博碩士論文 973204025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:76 、訪客IP:18.119.113.73
姓名 羅健修(Chien-hsiu Lo)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 位置、尺寸可調控之有序矽單晶奈米線陣列製備及其氧化行為之研究
(Fabrication of site- and size-controllable Si nanowire arrays and their oxidation behaviors)
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究成功地利用奈米球微影術結合金屬催化蝕刻法在預置圖案之(001)矽晶基材上製備出位置、尺寸及長度均可控制調變之矽晶奈米線陣列。
經SEM、TEM及選區電子繞射分析,在(001)矽晶基材上定義之Pattern I及Pattern II試片上的矽晶奈米線陣列,其線寬具有很好的均一性,與所使用之奈米球模板球徑大小相當一致,其寬度約為160 nm。利用金屬催化選擇性蝕刻所生成筆直排列之矽晶奈米線陣列均為單晶結構,且軸向方向沿著[001]方向生成。此外,以不同的反應溫度及時間可有效地控制奈米線陣列之生成長度,由阿瑞尼士方程式求得在預置圖案之(001)矽晶基材上製備矽晶奈米線的蝕刻反應活化能為68.3 (kJ/mol)。
經一系列不同試片之水滴接觸角量測觀察,具有矽晶奈米線陣列結構之試片表面會呈現較好的疏水性質,其水滴接觸角為135.3°-147.3°,而造成水滴接觸角提升的現象可用Cassie Model來解釋。另外,利用紫外光-可見光光譜儀分析反應後之試片可發現,表面具有矽晶奈米線陣列結構的試片具有光補捉 ( Light Trapping ) 效果,可大幅降低入射光之反射率。
利用TEM觀察矽晶奈米線氧化之形貌顯示,Core-Shell結構中心之矽晶奈米線半徑會隨著氧化時間及溫度增加而逐漸減少,氧化層厚度則逐漸增厚。此外,矽晶奈米線由於應力的作用,在氧化初期時其氧化速率較快於平板矽晶基材,而其所生成之氧化層厚度與氧化時間呈現一拋物線關係,證明氧化層之生成為一擴散控制的反應機制,且利用氧化層於不同溫度下之生成速率可以得到線寬為160 nm之矽晶奈米線其氧化層生成反應活化能為31.3 (kJ/mol)。
摘要(英) In the present study, we have demonstrated the successful fabrication of site-, size- and length-controlled Si nanowire arrays on pre-patterned (001)Si substrates using the PS nanosphere lithography technique and Au-assisted selective chemical etching process.
From SEM, TEM, and SAED analyses, the diameter of the Si nanowires produced on Pattern I and Pattern II samples was very uniform and was observed to be approximately 160 nm, corresponding to that of RIE-treated PS sphere mask used. All the vertically-aligned Si nanowires produced were single crystalline in nature and their axial orientations were identified to be parallel to the [001] direction. The length of Si nanowires could be tuned by adjusting the etching temperature and time. In this study, the activation energy for the formation of Si nanowires on pre-patterned (001)Si could be determined from an Arrhenius plot to be about 68.3 kJ/mol.
The results of water contact angle measurements indicated that the surfaces of HF-treated Si nanowire arrays exhibited strong hydrophobicity with water contact angle of 135.3°-147.3°. The hydrophobic behavior of the Si nanowire arrays was explained by the Cassie model. From UV-Vis spectral analysis, it is found that the Si substrate with Si nanowire arrays exhibited low reflection properties. The reduction in reflection of the Si nanowires samples can be attributed to the light trapping effect.
The oxidation characteristics of Si nanowires were investigated by TEM. The core radii and oxide shell thickness were found to decrease and increase with oxidation temperature and time. In addition, the oxidation rate of Si nanowires is faster than that of blank Si due to the stress effects. The thickness of outer SiO2 shell was found to increase parabolically with time, indicating that the growth of outer SiO2 shell is diffusion-controlled. By measuring the growth rate of SiO2 shell at different temperatures, the activation energy for the growth of SiO2 shells on 160-nm-diameter Si nanowires could be determined to be about 31.3 kJ/mol.
