala, P. K., Larabeea, J., Kaladasa, J. J., Sonia, L., Handwerkera, B., Garnera, R. T., Phase behaviour and solution properties of sulphobetaine polymers. Polymer 1986, 27, 1734–1742.
27. Georgiev, G. S., Karnenska, E. B., Vassileva, E. D., Kamenova, I. P., Georgieva, V. T.; Iliev, S. B., Ivanov, I. A., Self-assembly, antipolyelectrolyte effect, and nonbiofouling properties of polyzwitterions. Biomacromolecules 2006, 7, (4), 1329-1334.
28. Lowe A. B., McCormick C .L., Synthesis and solution properties of zwitterionic polymers. Chemical Reviews 2002, 102, (11), 4177-4189
29. Yang, W., Chen, S. F., Cheng, G., Vaisocherova, H., Xue, H., Li, W., Zhang, J. L., Jiang, S. Y., Film thickness dependence of protein adsorption from blood serum and plasma onto poly(sulfobetaine)-grafted surfaces. Langmuir 2008, 24, (17), 9211-9214.
30. Virtanen, J., Arotcarena, M., Heise, B., Ishaya, S., Laschewsky, A., Tenhu, H., Dissolution and aggregation of a poly(NIPA-block-sulfobetaine) copolymer in water and saline aqueous solutions. Langmuir 2002, 18, (14), 5360-5365.
31. Chang, Y., Chen, W. Y., Yandi, W., Shih, Y. J., Chu, W. L., Liu, Y. L., Chu, C. W., Ruaan, R. C., Higuchi, A., Dual-Thermoresponsive Phase Behavior of Blood Compatible Zwitterionic Copolymers Containing Nonionic Poly(N-isopropyl acrylamide). Biomacromolecules 2009, 10, (8), 2092-2100.
32. Richardson, S.C.W., H.J.V. Kolbe, and R. Duncan, Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA. International Journal of Pharmaceutics 1999, 178, (2), 231-243.
33. 余耀庭, 張興棟, 林峰輝, 白育綸, 生物醫用材料, 新文京開發出版股份有限公司, 2004年
34. Hanson S. R., Blood coagulation and blood-materials interactions.- An introduction to materials in medicine. Biomaterials Science, Elsevier, Academic Press, San Diego, CA, 2004, 332.
35. Ratner B. D., Blood compatibility - Foreword. Journal of Biomaterials Science-Polymer Edition 2000, 11, (11), 1105-1106.
36. Ratner B. D., Blood compatibility - a perspective. Journal of Biomaterials Science-Polymer Edition 2000, 11, (11), 1107-1119.
37. Ratner B. D., The catastrophe revisited, Blood compatibility in the 21st century. Biomaterials 2007, 28, (34), 5144-5147.
38. Moriau M., The physiological mechanisms of haemostasis -Blood Platelets. Hologramme Ed., Neuilly-sur-Seine, 1988.
39. Vogler E. A., Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science 1998, 74, 69-117.
40. Goertz, M. P., Houston, J. E., Zhu, X. Y., Hydrophilicity and the viscosity of interfacial water. Langmuir 2007, 23, (10), 5491-5497.
41. Blockmans, D., Deckmyn, H., Vermylen, J., Platelet activation. Blood Reviews 1995, 9, (3), 143-156.
42. Holme, P. A., Solum, N. O., Brosstad, F., Pedersen, T., Kveine, M., Microvesicles bind soluble fibrinogen, adhere to immobilized fibrinogen and coaggregate with platelets. Thrombosis and Haemostasis 1998, 79, (2), 389-394.
43. Eloy R., Belleville J., Biomaterial-blood interaction - Concise encyclopedia of medical & dental materials. Williams, D.F. Ed., Pergamon Press, 1990, 74-85.
44. Wu, Y. G., Simonovsky, F. I., Ratner, B. D., Horbett, T. A., The role of adsorbed fibrinogen in platelet adhesion to polyurethane surfaces, A comparison of surface hydrophobicity, protein adsorption, monoclonal antibody binding, and platelet adhesion. Journal of Biomedical Materials Research Part A 2005, 74A, (4), 722-738.
45. Kwak, D., Wu, Y. G., Horbett, T. A., Fibrinogen and von Willebrand's factor adsorption are both required for platelet adhesion from sheared suspensions to polayethylene preadsorbed with blood plasma. Journal of Biomedical Materials Research Part A 2005, 74A, (1), 69-83.
46. Hanson S. R., Harker L. A., Blood coagulation and bood – materials interactions. Biomaterials Science, Academic Press, San Diego, 1996, 193-199.
47. Blockmans, D., Deckmyn, H., Vermylen, J., Platelet activation. Blood Reviews 1995, 9, (3), 143-156.
48. Holme, P. A., Solum, N. O., Brosstad, F., Pedersen, T., Kveine, M., Microvesicles bind soluble fibrinogen, adhere to immobilized fibrinogen and coaggregate with platelets. Thrombosis and Haemostasis 1998, 79, (2), 389-394.
