博碩士論文 973204010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.146.152.33
姓名 林育琨(Yu-Kun Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 生命的起源與天門冬氨酸在水中的結晶
(The Origin of Life and the Crystallization of Aspartic Acid in Water)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究★ 微調具光學活性聯二萘酚和其二甲亞碸包合物的光激發光性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 消旋性化合物的種類有三種: 外消旋混和物 (racemic conglomerate)、外消旋化合物(racemic compound) 或者擬消旋體 (pseudoracemate)。利用初步溶劑篩選程序來篩選左旋(l)、右旋(d)、和消旋(dl)的天門冬氨酸 (aspartic acid),包含溶解度 (solubility)、同質異相表 (form space)、溶解度相圖 (phase solubility diagram) 以及晶貌 (crystal habits) 的資料建立成工程資料庫,結果發現左旋、右旋、及消旋的天門冬氨酸均易溶於水。而這些資料可以用來決定最適當的結晶過程來分離對掌異構物。
另一方面,發現天門冬氨酸的左右旋分子在水中有不同的相態。我們利用冰點和結晶動力學證明溶液中有不同的相態。而液相中外消旋混合物溶液(conglomerate solution)受到溫度和時間因素能轉變成外消旋化合物溶液 (racemic compound solution)。而外消旋混合物和外消旋化合物溶液分別結晶出外消旋混合物和外消旋化合物兩種不同的晶體。當溶液溫度為45度及放置時間為5小時,外消旋混合物溶液最後會轉變成外消旋化合物溶液。儘管如此,將琥珀酸溶解在外消旋混合物溶液,能使介穩態的外消旋混合物溶液在60℃下穩定達8個小時,而不會轉變成外消旋化合物溶液。同樣地,酸鹼中和法和反溶劑降溫法可藉由加入琥珀酸,使得外消旋化合物分離成外消旋混合物。而其中左旋天門冬氨酸也可以當做分離左右旋的晶種。因此,在原始地球上很容易產生大規模分離天門冬氨酸對掌性分子的現象。
最後,我們使用導電度計監控天門冬酸在水與丙酮共溶劑中整個介晶質結晶過程,以證明其外消旋混合物溶液和外消旋化合物溶液的差異,和探討加入左旋天門冬氨酸晶種於外消旋化合物溶液的結晶行為,並且整合熱力學與動力學的資訊來建立基本結晶動力學參數。
摘要(英) Racemic species involve racemic conglomerate, racemic compound, or pseudoracemate. Engineering technology data included solubility, form space, phase solubility diagram, and crystal habits of d-, l-, and dl-aspartic acid were collected by initial solvent-screening. The d-, l-, and dl-aspartic acid were all soluble in water. The study determined the crystallization of enantiomers.
The existence of different types of enantiomeric solution phase of aspartic acid in water was discovered. We used freezing point of the solution, and crystallization kinetics to prove that those solution phase were different. The transformation of a conglomerate solution (CS) to a racemic compound solution (RCS) was dependent on both temperature and time. The CS was the solution phase which produced conglomerate crystals, and the RCS was the solution phase which gave a racemic compound. The solution phase transformation of the CS of aspartic acid to the RCS of aspartic acid took 5 h at 45oC to complete. However, the presence of succinic acid dissolved in the aqueous solution of what at 60oC hindered the transformation of the CS of aspartic acid to the RCS of aspartic acid up to 8 h. The succinic acid could stablize the metastable conglomerate generated in water by rapid acid-base reactions and the addition of an antisolvent crystallion with the temperature drop of racemic solution of aspartic acid. The presence of l-aspartic acid seeds could alter the crystallization pathways to produce conglomerate aspartic acid solids. Therefore, crystallization of enantiomers of aspartic acid by preferential crystallization could have been very common and easy to be carried out in a large scale on the primitive earth.
Finally, we used the electrical conductance (1) to prove the existence of different types of molecular interactions in the CS and the RCS of aspartic acid, (2) to study the effects of the seeds of l-aspartic acid in the aqueous solution of racemic aspartic acid, and (3) to monitor the overall kinetics of crystallization from the acetone-water solution. The fundamental kinetic (nucleation and crystal growth) and thermodynamic (Gibbs free energy) parameters were then estimated.
