博碩士論文 973204023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.116.40.177
姓名 賴家賢(Jia-sian Lai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 製作AZO透明導電膜的各種嘗試
(By different method to prepareing AZO thin film)
相關論文
★ MFI沸石奈米結晶製備研究★ 氧化鋅奈米粒子的表面改質與分散
★ 濕法製備氧化鋅摻雜鋁之透明導電膜★ 強吸水性透明奈米沸石膜
★ 奈米氧化鋅透明導電膜的製作★ 奈米結晶氧化鋯合成與分散
★ 接枝PDMS之奈米氧化鋯及其與矽膠複合膜之光學性質★ 奈米氧化鋯之表面接枝及其與壓克力樹酯複合膜之電泳沉積
★ 沸石晶核的製備與排列★ 納米級氧化鋯結晶粒子之高濃度穩定懸浮液製備
★ 聚芳香羧酸酯之合成及性質研究★ MFI沸石超微粒子之製作
★ 四氯化鈦之控制水解研究★ 具環氧基矽烷包覆奈米粒子之研究
★ 具再分散性之奈米級氧化鋯結晶粒子之合成研究★ 塑膠表面抗磨層之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 先前本實驗室發展出了以氯化鋅和氫氧化鈉於乙二醇中合成出奈米氧化鋅的方法。接著錢皇賓等人則將以此法合成出的奈米氧化鋅,參雜鋁之後,再製作透明導電膜。我則延續錢皇賓過去的做法,改變溶劑的組成後,嘗試各種塗佈的方法。整個研究大致分成兩個部份
PART I
過去錢皇賓學習M. Hilgendorff等人[1]以AZO粒子溶膠鍍膜的方法,他們先做出多孔隙的AZO薄膜,再浸入含AZO奈米粒子的溶劑中,讓這些奈米粒子藉由擴散的方法進入孔隙,將孔隙給填補起來。我延續了此一概念,先於低溫下(60℃)製做出多孔隙的氧化鋅薄膜後,再將此片薄膜放入含有[Zn]=0.1、[DMAB]=0.1的溶液中以60℃加熱四個小時,直接於孔隙中還原沉積出氧化鋅。將薄膜做的較為緻密後,再於氮氣氣氛下以500℃鍛燒兩個小時。發現無電鍍四小時後,會先得到一片片電阻為3.13x105Ω/□、電阻率為15.6Ωcm的薄膜,若先以500℃鍛燒兩個小時後,再以550℃通入Ar/H2(95/5)的氣體於0.3torr的壓力下,處理30分鐘後,可以得到片電阻為1048Ω/□、電阻率降為0.05Ωcm的薄膜。經由這樣處理的薄膜,平均總穿透率約為74.06%,平均霧度約為37.4%。是一具有高散射的薄膜。
PART II
第二個部份是將AZO粒子分散在適當的溶劑中,並調整溶劑的黏度表面張力等,將溶劑的Z值調整至9.57,並使用EPSON R290噴墨印表機噴印出寬約100μm的線條。噴印完後再使用無電鍍的方法,在線條上沉積出氧化鋅。由SEM看出來薄膜的厚度約為350nm,上半部150nm為柱狀結構的氧化鋅,下半部200nm則為粒子所堆積而成的薄膜。在未經過任何熱處理的情況下,可以得到一片電阻率約為1700Ωcm。在550nm的地方也可以達到90%之穿透率。
摘要(英) Previously, our laboratory successfully synthesized highly concentration AZO solution. And used this solution to produced a transparent conductive oxide thin film. But this process was too wasted time, we needed repeatedly to Infiltrate the film into AZO solution and annealed at high temperature to burned the organic .
so I tried to simplify this process. At first, we used dip-coating method to make a gel film and then used DI-water at 60℃to washed the ethane glycol. After washed the film, which will became a porous structure. And then we could deposited ZnO into the porous by chemical deposition followed by electrochemical growth in 0.1M zinc nitrate aqueous solutions containing 0.1M DMAB at 333 K for 4hr to filled the porous. After filled the porous, we will anneal at 500℃ for 2hr to burned out the organic. And then annealed at 300~500℃ under a hydrogen atmosphere at 0.3torr pressure for 30min. The increase in annealing temperature gave a decrease in resistivity and an increase in carrier concentration and mobility and grain size. At 500℃ hydrogen annealed, the resistivity of the ZnO:H films achieves 0.04Ωcm and carrer concentration and mobility was 2.18x1019 cm3 and 6.84 cm2 V-1 s-1.It is also found that ZnO film has a scale like surface so it has a high light scattering in the visible range.
