博碩士論文 973204017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.230.154.160
姓名 張正杰(Cheng-Chieh Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
(Influence of surface and internal atomic arrangement of sapphire substrate on de-wetting behavior of Pt film)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用
★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究
★ 含銅鎳之錫薄膜線之電致遷移研究★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究
★ 電遷移誘發銅墊層消耗動力學之研究★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究
★ 錫鎳覆晶接點之電遷移研究★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響
★ 覆晶凸塊封裝之兩界面反應交互作用研究★ 金矽及金錫晶圓鍵合技術應用在發光二極體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文研究主題為Pt薄膜在(0001) GaN和(0001) sapphire基材上自我成形(self-assemble)現象。由Pt薄膜在基材上的de-wetting行為,我們認為Pt原子在兩種基材表面上會被表面極化場極化。造成了Pt原子在基材上會受到基材內部陰,陽離子的吸引或排斥力,而有不同的穩定度。這不同穩定度的狀態使得Pt原子在(0001) GaN和(0001) sapphire基材表面de-wetting而形成規則排列的圖案。我們藉由Pt meshes 的形狀來研究Pt原子在兩種基材表面擴散會與座落位置有強的關聯性。並且經由實驗發現,此一有序排列的網狀結構狀態為一暫穩態,最終Pt薄膜在(0001) GaN和(0001) sapphire的表面上會轉換成獨立島狀以滿足最低總體自由能的要求。
在(0001) GaN和(0001) sapphire基材上所形成的Pt meshes並不會都是以symmetrical hexagonal存在,有一部分則是以asymmetrical hexagonal的存在。因此我們推論出三個關於Pt meshes成長機制,這三個成長的機制可以解釋出symmetrical hexagonal meshes轉變成asymmetrical hexagonal meshes的過程中, mesh之間存留的Pt film面積為關鍵的因素。
利用Pt在sapphire上de-wetting形成nano-scale hexagonal meshes形狀,使用高溫硫酸在具nano-scale hexagonal meshes的(0001) sapphire上進行蝕刻,進而獲得nano-cavities hexagonal pattern sapphire substrate。整個過程不需要經過繁雜的微影製程。我們將其應用在GaN藍光發光二極體,發現將GaN成長在nano-cavities pattern sapphire substrate,相對於GaN成長在regular pattern sapphire substrate,會有比較少的threading dislocations。發現晶片操作在高電流密度下不因非輻射結合產生的熱比較少。因為較少的熱效應,使得發光二極體晶片的發光效率因熱效應下降的問題不會那麼顯著。
摘要(英) This thesis shows that Pt thin film on (0001) GaN and (0001) sapphire substrates will have self-assemble phenomenon. By dewetting behavior of Pt thin film on hexagonal substrate, we tend to believe that Pt atoms are polarizing by the surface polarization field of the substrate. So, Pt atoms would be affected by the attraction and the repulsion of the internal atoms in the substrate. Then, Pt atom has different stability depending on the locations of the Pt atoms on the different surface sites of the substrate. It causes the Pt film forming the hexagonal mesh formation, which is related to the regular arrangement of Pt atoms on the GaN and sapphire surface. By observing the shape and the angle of Pt meshes, we think that the dewetting of the Pt atoms surface atoms is associated with the different locations on (0001) GaN and (0001) sapphire substrate. From experimental results, Pt meshes are meta-stable state on the GaN and the sapphire substrate. Eventually, Pt thin film transforms to islands.
We note that all meshes not only exist with symmetrical hexagons, but also, exist with asymmetrical hexagons. From the experimental results, we infer three types of mesh growth mechanisms, and three types of meshes growth mechanism could explain that the Pt area between the meshes is the key factor causing symmetrical hexagonal meshes transforming to asymmetrical hexagonal meshes.