關鍵字(中) ★ 生命的起源與天門冬氨酸 關鍵字(英) ★ The Origin of Life and Aspartic Acid
論文目次 摘要 ................................................................................................................................... i
Acknowledgement ........................................................................................................... v
Table of Contents ............................................................................................................ vi
List of Tables ................................................................................................................... xi
List of Figures ............................................................................................................... xiii
Chaper 1 Executive Summary ....................................................................................... 1
1.1 Introduction ............................................................................................... 1
1.2 Brief Introduction of Racemic Species...................................................... 5
1.3 Conceptual Framework ........................................................................... 10
1.4 References ............................................................................................... 12
Chaper 2 Analytical Instruments ................................................................................. 16
2.1 Introduction ............................................................................................. 16
2.2 Microscopic Methods .............................................................................. 19
2.2.1 Optical Microscopy (OM) ......................................................... 19
2.2.2 Low Vacuum Scanning Electron Microscopy (LVSEM) .......... 21
2.3 Thermal Methods..................................................................................... 25
2.3.1 Differential Scanning Calorimetry (DSC) & Low Temperature Differential Scanning Calorimetry (LTDSC) ............................ 25
2.3.2 Thermogravimetric Analysis (TGA) ......................................... 29
2.4 Spectroscopy Analysis Methods .............................................................. 31
2.4.1 Fourier Transform Infrared (FT-IR) Spectroscopy .................... 31
2.5 Crystallographic Analysis Methods ......................................................... 33
2.5.1 Powder X-ray Diffraction (PXRD) ........................................... 33
2.5.2 Single-Crystal X-Ray Diffractometer (SXD) ............................ 35
2.6 Process analytical technology.................................................................. 39
2.6.1 Conductivity meter .................................................................... 39
2.7 Conclusions ............................................................................................. 42
2.8 References ............................................................................................... 43
Chaper 3 Solubility, Form Space, Phase Solubility Diagram, and Crystal Habit of D-, L-, and DL-Aspartic Acid by Initial Solvent-Screening ...................................... 47
3.1 Introduction ............................................................................................. 47
3.1.1 Solubility ................................................................................... 48
3.1.2 Antisolvent Method ................................................................... 50
3.1.3 Crystal Habit ............................................................................. 50
3.1.4 Polymorphism ........................................................................... 51
3.2 Materials .................................................................................................. 52
3.2.1 Materials .................................................................................... 52
3.2.2 Solvents ..................................................................................... 60
3.3 Experimental Section............................................................................... 64
3.3.1 Solubility Determination and Initial Solvent Screening ........... 64
3.3.2 Phase Solubility Diagram .......................................................... 66
3.3.3 Analytical measurements .......................................................... 67
3.4 Results and Discussion ............................................................................ 69
3.4.1 Solubility ................................................................................... 69
3.4.2 Phase Solubility Diagram .......................................................... 73
3.4.3 Crystal habits ............................................................................. 76
3.4.4 Polymorphism ........................................................................... 82
3.5 Conclusions ............................................................................................. 83
3.6 References ............................................................................................... 84
Chaper 4 The Origin of Life and the Crystallization of Aspartic Acid in Water ........................................................................................................................................ 89
4.1 Introduction ............................................................................................. 89
4.2 Materials .................................................................................................. 93
4.2.1 Chemicals .................................................................................. 93
4.2.2 Organic Solvents ....................................................................... 95
4.3 Experimental Sections ............................................................................. 96
4.3.1 Evaporated Method with Mixture of L-Enantiomeric Solution and D-Enantiomeric Solution and ............................................. 97
4.3.2 The Seeding Experiments .......................................................... 98
4.3.3 Freezing Point by LT - DSC and Crystallization Kinetics by Electrical Conductance .............................................................. 99
4.3.4 Acid-Base Reactions I and Acid-Base Reactions II ................ 100
4.3.5 Antisolvent Addition with Temperature Drop ........................ 100
4.3.6 Evaporation of Aqueous Solutions Prepared from a Mixture of Conglomerate Solids and Racemic Solids. ............................. 101
4.3.7 Crystallization Kinetics of Aspartic acid in Acetone-Water Solution ................................................................................... 102
4.3.8 Instrument Analytical .............................................................. 104
4.4 Results and Discussion .......................................................................... 107
4.4.1 Evaporation, Transformation of a Conglomerate Solution to a Racemic Compound Solution and Seeding Experiment ......... 107
4.4.2 Acid-Base Reaction and Antisolvent Crystallization with Temperature Drop ................................................................... 122
4.4.3 Evaporated from Solutions of Mixture of Conglomerate and Racemic Compound. ............................................................... 128
4.4.4 Crystallization Kinetics of aspartic acid in Acetone-Water Solution ................................................................................... 131
4.5 Conclusions ........................................................................................... 152
4.6 References ............................................................................................. 154
Chaper 5 Conclusions and Future works .................................................................. 163
5.1 Initial Solvent Screening ....................................................................... 163
5.2 The Crystallization of Aspartic acid in Water........................................ 163
5.3 Future Work ........................................................................................... 164
參考文獻 1 C. F. Chyba, “Origins of Life: A Left-Handed Solar System?” Nature, 389 (6648), 234–235 (1997).
2 L. Addadi, and S. Weiner, “Biomineralization: Crystals, Asymmetry, and Life,” Nature, 411 (6839), 753–755 (2001).
3 S. L. Miller, “A Production of Amino Acids Under Possible Primitive Earth Conditions,”
Science, 117 (3046), 528–529 (1953).
4 S. F. Mason, “Origins of Biomolecular Handedness,” Nature, 311 (5981), 19–23 (1984).
5 D. K. Kondepudi, R. J. Kaufman, and N. Singh, “Chiral Symmetry Breaking in Sodium Chlorate Crystallization,” Science, 250 (4983), 975–976 (1990).
6 Y. Song, W. Chen, and X. Chen, “Ultrasonic Field Induced Chiral Symmetry Breaking of NaClO3 Crystallization,” Cryst. Growth Des., 8 (5), 1448–1450 (2008).
7 P. Cintas, “Chirality of Living Systems: A Helping Hand from Crystals and Oligopeptides,” Angew. Chem., Int. Ed., 41 (7), 1139–1145 (2002).
8 R. M. Hazen, T. R. Filley, and G. A. Goodfriend, ”Selective Adsorption of L- and D-Amino Acids on Calcite: Implications for Biochemical Homochirality,” Proc. Natl. Acad. Sci. U.S.A., 98 (10), 5487–5490 (2001) .
9 K. Kinbara, Y. Tagawa, and K. Saigo, “Probability of Spontaneously Resolvable Conglomerates for Racemic Acid/Racemic Amine Salts Predicted on the Basis of the Results of Diastereomeric Resolutions,” Tetrahedron- Asymmetry, 12 (21), 2927– 2930 (2001).