In addition, we also try to control the AZO solution viscosity and surface tension to make the ink could used at EPSON printer. We success use this ink to printing straight line with width 100μm and a 4x2cm rectangular. After printing, we also use 60℃ DI-water to wash the straight line or the rectangular to make a porous structure. And then we also use electroless deposition process under the 0.1M Zinc nitrate and 0.1M DMAB aqueous solution. We use SEM and 4 point probe to observe the crystal morphology and conductivity. The ZnO crystals are grown in the printing film and it has a rod-type crystal structure. The transparent at 550nm are about 90% and the conductice are 1700 Ωcm
關鍵字(中) ★ 氧化鋅
★ 無電鍍
★ 噴墨
關鍵字(英) ★ ink-jet printing
★ AZO
★ electroless
論文目次 摘要 I
Abstract II
致謝 III
總目錄 IV
圖目錄 VI
表目錄 VIII
表目錄 VIII
第一章 緒論 1
1.1氧化鋅材料簡介 1
1.2奈米氧化鋅應用 2
1.3透明導電膜 2
1.3.1透明導電膜性質 2
1.3.2透明導電膜應用 3
1.3.3透明導電膜製做 4
第二章文獻回顧 8
2.1濕法塗佈AZO透明導電膜 8
2.1.1參雜對於導電性影響 8
2.1.2鍛燒氣氛對於導電性影響 9
2.2以印表機噴印透明導電膜 10
2.3無電鍍氧化鋅 11
2.4研究方向 12
第三章 實驗步驟 15
3.1 實驗用藥品 15
3.2奈米氧化鋅參雜鋁的鍍膜液製備 15
3.2.1溶膠的合成 15
3.2.3配製鍍膜液 16
3.6鍛燒程序 20
3.7所使用的儀器及參數設定 21
3.7.1熱重分析儀(TGA) 21
3.7.2四點探針 21
3.7.3UV/Vis穿透光譜 21
3.7.4掃瞄式電子顯微鏡(SEM) 21
3.7.5 高溫爐 22
3.7. 6 X射線光電子能譜分析(XPS) 22
3.7.7霍爾量測 23
3.7.8 XRD繞射儀 23
第四章 結果與討論 26
第一部份 無電鍍透明導電膜 26
4.1熱重分析(TGA) 26
4.2 鍛燒後薄膜XRD分析 26
4.3導電性分析 27
4.3.1無電鍍溫度對導電性的影響 27
4.3.2無電鍍時間對於導電性的影響 27
4.3.3 不同參雜鋁對於導電性的影響 29
4.3.4於不同溫度下以氫氣處理30分鐘 30
4.4 UV-vis光譜圖分析 31
4.4.1 UV-vis光譜圖 31
4.5表面元素分析 32
第二部份 噴墨塗佈 32
4.6噴墨塗佈 SEM分析 32
4.7 UV-vis與導電性 33
第五章 結論與建議 42
5.1 結論 42
5.2建議 42
附錄 44
參考文獻 Reference List
[1] Hilgendorff M, Spanhel L, Rothenhausler C, Muller G: From ZnO colloids to nanocrystalline highly conductive films. Journal of the Electrochemical Society 1998;145:3632-3637.
[2] Krebs FC: Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Solar Energy Materials and Solar Cells 2009;93:394-412.
[3] Szyszka B: Transparent and conductive aluminum doped zinc oxide films prepared by mid-frequency reactive magnetron sputtering. Thin Solid Films 1999;351:164-169.
[4] Isago T, Sonobe S, Ohkawa T, Sunayama H: Preparation of transparent and conductive ZnO thin films by applying a solution of zinc alkoxide. Journal of the Ceramic Society of Japan 1996;104:1052-1055.
[5] Houng B, Huang CL, Tsai SY: Effect of the pH on the growth and properties of sol-gel derived boron-doped ZnO transparent conducting thin film. Journal of Crystal Growth 2007;307:328-333.
[6] Schuler T, Aegerter MA: Optical, electrical and structural properties of sol gel ZnO : Al coatings. Thin Solid Films 1999;351:125-131.
[7] Cheong KY, Muti N, Ramanan SR: Electrical and optical studies of ZnO : Ga thin films fabricated via the sol-gel technique. Thin Solid Films 2002;410:142-146.