Then, by using the nano-scale hexagonal meshes on the (0001) sapphire as hard-mask and high temperature sulfuric acid solution, nano-scale hexagonal cavities could be created on the (0001) sapphire. In this work, we use the nano-cavities hexagonal pattern sapphire substrate as the patterned sapphire wafer to fabricate. GaN-base blue light-emitting diodes. We found that the GaN film grown on the nano-cavities hexagonal patterned sapphire substrate has less threading dislocation than the GaN film grown on the regular pattern sapphire and flat sapphire substrate. Because of the lower defects in the GaN film grown on the nano-cavities hexagonal pattern sapphire substrate, the heat generated by the non-radiative combination is lower than the GaN film grown on flat sapphire substrates. Therefore, the quantum efficiency of the GaN LED on the nano-cavity PSS substrate is better than GaN LED on the regular PSS.
關鍵字(中) ★ 發光二極體
★ 白金
★ 奈米級圖案化藍寶石基板
關鍵字(英) ★ LED
★ Pt
★ nan-PSS
★ de-wetting
論文目次 Abstract (Chinese)…………………………………………………………………..I
Abstract (English)………………………………………...………………………….II
Table of contents…………………………………...……………………..IV
List of figures………………….…………………………………………………….VI
Chapter 1 Introduction of GaN-based LEDs……………………………………..1
1.1 Introduction and motivation……………………………………………………1
1.2 Background………………………………………………………………………4
Chapter 2 Experimental procedures………………………………………………6
2.1 Experimental process……………………………………………………………6
2.2 XRD and SEM results…………..…………………………………………...…..7
Chapter 3 Surface polarization field of hexagonal substrate........……………….14
3.1 Lattice structure of (111) Pt, (0001) GaN, and (0001) sapphire…...14
3.2 Surface and internal atoms arrangement of hexagonal substrate effect on de-wetting (111) plane Pt film…………………………………………………..18
3.3 Pt atomic diffusion on (0001) GaN and (0001) sapphire surface……………….25
3.4 Comparison of (111) Pt film on (0001) GaN and (0001) sapphire substrate…29
Chapter 4 Pt meshes growth type………………………………………………….34
4.1 Introduction……………………………………………………………………..34
4.2 Experimental process…………………………………………………………….34
4.3 Results and discussions………………………………………………………...35
Chapter 5 Application of nano-pattern sapphire for LED……………………..43
5.1 Introduction……………………………………………………………………..43
5.2 Experiment process……………………………………………………………..43
5.3 Experiment result and discussion……………………………………………...45
5.4 Conclusion……………………………………………………………………….49
Chapter 6 Conclusion……………………………………………………………….55
References………………………………………………………………………….57
參考文獻 1. H. K. Kim, H. G. Kim, H. Y. Kim, J. H. Ryu, J. Kang, N. Han, Periyayya Uthirakumar, and H. H. Chang., Solid-State Electronics, 54, pp. 575 (2010).
2. C. H. Chan, C. H. Hou, S. Z. Tseng, T. J. Chen, H. T. Chien, F. L. Hsiao, C. C. Lee, Y. L. Tsai, and C. C. Chen, Appl. Phys. Lett., 95, pp. 011110 (2009).
3. Carol I. H. Ashby, Christine C. Mitchell, Jung Han, Nancy A. Missert, Paula P. Provencio, David M. Follstaedt, Gregory M. Peake, and Leonardo Griego, Appl. Phys. Lett., 77, pp. 3233(2000).
4. C. F. Lin, J. J. Dai, G .M. Wang, and M.S. Lin, Appl. Phys. Express 3, pp. 092101(2010).
5. Y. K. Ee, X. H. Li, Jeff Biser, Wanjun Cao, H. M. Chan, Richard P.Vinci, and Nelson Tansu, J. Cryst. Growth, 312, pp.1311(2010).
6. Y. L. Li, E. F. Schubert, J. W. Graff, A. Osinsky, W. F. Schaff, Appl. Phys. Lett., 76, pp. 2728 (2000).
7. L. C. Chen, J. K. Ho, C. S. Jong, C. C. Chiu, K. K. Shih, F. R. Chen, J. J. Kai, and L.Chang, Appl. Phys. Lett., 76, pp. 3703 (2000).