10 L. P. Bereczki, E. alovics, P. Bombicz, G. Pokol, E. Fogassy, and Marthi, K. “Optical Resolution of N-Formylphenylalanine Suceeds by Crystal Growth Rate Differences of Diastereomeric Salts,” Tetrahedron- Asymmetry, 18 (2), 260–264 (2007).
11 K. Soai, S. Osanai, K. Kadowaki, S. Yonekubo, T. Shibata, and I. Sato, “D- and L-Quartz-Promoted Highly Enantioselective Synthesis of a Chiral Organic Compound,” J. Am. Chem. Soc., 121 (48), 11235–11236 (1999).
12 M. P. Bernstein, J. P. Dworkin, S. A. Sandford, G. W. Cooper, and L. J. Allamandola, “Racemic Amino Acids from the Ultraviolet Photolysis of Interstellar Ice Analogues” Nature, 416 (6879), 401– 403 (2002).
13 T. Kawasaki, K. Jo, H. Igarashi, I. Sato, M. Nagano, K. H. Koshima, and K. Soai, “Asymmetric Amplification Using Chiral Cocrystals Formed from Achiral Organic Molecules by Asymmetric Autocatalysis,” Angew. Chem., 117 (18), 2834–2837 (2005).
14 T. Kawasaki, K. Suzuki, Y. Hakoda, and K. Soai, “Achiral Nucleobase Cytosine Acts as an Origin of Homochirality of Biomolecules in Conjunction with Asymmetric Autocatalysis,” Angew. Chem., Int. Ed., 47(3), 496–499 (2008).
15 K. Klussmann, T. Izumi, A. J. P. White, A. Armstrong, and D. G. Blackmond,“Emergence of Solution-Phase Homochirality via Crystal Engineering of Amino Acids,” J. Am. Chem. Soc., 129 (24), 7657–7660 (2007).
17 C. Viedma, J. E. Ortiz, T. Torres, T. Izumi, and D. G. Blackmond, “Evolution of Solid Phase Homochirality for a Proteinogenic Amino Acid” J. Am. Chem. Soc., 130 (46), 15274–15275 (2008).
18 S. Zhang, “Emerging Biological Materials Through Molecular Self-Assembly,” Biotech.
Adv. 20(5), 321-339 (2002).
19 M. C. Gohel, “Overview on Chirality and Applications of Stereo-Selective Dissolution
Testing in the Formulation and Development Work,” Dissolution. Technologies. 10(3), 16-20
(2003).
20 G. G. Z. Zhang, S. Y. L. Paspal, R. Suryanarayanan, and D. J. W. Grant, “Racemic
Compound of Species of Sodium Ibuprofen: Characterization and Polymorphic Relationships,” J. Pharm. Sci. 92(7), 1356-1366 (2003).
21 Y. Wang, and A. M. Chen, “Enantioenrichment by Crystallization” Org. Process Res. 12
(2), 282–290 (2008).
T. R. Kommuru, M. A. Khan, and I. K. Reddy, “Racemate and Enantiomers of Ketoprofen:
Phase Diagram, Thermodynamic Studies, Skin Permeability, and Use of Chiral Permeation
Enhancers,” J. Pharm. Sci. 87(7), 833-840 (1998).
23 J. Jacques, A. Collet, and S. H. Wilen, “Solution Properties of Enantiomers and Their Mixtures,”Ch 3 of Enantiomers, Racemates, and Resolutions (John Wiley & Sons, Inc. New York, 1981), pp. 201-207.
24 H. Lorenz, A. Perlberg , D. Sapoundjiev, M. P. Elsner , and A. Seidel-Morgenstern, “Crystallization of Enantiomers” Chem.Eng. Prog., 45 (10), 863-873 (2006).
1. D. L. Pavia, G. M. Lampman, and G. S. Kriz, “Infrared Spectroscopy,” Chapter 2 of Introduction to Spectroscopy, Third Edition, (Brooks/COLE Thomson Learning, Mississippi, USA, 2001), pp. 13-24.
2. R. E. Reed-hill, “Analytical Methods,” Chapter 2 of Physical Metallurgy Principles, Third Edition, (PWS Publishing Company, Boston, USA, 1994), pp. 53-60.
3. T. C. Kriss, V. M. Kriss, and M.Vesna, “History of the Operating Microscope: From Magnifying Glass to Microneurosurgery,” Neurosurgery, 42(4), 899-907 (1998).
4 http://www.cella.cn/jxck/02.ppt, “Methods and Techniques for Cell Biology”
5. D. A. Skoog, F. J. Holler, and T. A. Nieman, “Surface Characterization by Spectroscopy and Microscopy,” Chapter 21 of Principles of Instrumental Analysis, 5th ed., (Thomson Learning, Mississippi, USA, 2001), pp. 549-553.
6. R. E. Reed-hill, “Analytical Methods,” Chapter 2 of Physical Metallurgy Principles, Third Edition, (PWS Publishing Company, Boston, USA, 1994), pp. 53-60.
7. E. V. Boldyerva, V. A. Drebushchak, I. E. Paukov, Y. A. Kovalevskaya, and T. N. Drebushchak, “DSC and Adiabatic Calorimetry Study of The Polymorphs of Paracetamol,” J. Them. Anal. Calor., 77(2), 607-623 (2004).