[8] Nunes P, Fortunato E, Tonello P, Fernandes FB, Vilarinho P, Martins R: Effect of different dopant elements on the properties of ZnO thin films. Vacuum 2002;64:281-285.
[9] Schmidt-Mende L, Manus-Driscoll JL: ZnO - nanostructures, defects, and devices. Materials Today 2007;10:40-48.
[10] Kohiki S, Nishitani M, Wada T, Hirao T: Enhanced Conductivity of Zinc-Oxide Thin-Films by Ion-Implantation of Hydrogen-Atoms. Applied Physics Letters 1994;64:2876-2878.
[11] Van de Walle CG: Hydrogen as a cause of doping in zinc oxide. Physical Review Letters 2000;85:1012-1015.
[12] Stampfl C, Van de Walle CG, Vogel D, Kruger P, Pollmann J: Native defects and impurities in InN: First-principles studies using the local-density approximation and self-interaction and relaxation-corrected pseudopotentials. Physical Review B 2000;61:R7846-R7849.
[13] Cai PF, You JB, Zhang XW, Dong JJ, Yang XL, Yin ZG, Chen NF: Enhancement of conductivity and transmittance of ZnO films by post hydrogen plasma treatment. Journal of Applied Physics 2009;105.
[14] Fromm JE: Numerical-Calculation of the Fluid-Dynamics of Drop-On-Demand Jets. Ibm Journal of Research and Development 1984;28:322-333.
[15] Reis N, Ainsley C, Derby B: Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors. Journal of Applied Physics 2005;97.
[16] Jang D, Kim D, Moon J: Influence of Fluid Physical Properties on Ink-Jet Printability. Langmuir 2009;25:2629-2635.
[17] Hong SJ, Kim YH, Han JI. Development of ultrafine indium tin oxide (ITO) nanoparticle for ink-jet printing by low-temperature synthetic method. Ieee Transactions on Nanotechnology 7[2], 172-176. 2008.
Ref Type: Abstract
[18] Lee HH, Chou KS, Huang KC: Inkjet printing of nanosized silver colloids. Nanotechnology 2005;16:2436-2441.
[19] Izaki M, Omi T: Characterization of transparent zinc oxide films prepared by electrochemical reaction. Journal of the Electrochemical Society 1997;144:1949-1952.
[20] Shinagawa T, Otomo S, Katayama JI, Izaki M: Electroless deposition of transparent conducting and < 0 0 0 1 >-oriented ZnO films from aqueous solutions. Electrochimica Acta 2007;53:1170-1174.
[21] Izaki M, Katayama J: Characterization of boron-incorporated zinc oxide film chemically prepared from an aqueous solution. Journal of the Electrochemical Society 2000;147:210-213.
[22] Luo WH, Tsai TK, Yang JC, Hsieh WM, Hsu CH, Fang JS: Enhancement in Conductivity and Transmittance of Zinc Oxide Prepared by Chemical Bath Deposition. Journal of Electronic Materials 2009;38:2264-2269.
[23] Ishizaki H, Izaki M, Ito T: Influence of (CH3)(2)NHBH3 concentration on electrical properties of electrochemically grown ZnO films. Journal of the Electrochemical Society 2001;148:C540-C543.
[24] Fujimura N, Nishihara T, Goto S, Xu JF, Ito T: Control of Preferred Orientation for Znox Films - Control of Self-Texture. Journal of Crystal Growth 1993;130:269-279.
[25] Liu WF, Du GT, Sun YF, Xu YB, Yang TP, Wang XS, Chang YC, Qiu FB: Al-doped ZnO thin films deposited by reactive frequency magnetron sputtering: H-2-induced property changes. Thin Solid Films 2007;515:3057-3060.
[26] Pei ZL, Sun C, Tan MH, Xiao JQ, Guan DH, Huang RF, Wen LS: Optical and electrical properties of direct-current magnetron sputtered ZnO : Al films. Journal of Applied Physics 2001;90:3432-3436.
[27] Horowitz G, Hajlaoui ME: Mobility in polycrystalline oligothiophene field-effect transistors dependent on grain size. Advanced Materials 2000;12:1046-1050.
[28] John F.Mouder, william F.stickle, Peter E.Sobol, Kenneth D.Bomben: Hand book of X-ray photoelectron spectroscopy. 1998.
指導教授 蔣孝澈(Anthony S. T.Chiang) 審核日期 2010-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明