8. J. H. Son, Y. H. Song, H. K. Yu, and J. L. Lee, Appl. Phys. Lett., 95, pp. 062108-1(2009)
9. C. L. Lin, S. J. Wang, and C. Y. Liu, Electrochemical and Solid-State Letters, 8, pp. G265-G267 (2005).
10. L. Lewis, D. P. Casey, A. V. Jeyaseelan, J. F. Rohan, and P. P. Maaskant, Appl. Phys. Lett., 92, pp. 06213-1 (2008).
11. Asha Sharma, Andreas Haldi, Peter J. Hotchkiss, Seth. R. Marder, and Bernard Kippelen1, J. Appl. Phys., 105, pp. 074511-1 (2009).
12. D. H. Kim , M. R. Park, H. J. Lee, and G. H. Lee, Applied Surface Science, 253, pp. 409(2006).
13. P. H. Chen, W. C. Lai, Li-Chi Peng, C. H. Kuo, Chi-Li Yeh, J. K. Sheu, and C. J. Tun, IEEE TRANSACTIONS ON ELECTRON DEVICES, 57, pp. 134(2010).
14. C. J. Tun, J. K. Sheu, M. L. Lee, C. C. Hu, C. K. Hsieh, and G. C. Chi, Journal of The Electrochemical Society, 153 pp. G296 (2006).
15. C. H. Kuo, C. L. Yeh, P. H. Chen, W. C. Lai, C. J. Tun, J. K. Sheu, and G. C. Chi, Electrochemical and Solid-State Letters, 11, pp. H269 (2008).
16. Hamed Akbarzadeh, Hadi Abroshan, and Gholam Abbas Parsafar, Solid State Communications, 150, pp. 254 (2010).
17. K. N. Tu, J. W. Mayer and L. C. Feldman, Electronic Thin-Film Science, Macmillan, New York, pp21(1992).
18. S. Herminghaus, K. Jacobs, K. Mecke, J. Bischof, A. Fery, M. Ibn-Elhaj and
S. Schlagowski, Science, 282, pp. 916 (1998).
19. J. Bischof, D Scherer, S. Herminghaus, and P. Leiderer, Phys. Rev. Lett., 77, pp. 1536 (1996).
20. G. M. Whitesides, and B. Grzybowski, Science 295, pp. 2418 (2002).
21. G. M. Whitesides, J. P. Mathias, and C. T. Seto, Science, 254, pp. 1312 (1991).
22. E. F. Schubert, Light emitting diodes 2ed ed., Cambridge, New York.
23. C. Zhou, J. Wu, T. J. Dhilip Kumar, Naduvalath Balakrishnan, R. C. Forrey, and H. Cheng, J. Phys. Chem. C, 111, pp.13786(2007).
24. Dmitrii A. Medvedev, Alexandra A. Rybinskaya, Roman M. Kenzhin, Alexander M. Volodin and Alexander F. Bedilo, Phys. Chem. Chem. Phys., 14, pp. 2587 (2012).
25. Aurora Costales, Anil K. Kandalam, A. Martı´n Penda´s, M. A. Blanco, J. M. Recio, and Ravindra Pandey, J. Phys. Chem. B, 104, pp. 4368 (2000).
26. Callister, William D., Materials Science and Engineering: an Introduction 7th ed., New York, NY : John Wiley & Sons, pp 704.
27. C. Y. Liu, C. C. Chang, Y. J. Chen and P.H. Chen, Scripta Materialia, 64, pp. 533 (2011).
28. C. V. Thompson, Annu. Rev. Mater. Sci. 30 pp. 159 (2000).
29. K. T. Miller and F. F. Lange, D. B. Marshall, J. Mater. Res., 5, pp. 151(1990).
30. J. J. Rha and J. K. Park, J. Appl. Phys., 82, pp. 1608 (1997).
31. DV Sridhara Rao, R Beanland, MJ Kappers, D Zhu and CJ Humphreys, J. Phys. Conf. Ser. 209, pp. 012022(2010).
32. Qi Dai, Qifeng Shan, Jaehee Cho, E. Fred Schubert, Mary H. Crawford,
Daniel D. Koleske, Min-Ho Kim, and Yongjo Park, Appl. Phys. Lett., 98, pp. 033506 (2011).