8. S. D. Clas, C. R. Dalton, and B. C. Hancock, “Differential Scanning Calorimetry: Applications in Drug Development,” Pharm. Sci. Technolo. Today, 2(8), 311-320 (1999).
9. B. R. Spong, C. P. Price, A. Jayasankar, A. J. Matzger, and N. R. Horndo, “General Principles of Pharmaceutical Solid Polymorphism a Supramolecular Perspective,” Adv. Drug Del. Rev., 56(3), 241-274 (2004).
10. D. Giron, “Thermal Analysis, and Calorimetric Methods in The Characterisation of Polymorphs and Solvates,” Thermochim. Acta, 245(2), 1-59 (1995).
11. D. A. Skoog, F. J. Holler, and T. A. Nieman, “Thermal Methods,” Chapter 31 of Principles of Instrumental Analysis, 5thed., (Thomson Learning, Mississippi, USA, 2001), pp. 798-801.
12 D. L. Pavia, G. M. Lampman, and G. S. Kriz, Introduction to Spectroscopy: A Guide for students of Organic Chemistry, 3rded., (Thomson Learning, Inc., state USA, 2001), pp.45-68.
13 B. Hinterstoisser, and L. Salmén, “Two-dimensional Step-scan FTIR : A Tool to Unravel the OH-Valency-Range of the Spectrum of Cellulose I,” Cell., 6(3), 251-263 (1999)
14 A. Bauer-Brandl, “Polymorphic Transitions of Cimetidine during Manufacture of Solid Dosage Forms,” Int. J. Pharm., 140(2), 195-206 (1996).
15 N. S. Murthy, and F. Reidinger, “X-ray analysis,” Chapter 7 in Matericals characterization and chemical analysis, J. P. Sibilia, (Wiley-Vch , New York, USA, 1996) pp. 143-149.
16 M. Davidovich, J. Dimarco, J. Z. Gougoutas, R. P. Scaringe, I. Vitez, S. Yin, “Detection of Polymorphic Artifacts in Powder X-ray Diffraction Determination,” Am. Pharm. Rev., 138 (1), 1-2 (1996).
17 T. C. Huang, “Automatic X-ray Single Crystal Structure Analysis System for Small molecule,” The Rigaku J., 21(2), 43-46 (2004)
18. R. Potter, “An X-ray Single-Crystal Linear Diffractometer,” J. Sci. Instrum., 39(7), 379-380 (1962).
19 S. L. Wang, Y. J. Fu, W. C. Zhang, X. Sun, and Z. S. Gao, “In-line Bulk Concentration Measurement by Method of Conductivity in Industrial KDP Crystal Growth form Aqueous Solution,” Cryst. Res. Technol., 35(9), 1027-1034 (2000).
20 P. A. Corrigan, V. E. Lyons, G. D. Baranes, and F. G. Hall, “Conductivity Measurements Monitor Waste Streams,” Envir. Sci. Tech. 4(2): 116-121 (1970).
21 O. D. Linnikov, “Spontaneous Crystallization of Potassium Chloride from Aqueous and Aqueous-Ethanol Solutions & Part I: Kinetics and Mechanism of the Crystallization process,” Cryst. Res. Technol., 39(6), 516-528 (2004).
22 I. Kabdasli, S. A. Parsons, and O. Tünay, “Effect of Major Ions on Induction Time of Struvite Precipitation,” CCACAA., 79(2), 243-251 (2006).
23 L. X. Yu, R. A. Lionberger, A. S. Raw, R. D‟Costa, H. Wu, and A. S. Hussain, “Application of Process Analytical Technology to Crystallization Processes,” Adv. Drug. Del. Rev., 56(3), 349-369 (2004)
24 J. Workman, Jr., D. J. Veltkamp, S. Doherty, B. B. Anderson, K. E. Creasy, M. Koch, J. F. Tatera, A. L. Robinson, L. Bond, L. W. Burgess, G. N. Bokerman, A. H. Uiiman, G. P. Darsey, F. Mozayeni, J. A. Bamberger, and M. S. Greenwood, “Process Analytical Chemistry,” Anal.
46
Chem., 71(12), 121R-180R (1999)
1 K. J. Roberts, R. Docherty, P. Bennema, and L . A. M J Jetten, “The Importance of
Considering Growth-induced Conformational Change in Predicting the Crystal Habit of
Benzophenone,” J. Phys. D:Appl. Phys. 26 (B8), B7-B21 (1993).
2 T. Threfall, “Crystallization of Polymorphs: Thermodynamic Insight Into the Role of
Solvent,” Org. Process Res. Dev. 4 (5), 384-390 (2000).
3 S. Gracin, and A. C. Rasmuson, “Solubility of Phenylacetic acid, P-hydroxyphenylacetic
acid, P-aminophenylacetic Acid, P-hydroxybenzoic Acid, and Ibuprofen in Pure Solvents,” J.
Chem. Eng. Data. 47 (6), 1379-1383 (2002).
4 T. S. Kim, D. H. Kim, H. J. Im, K. Shimada, R. Kawajiri, T. Okubo, H. Murata, and T.
Mitani, “Improved Lifetime of an OLED Using Aluminum (III) Tris (8-hydroxyquinolate),”
Sci. Tech. Adv. Matt. 5 (3), 331–337 (2004).
5 A. Chimmalgi, D. J. Hwang, and C. P. Grigoropoulos, “Nanoscale Rapid Melting and
Crystallization of Semiconductor Thin Films,” Nanoletters 5 (10), 1924-1930 (2005).