關鍵字(中) ★ 金屬催化蝕刻
★ 矽晶奈米線
關鍵字(英) ★ Metal-assisted etching
★ Si nanowires
論文目次 目錄…………………………………………………………………I
第一章 前言及文獻回顧…………………………………………1
1-1 前言……………………………………………………………1
1-2 矽晶奈米線製備方法-乾式製程……………………………2
1-2-1 化學氣相沉積法……………………………………2
1-2-2 反應性離子蝕刻法…………………………………5
1-3 矽晶奈米線製備方法-濕式化學蝕刻製程……………………6
1-3-1 金屬輔助化學蝕刻法………………………………6
1-3-2 金屬催化濕式蝕刻法………………………………7
1-4 奈米球微影術……………………………………………8
1-4-1 奈米球微影術的發展……………………………8
1-4-2 奈米球的自組裝行為………………………………9
1-4-3 奈米球模板法製備各式奈米結構…………………9
1-5 金屬催化結合奈米球微影術製備矽晶奈米線之蝕刻反應機制10
1-6 奈米結構表面之濕潤行為………………………………11
1-7 矽晶奈米線於太陽能電池上之應用…………………………12
1-8 矽基結構之氧化行為及機制…………………………………14
1-9 研究動機………………………………………………15
第二章 實驗步驟及儀器設備……………………………………17
2-1 實驗步驟……………………………………………………17
2-1-1 矽晶基材使用前處理……………………………17
2-1-2 在矽基材上預置規則圖案………………………17
2-1-3 奈米球模板製備…………………………………18
2-1-4 以電漿蝕刻調變奈米球模板之直徑………………………18
2-1-5 蒸鍍金屬薄膜………………………………………………19
2-1-6 在預置規則圖案之矽晶基材上製備規則單晶矽奈米線陣列19
2-1-7 矽晶奈米線之氧化製程……………………………………20
2-2 試片分析…………………………………………………20
2-2-1 光學顯微鏡 (OM)………………………………20
2-2-2 掃描式電子顯微鏡 (SEM)……………………20
2-2-3 穿透式電子顯微鏡 (TEM)……………………21
2-2-4 高解析穿透式電子顯微鏡 (HRTEM)…………21
2-2-5 X光能量散佈光譜儀 (EDS)…………………21
2-2-6 影像式接觸角量測儀…………………………22
2-2-7 紫外光-可見光光譜儀………………………22
第三章 結果與討論………………………………………………23
3-1 預置圖案之矽基材與奈米球模板製備……………………23
3-2 利用電漿蝕刻法調控奈米球陣列之球徑……………………23
3-3 以金屬催化蝕刻法結合奈米球微影術在預置規則圖案之矽晶片上製備矽單晶奈米線陣列………………………………………24
3-4 在預置規則圖案之矽晶基材上製備矽晶奈米線陣列之成長動
力學探討………………………………………………………26
3-5 矽晶奈米線之結構及晶向分析鑑定…………………………31
3-6 接觸角量測分析………………………………………………32
3-7 紫外光-可見光光譜儀量測分析……………………………34
3-8 矽晶奈米線陣列之氧化行為及動力學探討…………………35
第四章 結論與未來展望…………………………………………40
4-1 結論………………………………………………………40
4-2 未來展望…………………………………………………42
4-2-1 製備大面積筆直有序排列之金屬矽化物奈米線陣列……42
4-2-2 以濕式蝕刻法結合奈米球微影術製備不同矽基奈米陣列結構.………………………………………………………………………42
參考文獻……………………………………………………………43
表目錄………………………………………………………………53
圖目錄……………………………………………………………55
參考文獻 [1] Y. Cui and C. M. Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks,” Science 291 (2001) 851-853.
[2] Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka, and R. S. Williams, “Sequence-Specific Label-Free DNA Sensors Based on Silicon Nanowires,” Nano Lett. 4 (2004) 245-247.
[3] X. Duan, C. Niu, V. Sahi, J. Chen, J. W. Parce, S. Empedocles, and J. L. Goldman, “High-Performance Thin-Film Transistors Using Semiconductor Nanowires and Nanoribbons,” Nature 425 (2003) 274-278.
[4] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High Performance Silicon Nanowire Field Effect Transistors,” Nano Lett. 3 (2003) 149-152.
[5] K. Kang, H. S. Lee, D. W. Han, G. S. Kim, D. Lee, G. Lee, Y. M. Kang, and M. H. Jo, “Maximum Li Storage in Si Nanowires for the High Capacity Three-Dimensional Li-Ion Battery,” Appl. Phys. Lett. 96 (2010) 053110-1~053110-3.
[6] C. Zhang, P. Chen, J. Liu, Y. Zhang, W. Shen, H. Xu, and Y. Tang, “Ag Microparticles Embedded in Si Nanowire Arrays: A Novel Catalyst for Gas-Phase Oxidation of High Alcohol to Aldehyde,” Chem. Commun. 28 (2008) 3290-3292.