49. Ratner B. D., The Blood compatibility catastrophe. Journal of Biomedical Materials Research 1993, 27(3), 283-287.
50. Llanos, G. R., Sefton, M. V., Immobilization of poly(ethylene glycol) onto a poly(vinyl alcohol) hydrogel .2. evaluation of thrombogenicity. Journal of Biomedical Materials Research 1993, 27, (11), 1383-1391.
51. Salvagnini C., Thrombin inhibitors grafting on polyester membranes for the preparation of blood-compatible materials. The doctoral dissertation, Université Catholique de Louvain, Belgium, 2005.
52. Nydegger, U., Rieben, R., Lammle, B., In Biocompatibility in transfusion medicine, 1996; Transfus. Sci., 481-488.
53. Ishihara, K., Nomura, H., Mihara, T., Kurita, K., Iwasaki, Y., Nakabayashi, N., Why do phospholipid polymers reduce protein adsorption? Journal of Biomedical Materials Research 1998, 39, (2), 323-330.
54. Iwasaki, Y., Ishihara, K., Phosphorylcholine-containing polymers for biomedical applications. Analytical and Bioanalytical Chemistry 2005. 381, (3), 534-546.
55. Kane, R.S., P. Deschatelets, and G.M., Whitesides, Kosmotropes form the basis of protein-resistant surfaces. Langmuir 2003, 19, (6), 2388-2391.
56. Yancey, P.H., Clark, M. E., Hand, S. C., Bowlus R. D. and Somero G. N., Living with water stress: evolution of osmolyte systems. Science 1982, 217, (4566), 1214-1222.
57. Lu, D. R., Lee, S. J., Park, J., Calculation of solvation interaction energies for protein adsorption on polymer surfaces. Journal of Biomaterials Science Polymer Edition 1992, 3, (2), 127-147.
58. 許朝翔, 利用恆溫滴定微卡計探討聚乙二醇抗蛋白質吸附之作用機制. 碩士論文, 國立中央大學化學工程與材料工程系, 2007.
59. Kitano, H., Mori, T., Takeuchi, Y., Tada, S., Gemmei-Ide, M., Yokoyama, Y., Tanaka, M., Structure of water incorporated in sulfobetaine polymer films as studied by ATR-FTIR. Macromolecular Bioscience 2005. 5, (4), 314-321.
60. Luo, S. J., Leisen, J., Wong, C. P., Study on Mobility of Water and Polymer Chain in Epoxy for Microelectronic Applications. Electronic Components and Technology Conference, 2001.
61. Mary, P., Bendejacq, D.D., Interactions between sulfobetaine-based polyzwitterions and polyelectrolytes. Journal of Physical Chemistry B 2008. 112, (8), 2299-2310.
62. Marra, J., Israelachvili, J., Direct measurements of forces between phosphatidylcholine and phosphatidylethanolamine bilayers in aqueous electrolyte solutions. Biochemistry 1985, 24, 4608-4618.
63. Chang, Y., Shih, Y. J., Tunable Blood Compatibility of Polysulfobetaine from Controllable Molecular-Weight Dependence of Zwitterionic Nonfouling Nature in Aqueous Solution. Submitted to Langmuir, 2010.
64. Kogure, H., Masuda, Y., Ishii, T., Wakamatsu, K., Kubuta, K., Ochiai, M., Effect of NDSB on the Fibrinogen Gelation by Thrombin. Trans Mater Res Soc Jpn, 2006, 31, (3), 787-790.
65. Tanaka, M., Motomura, T., Ishii, N., Shimura, K., Onishi, M., Mochizuki, A., Hatakeyama, T., Cold crystallization of water in hydrated poly(2-methoxyethyl acrylate) (PMEA). Polymer International 2000. 49, (12), 1709-1713.
66. Tanaka, M., Mochizuki, A., Effect of water structure on blood compatibility - thermal analysis of water in poly(meth)acrylate. Journal of Biomedical Materials Research Part A 2004. 68A, (4), 684-695.
67. Kitano, H., Imai, M., Sudo, K., Ide, M., Hydrogen-bonded network structure of water in aqueous solution of sulfobetaine polymers. Journal of Physical Chemistry B 2002. 106, (43), 11391-11396.
68. Xu, J.M., Yuan, Y. L., Shan, B., Shen, J., Lin, S.C., Ozone-induced grafting phosphorylcholine polymer onto silicone film grafting 2-methacryloyloxyethyl phosphorylcholine onto silicone film to improve hemocompatibility. Colloids and Surfaces B-Biointerfaces 2003. 30, (3), 215-223.
69. Yuan, J., Yuan, Y.L., Shen, J., Lin, S.C., Zhu, W., Fang, J.L., Grafting of sulfobetaine onto a polyurethane surface to improve blood compatibility. Chinese Journal of Polymer Science 2003. 21, (4), 419-425.
70. Liu, P.S., Chen, Q., Liu, X., Yuan, B., Wu, S.S., Shen, J., Lin, S.C., Grafting of Zwitterion from Cellulose Membranes via ATRP for Improving Blood Compatibility. Biomacromolecules 2009. 10, (10), 2809-2816.
指導教授 陳文逸(Wen-Yih Chen) 審核日期 2010-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明