6 K.J. Kim, H.S. Kim, “Coating of Energetic Materials Using Crystallization,” Chem. Eng.
Technol. 28 (8), 946 – 951 (2005).
7 H. Lorenz, A. Perlberg , D. Sapoundjiev, M. P. Elsner , and A. Seidel-Morgenstern“Crystallization of Enantiomers” Chem.Eng. Prog., 45 (10), 863-873 (2006).
8 Y. Wang, and A. M. Chen, “Enantioenrichment by Crystallization” Org. Process Res. 12 (2),
282–290 (2008).
9 T. Lee, C. S. Kuo, and Y. H. Chen, “Solubility, Polymorphism, Crystallinity, and Crystal
Habit of Acetaminophen and Ibuprofen by Initial Solvent Screening,” Pharm. Tech., 30 (10),
72-92 (2006).
10 T. Lee, Y. H. Chen, and C. W. Zhang, “Solubility, Polymorphism, Crystallinity, Crystal
Habit, and Drying Scheme of (R, S)-(±)-Sodium Ibuprofen Dehydrate,” Pharm. Tech., 31 (6),
72-87 (2007).
11 Y. Iitaka, “The Crystal Structure of -Glycine,” Acta Crystallogr. 14 (Part 1),1-10 (1961).
12 S. Hirokawa, “A New Modification of L-Glutamic Acid and its Crystal Structure,” Acta
Crystallogr. 8 (Part 10), 637-641(1955).
13 M. Kitamura, H. Furukawa, and M. Asaeda,“Solvent Effect of Ethanol on Crystallization and Growth Process of L-Histidine Polymorph,” J. Cryst. Growth, 141(1-1), 193-199 (1994).
14 T. Lee, Y. C. Su, H. J. Hou, and H. Y. Hsieh, “Initial Solvent Screening of Carbamazepine,
Cimetidine, and Phenylbutazone: Part 1 of 2,” Pharm. Tech., 33 (6), 54-61 (2009).
15 T. Lee, Y. C. Su, H. J. Hou, and H. Y. Hsieh, “Initial Solvent Screening of Carbamazepine,Cimetidine, and Phenylbutazone: Part 2 of 2,” Pharm. Tech., 33 (5), 62-72 (2009).
16 R.C. Stevens, “High-Throughput Protein Crystallization” Curr. Opin. Struct. Bio., 10 (5),
558-563 (2000).
17 S. L. Morissette, O. Almarsson, M. L. Peterson, J. F. Remenar, M. J. Read, A. V. Lemmo, S. Ellis, M. J. Cima, and C. R. Gardner, “High-Throughput Crystallization: Polymorphs, Salts Co-Crystals and Solvates of Pharmaceutical Solids,” Adv. Drug Del. Rev., 56 (3), 275-300 (2004).
18 T. Detoisien, M. Forite, P. Taulelle, J.L. Teston, D. Colson, J. P. Klein, and S. Veesler, “A
Rapid Method for Screening Crystallization Conditions and Phases of an Active
Pharmaceutical Ingredient,” Org. Process Res., 13 (6), 1338–1342 (2009).
19 C. Wibowo, W. Chang, and K. M. Ng, “Design of Integrated Crystallization Systems,”
AIChE. J., 47 (11), 2474-2492 (2001).
20 H. G. Brittain, and D. J. W. Grant, “Effect of Polymorphism” Ch 7 in Polymorphism in Pharmaceutical Solids,” Ed. by H. G. Brttain, (Marcel Dekker, New York, 1999) pp. 279-330.
21 C. Reichardt, Chapter 2: “Solute-Solvent Interactions” Ch 2 in Solvents and Solvent Effects in Organic Chemistry, Ed. by C. Reichardt, (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2006) pp. 5-46.
22 T. Lee, and M. S. Lin, “Sublimation Point Depression of Tris(8-hydroxyquinoline) aluminum(III) (Alq3) by Crystal Engineering,” J. Crys. Growth, 7(9), 1803-1810 (2007).
23 C. J. Price, “Take Some Solid Steps to Improve Crystallization,” Chem. Eng. Prog., 93 (9), 34-43 (1997).
24 J. W. Mullin, “Crystal Habit Modification.”, Chapter 6.4 in Crystallization, 3rd ed. (Butterworth-Heinemann, Jordan Hill, UK, 1997) pp. 93, 248-250.
25 P. D. Martino, M. Beccerica, E. Joiris, G. F. Palmieri, A. Gayot, and S. Martelli, “Influence of Crystal Habit on the Compression and Densification Mechanism of Ibuprofen,” J. Crys. Growth, 243 (2), 345-355 (2002).
26 D. Winn, and M. F. Doherty, “A New Technique for Predicting the Shape of Solution-Grown Organic Crystals”, AlChE J., 44 (11), 2501-2514 (1998).
27 A. K. Tiwary, “Modification of Crystal Habit and its Role in Dosage Form Performance,” Drug Dev. Ind. Pharm., 27(7), 699–709 (2001).
28 R. Hilfiker, F. Blatter, and M. V. Raumer, “Relevance of Solid-State Properties for Pharmaceutical Products.” Ch 1 in Polymorphism in Pharmaceutical Industry. R. Hilfiker, (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2006) pp. 1-19. 29 F. Rodante, G. Marrosu, and G. Catalani, “Thermal Analysis of Some α-Amino Acids with Similar Structures ” Thermochimica. Acta 194 (3), 197-213 ( 1992 ).