33. X. J Shao, H. Lu, D. J Chen, Z. Xie, R. Zhang, and Y. D. Zheng, Appl. Phys. Lett., 95, pp. 163504 (2009).
34. C. B. Soh, K. H. Dai, W. Liu, S. J. Chua, R. J. N. Tan, A. M. Yong, and Jack Eng, Phys. Status Solidi B, 247, pp. 1757 (2010).
35. H. Y. Lin, Y. J. Chen, C. L. Chang, X. F. Li, C. H. Kuo, S. C. Hsu, and C. Y. Liu, J. Mater. Res., 27, pp. 971(2012).
36. M. Ali, A. E. Romanov, S. Suihkonen, O. Svensk, P. T. T¨orm¨a, M. Sopanen, H.Lipsanen, M. A. Odnoblyudov, and V. E. Bougrov, J. Cryst. Growth, 315, pp. 188 (2011).
37. K. J. Byeon, E. J. Hong, H. Park, K. M. Yoon, H. D. Song, J. W. Lee, S.K. Kim, H. K. Cho, H. K. Kwon and H. Lee, Semicond. Sci. Technol. 25, pp. 035008(2010).
38. X. J. Chen, J .S. Hwang, G. Perillat-Merceroz, S. Landis, B. Martin, D. Le Si Dang, J. Eymery, and C. Durand, J. Cryst. Growth, 322, pp. 15(2011).
39. C. H. Wang, C. C. Ke, C. H. Chiu, J. C. Li, H. C. Kuo, T. C. Lu, and S. C. Wang, J. Cryst. Growth 315, pp. 242 (2011).
40. H. C. Lin, H. H. Liu, G. Y. Lee, J. I. Chyi, C. M. Lu, C. W. Chao, T. C. Wang, C. J. Chang, and Solomon W. S. Chi, Journal of The Electrochemical Society, 157, pp. H304 (2010).
41. C. M. Liu, J. C. Chen, Y.C. Huang, and H. L. Hsieh, Journal of Physics and Chemistry of Solids, 69, pp. 572 (2008).
42. J. H. Cheng, Y. C. Sermon Wu, W. C. Liao, and B. W. Lin, Appl. Phys. Lett., 96, pp. 051109 (2010).
43. T. S. Oh, A. H. Park, H. Jeong, H. Kim, T. H. Seo, Y. S. Lee, M. S. Jeong, K. J. Lee, and E. K. Suha, Journal of Alloys and Compounds, 509, pp. 2952 (2011).
44. V. Yu. Davydov, N. S. Averkiev, I. N. Goncharuk, D. K. Nelson, I. P. Nikitina,
A. S. Polkovnikov, A. N. Smirnov, M. A. Jacobson, and O. K. Semchinova, J. Appl. Phys., 82, pp. 5097 (1997).
45. S. M. Kim, H. S. Oh, J. H. Baek, K. H. Lee, G. Y. Jung, J. H. Song, H. J. Kim, B. J. Ahn, D. Yanqun, and J. H. Song, IEEE ELECTRON DEVICE LETTERS, 31, pp. 842 (2010).
46. C. Y. Lai, T. M. Hsu, W. H. Chang, K. U. Tseng, C. M. Lee, C. C. Chuo, and J. I. Chyi, J. Appl. Phys., 91, pp. 531 (2002).
47. Tetsuya Takeuchi, Christian Wetzel, Shigeo Yamaguchi, Hiromitsu Sakai, Hiroshi
Amano, Isamu Akasaki, Yawara Kaneko, Shigeru Nakagawa, Yoshifumi Yamaoka, and Norihide Yamada, Appl. Phys. Lett., 73, pp. 1691 (1998).
48. A. Keppens, W. R. Ryckaert, G. Deconinck, and P. Hanselaer, J. Appl. Phys., 104, pp. 093104-1(2008).
49. E. F. Schubert, Light emitting diodes 2ed ed., Cambridge, New York. pp. 101.
指導教授 劉正毓(Cheng-Yi Liu) 審核日期 2013-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明