30 J. T. López Navarrete, V. Hernández, and F. J. Ramírez, “IR and Raman Spectra of L-Aspartic Acid and Isotopic Derivatives,” Biopolymers, 34 (8), 1065-1077 ( 1994).
31 M.J. Jamieson, Sharon J. Cooper, A. F. Miller, and S. A. Holt, “Neutron Reflectivity and Rxternal Reflection FTIR Studies of DL-Aspartic Acid Crystallization Beneath Nylon 6 Spread Films,” Langmuir, 20 (9), 3593- 3600 (2004).
32 N. G. Anderson, Practical Process Research & Development (Academic Press, New York, NY, 2000), pp. 81–111.
33 A. Bauer-Brandl, “Polymorphic Transitions of Cimetidine During Manufacture of Solid Dosage Forms,” Int. J. Pharm., 140 (2), 195-206 (1996).
34 J. Jacques, A. Collet, and S. H. Wilen, “Solution Properties of Enantiomers and Their Mixtures,”Ch 3 of Enantiomers, Racemates, and Resolutions (John Wiley & Sons, Inc. New York, 1981), pp. 182.
35 Hollenbeck, R. G. “Determination of Differential Heat of Solution in Real Solutions from Variation in Solubility with Temperature,” J. Pharm. Sci., 69 (10), 1241–1242. (1980).
36 Z. Berkovitch-Yellin, J. Van Mil, L. Addadi, M. Idelson, M. Lahav, and L. Leiserowitz, “Crystal Morphology Engineering by"Tailor-Made" Inhibitors; A New Probe to Fine Intermolecular Interactions,” J. Am. Chem. Soc., 107 (11), 3111-3122 (1985).
1 C. F. Chyba, “Origins of Life: A Left-Handed Solar System?” Nature, 389 (6648), 234–235 (1997).
2 L. Addadi, and S. Weiner, “Biomineralization: Crystals, Asymmetry, and Life,” Nature, 411 (6839), 753–755 (2001).
3 D. W. Deamer, R. Dick, W. Thiemann, and M. Shinitzky, “Intrinsic Asymmetries of Amino Acid Enantiomers and Their Peptides: A Possible Role in the Origin of Biochirality,” Chirality, 19 (10), 751–763 (2007).
4 Y. Wang and A. M. Chen, “Enantioenrichment by Crystallization,” Org. Process Res., 12 (2), 282–290 (2008).
5 S. L. Miller, “A Production of Amino Acids Under Possible Primitive Earth Conditions,” Science, 117 (3046), 528–529 (1953).
6 S. W. Fox, “Thermal Synthesis of Amino Acids and the Origin of Life,” Geochim. Cosmochim. Acta, 59 (6), 1213–1214 (1995).
7 S. F. Mason, “Origins of Biomolecular Handedness,” Nature, 311 (5981), 19–23 (1984).
8 D. K. Kondepudi, R. J. Kaufman, and N. Singh, “Chiral Symmetry Breaking in Sodium Chlorate Crystallization,” Science, 250 (4983), 975–976 (1990).
9 Y. Song, W. Chen, and X. Chen, “Ultrasonic Field Induced Chiral Symmtry Breaking of
NaClO3 Crystallization,” Cryst. Growth Des., 8 (5), 1448–1450 (2008).
10 P. Cintas, “Chirality of Living Systems: A Helping Hand from Crystals and Oligopeptides,” Angew. Chem., Int. Ed., 41 (7), 1139–1145 (2002).
11 R. M. Hazen, T. R. Filley, and G. A. Goodfriend, ”Selective Adsorption of L- and D-Amino Acids on Calcite: Implications for Biochemical Homochirality,” Proc. Natl. Acad. Sci. U.S.A., 98 (10), 5487–5490 (2001) .
12 K. Kinbara, Y. Tagawa, and K. Saigo, “Probability of Spontaneously Resolvable Conglomerates for Racemic Acid/Racemic Amine Salts Predicted on the Basis of the Results of Diastereomeric Resolutions,” Tetrahedron: Asymmetry, 12 (21), 2927– 2930 (2001).
13 L. P. Bereczki, E. alovics, P. Bombicz, G. Pokol, E. Fogassy, and Marthi, K. “Optical Resolution of N-Formylphenylalanine Suceeds by Crystal Growth Rate Differences of Diastereomeric Salts,” Tetrahedron: Asymmetry, 18 (2), 260–264 (2007).
14 K. Soai, S. Osanai, K. Kadowaki, S. Yonekubo, T. Shibata, and I. Sato, “D- and L-Quartz-Promoted Highly Enantioselective Synthesis of a Chiral Organic Compound,” J. Am. Chem. Soc., 121 (48), 11235–11236 (1999).
15 M. P. Bernstein, J. P. Dworkin, S. A. Sandford, G. W. Cooper, and L. J. Allamandola, “Racemic Amino Acids from the Ultraviolet Photolysis of Interstellar Ice Analogues” Nature, 416 (6879), 401– 403 (2002).
16 T. Kawasaki, K. Jo, H. Igarashi, I. Sato, M. Nagano, K. H. Koshima, and K. Soai, “Asymmetric Amplification Using Chiral Cocrystals Formed from Achiral Organic Molecules by Asymmetric Autocatalysis,” Angew. Chem., 117 (18), 2834–2837 (2005).
17 T. Kawasaki, K. Suzuki, Y. Hakoda, and K. Soai, “Achiral Nucleobase Cytosine Acts as an Origin of Homochirality of Biomolecules in Conjunction with Asymmetric Autocatalysis,” Angew. Chem., Int. Ed., 47(3), 496–499 (2008).
18 K. Klussmann, T. Izumi, A. J. P. White, A. Armstrong, and D. G. Blackmond, “Emergence of Solution-Phase Homochirality via Crystal Engineering of Amino Acids,” J. Am. Chem. Soc., 129 (24), 7657–7660 (2007).
19 S. I. Goldberg, “Enantiomeric Enrichment on the Prebiotic Earth,” Origins Life Evol. Biospheres, 37 (1), 55–60 (2007).
20 C. Viedma, J. E. Ortiz, T. Torres, T. Izumi, and D. G. Blackmond, “Evolution of Solid Phase Homochirality for a Proteinogenic Amino Acid” J. Am. Chem. Soc., 130 (46), 15274–15275 (2008).
21 J. Huang, and L. Yu, “Effect of Molecular Chirality on Racemate Stability: R-Amino Acids with Nonpolar R Groups,” J. Am. Chem. Soc., 128 (6), 1873–1878 (2006).
22 D. Musumeci, C.A. Hunter, and J. F. McCabe, “Solvent Effects on Acridine Polymorphism,” Cryst. Growth Des., 10 (4), 1661–1664 (2010).
23 C. Viedma, “Enantiomeric Crystallization from DL-Aspartic and DL-Glutamic Acids: Implications for Biomolecular Chirality in the Origin of Life,” Origins Life Evol. Biospheres, 31 (6), 501–509 (2001).
24 R. V. Eck, “Evolution of the Structure of Ferredoxin Based on Living Relics of Primitive
Amino Acid Sequences,”Science, 152(3720), 363–366 (1966).
25 A. Bauer-Brandl, “Polymorphic Transitions of Cimetidine During Manufacture of Solid Dosage Forms,” Int. J. Pharm., 140 (2), 195-206 (1996).
26 J. T. López Navarrete, V. Hernández, and F. J. Ramírez “ IR and Raman Spectra of L-Aspartic Acid and Isotopic Derivatives,” Biopolymers, 34 (8), 1065-1077 ( 1994). 27 M.J. Jamieson, Sharon J. Cooper, A. F. Miller, and S. A. Holt, “Neutron Reflectivity and Rxternal Reflection FTIR Studies of DL-Aspartic Acid Crystallization beneath Nylon 6 Spread Films,” Langmuir, 20 (9), 3593- 3600 (2004).
28 S. Kumar, A. K. Rai, S. B. Rai, D. K. Rai, A. N. Singh, and V. B. Singh, ” Infrared, Raman and Electronic Spectra of Alanine: A Comparison with ab Initio Calculation,” J. Mol. Struct., 791(1-3), 23–29 (2006).
29 T. Threlfall, “Structural and Thermodynamic Explanations of Ostwald's Rule,” Org. Proc. Res. Dev., 7 (6), 1017–1027 (2003).
30 W. A. Bonner, “The Origin and Amplication of Biomolecular Chirality,” Origins Life Evol. Biospheres., 21 (12), 59–111, (1991).
31 J. T. Huang, C. Stringfellow, and L. Yu, “Glycine Exists Mainly as Monomers, Not Dimers, in Supersaturated Aqueous Solutions: Implications for Understanding Its Crystallization and Polymorphism,” J. Am. Chem. Soc., 130 (42), 13973–13980 (2008).
32 T. Lee, Y. H. Chen, and Y. W. Wang, “Effects of Homochiral Molecules of (S)-(+)-Ibuprofen and (S)-(-)-Sodium Ibuprofen Dihydrate on the Crystallization Kinetics of Racemic (R,S)-(±)- Sodium Ibuprofen Dihydrate,” Cryst. Growth Des., 8 (2), 415–426 (2008).
33 A. H. Janssen, H. Talsma, M. J. Steenbergen, and K. P. Jong, “Homogeneous Nucleation of Water in Mesoporous Zeolite Cavities,” Langmuir, 20 (1), 41–45 (2004).
34 C. R. Keener, G. D. Fullerton, I. L. Cameron, and J. Xiong, “Solution Nonideality Related to Solute Molecular Characteristics of Amino Acids,” Biophys. J., 68 (1), 291–302 (1995).
35 S. H. Druot, and G. Coquerel, “How Far Can an Unstable Racemic Compound Affect the Performance of Preferential Crystallization? Example with (R)- and (S)-R-methylbenzylamine chloroacetate,” J. Chem. Soc., Perkin Trans., 2 (10), 2211–2220 (1998).
36 M. P. Elsner, G. Ziomek, and A. S. Morgenstern, “Efficient Separation of Enantiomers by Preferential Crystallization in Two Coupled Vessels,” AICHE J., 55 (3), 640–649 (2009).
37 J. Jacques, A. Collet, and S. H. Wilen, “Solution Properties of Enantiomers and Their Mixtures,”Ch 3 of Enantiomers, Racemates, and Resolutions (John Wiley & Sons, Inc. New York, 1981), pp. 201-207.
38 J. R. Cronin, S. Pizzarello, and D. P. Cruikshank, “Organic Matter in Carbonaceous Chondrites, Planetary Satellites, Asteroids and Comets. Meteorites and the Early Solar System, by J. F. Kerridge, and M. S. Matthews, Eds. (The University of Arizona Press, Tucson, 1998) pp. 819-857.
39 C. J. Welch, “Formation of Highly Enantioenriched Microenvironments by Stochastic Sorting of Conglomerate Crystals: A Plausible Mechanism for Generation of Enantioenrichment on the Prebiotic Earth,” Chirality, 13 (8), 425–427 (2001).
40 D. Winn, M. F. Doherty, “A New Technique for Predicting the Shape of Solution-Grown
Organic Crystals,” AICHE J., 44 (11), 2501-2514 (1998).
41 B. R. Spong, C. P. Price, A. Jayasankar, A. J. Matzger, and N. R. Hornedo, “Generalprinciples of Pharmaceutical Solid Polymorphism: A Supramolecular Perspective,” Adv. Drug. Del. Rev., 56 (3), 241-274 (2004).
42 R. Boistelle, and J. P. Astier, “Crystallizatiom Mechanisms Solution,” J. Crys. Grow. 90
(1-3), 14-30 (1988).
43 D. K. Kondepudi, and K. E. Crook, “Theory of Conglomerate Crystallization in the
Presence of Chiral Impurities,” Crys. Growth Des., 5 (6), 2173-2179 (2005).
44 M. Kitamura, “Controlling Factor of Polymorphism in Crystallization Process,” J. Cryst. Growth, 237–239 (3), 2205–2214 (2002).
45 A. Lancia, D. Musmarra, and M. Prisciandaro, “Measure Induction Period for Calcium
Sulfate Dihydrate Precipition,” AICHE J., 45 (2), 390-397 (1999).
46 B. Biscans, and C. Laguerie, “Determination of Induction Time of Lysozyme Crystals by
Laser Diffraction,” J. Phys. D: Appl. Phys., 26 (8B), 118-122 (1993).
47 H. Hu, T. Hale, X. Yang, and L. J. Wilson, “A Spectrophotometer-Based Method for
Crystallization Induction Time Period Measurement,” J. Cryst. Grow., 232 (1), 86-92 (2001).
48 B. K. Paul, and M. S. Joshi, “The Effect of Supersaturation on the Induction Period of
Potassium Dihydrogen Phosphate Crystals Grown from Aqueous Solution,” J. Phys. D: Appl.
Phys., 9 (8), 1253-1256 (1976).
49 G. Arunmozhi, E. D. M. Gomes, and S. Gansamorrthy, “Growth Kinetics of Zinc(tris)
Thiourea Sulphate (ZTS) Crystals,” Cryst. Res. Technol., 39(5): 408-413 (2004).
50 R. C. Kelly, and N. Rodrgíuez-Hornedo, “Solvent Effects on the Crystallization and
Preferential Nucleation of Carbamazepine Anhydrous Polymorphs: A Molecular Recognition
Perspective,” Org. Process Res. Dev., 13 (6), 1291-1300 (2009).
51 J. Anwar, P. K. Boateng, R. Tamaki, and S. Odedra, “ Mode of Action and Design Rules for Additives That Modulate Crystal Nucleation,” Angew. Chem. Int. Ed. Engl., 48 (9) 1596-1600 (2009).
52 R. Siddheswaran, R. Sankar, M. Rathnakumari, R. Jayavel, P. Murugakoothan, and P.
Sureshkemar, “Nucleation, Growth and Characterization Studies of a Nonlinear Optical Crystal-tris Allylthiourea Cadmium Chloride (ATCC),” Laser Phys. Lett., 3 (12): 588-593
(2006).
53 R. A. Granberg, and Ǻ.C. Rasmuson, “Crystal Growth Rates of Paracetamol in Mixtures of
Water + Acetone +Toluene,” AICHE J., 51 (9), 2441-2456 (2005).
54 H. E. L. Madsen, “Crystal Growth Kinetics of Copper Phosphate from Acid Solution at 37
˚C,” J. Cryst. Grow., 275 (1), e191-e196 (2005).
55 T. Kanagasekaran, M. Gunasekaran, P. Srinivasan, D. Jayaraman, R. Gopalakrishnan, and
P. Ramasamy, “Studies on Growth, Induction Period, Interfacial Energy and Metastable
Zonewidth of M-nitroaniline,” Cryst. Res. Technol., 40 (12), 1128-1133 (2005).
56 W. Wu, and G. H. Nancollas, “The Relationship between Surface Free-energy and Kinetics
in the Mineralization and Demineralization of Dental Hard Tissue,” Adv. Dent. Res., 11 (4),
566-575 (1997).
57 J.W. Mullin, “Crystallization, 3rd” Butterworth-Heinemann, Oxford, Great Britain, pp.
202-263 (1993).
58 P. Pantaraks, and A. E. Flood, “Effect of Growth Rate History on Current Crystal Growth:
a Second Look at Surface Effects on Crystal Growth Rates,” Cryst. Growth Des., 5 (1), 365-371 (2005).
59 S. Schweizer, and A. Taubert, “Polymer-Controlled, Bio-Inspired Calcium Phosphate Mineralization from Aqueous Solution,” Macromol. Biosci., 7 (9-10), 1085-1099 (2007).
60 H. Lorenz, D. Polenske, and S. Morgenstern, “Application of Preferential Crystallization to Resolve Racemic Compounds in a Hybrid Process,” Chirality, 18 (10), 828–840 (2006).
61 L. Addadi, S. Weinstein, E. Gati, I. Weissbuch, and M. Lahav, “Resolution of Conglomerates with the Assistance of Tailor-made Impurities. Generality and Mechanistic Aspects of the Rule of Reversal, A New Method for assignment of Absolute Configuration,” J. Am. Chem. Soc., 104 (17), 4610–4617 (1982).
指導教授 李度(Tu Lee) 審核日期 2010-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明