[7] N. N. Mishra, W. C. Maki, E. Cameron, R. Nelson, P. Winterrowd, S. K. Rastogi, B. Filanoski, and G. K. Maki, “Ultra-Sensitive Detection of Bacterial Toxin with Silicon Nanowire Transistor,” Lab on a Chip 8 (2008) 868-871.
[8] S. Su, Y. He, M. Zhang, K. Yang, S. Song, X. Zhang, C. Fan, and S. T. Lee, “High-Sensitivity Pesticide Detection via Silicon Nanowires-Supported Acetylcholinesterase-Based Electrochemical Sensors,” Appl. Phys. Lett. 93 (2008) 023113-1~023113-3.
[9] L. Mu, W. Shi, J. C. Chang, and S. T. Lee, “Silicon Nanowires-Based Fluorescence Sensor for Cu(II),” Nano Lett. 8 (2008) 104-109.
[10] H. Wang, X. H. Zhang, D. D. D. Ma, and S. T. Lee, “Large-Scale Silica Nanowire Array Grown on Liquid Tin and Its Applications as Hg (II) Scavenger,” Appl. Phys. Lett. 93 (2008) 023119-1~023119-3.
[11] Z. H. Chen, J. S. Jie, L. B. Luo, H. Wang, C. S. Lee, and S. T. Lee, “Applications of Silicon Nanowires Functionalized with Palladium Nanoparticles in Hydrogen Sensors,” Nanotechnology 18 (2007) 345502-1~345502-5.
[12] L. Hu and G. Chen, “Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications,” Nano lett. 7 (2007) 3249-3252.
[13] K. Peng, X. Wang, and S. T. Lee, “Silicon Nanowire Array Photoelectrochemical Solar Cells,” Appl. Phys. Lett. 92 (2008) 163103-1~163103-3.
[14] W. Li, J. Zhou, X. G. Zhang, J. Xu, L. Xu, W. Zhao, P. Sun, F. Song, J. Wan, and K. Chen, “Field Emission from a Periodic Amorphous Silicon Pillar Array Fabricated by Modified Nanosphere Lithography,” Nanotechnology 19 (2008) 135308-1~135308-5.
[15] J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett. 9 (2009) 279-282.
[16] E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10 (2010) 1082-1087.
[17] K. Q. Peng, X. Wang, X. L. Wu, and S. T. Lee, “Platinum Nanoparticle Decorated Silicon Nanowires for Efficient Solar Energy Conversion,” Nano Lett. 9 (2009) 3704-3709.
[18] Y. Li, J. Zhang, S. Zhu, H. Dong, Z. Wang, Z. Sun, J. Guo, and B. Yang, ”Bioinspired Silicon Hollow-Tip Arrays for High Performance Broadband Anti-Reflective and Water-Repellent Coatings,” J. Mater. Chem. 19 (2009) 1806-1810.
[19] J. Li, H. Y. Yu, S. M. Wong, G. Zhang, X. Sun, P. G. Q. Lo, and D. L. Kwong, “Si Nanopillar Array Optimization on Si Thin Films for Solar Energy Harvesting,” Appl. Phys. Lett. 95 (2009) 033102-1~033102-3.
[20] K. Q. Peng, X. Wang, X. Wu, and S. T. Lee, “Fabrication and Photovoltaic Property of Ordered Macroporous Silicon,” Appl. Phys. Lett. 95 (2009) 143119-1~143119-3.
[21] J. Li, H. Y. Yu, S. M. Wong, X. Li, G. Zhang, P. G. Q. Lo, and D. L. Kwong, “Design Guidelines of Periodic Si Nanowire Arrays for Solar Cell Application,” Appl. Phys. Lett. 95 (2009) 243113-1~243113-3.
[22] K. Q. Peng, Z. P. Huang, and J. Zhu, “Fabrication of Large-Area Silicon Nanowire p-n Junction Diode Arrays,” Adv. Mater. 16 (2004) 73-76.
[23] Q. Wang, J. J. Li, Y. J. Ma, X. D. Bai, Z. L. Wang, P. Xu, C. Y. Shi, B. G. Quan, S. L. Yue, and C. Z. Gu, “Field Emission Properties of Carbon Coated Si Nanocone Arrays on Porous Silicon,” Nanotechnology 16 (2005) 2919-2922.
[24] J. Goldberger, A. I. Hochbaum, R. Fan, and P. Yang, “Silicon Vertically Integrated Nanowire Field Effect Transistors,” Nano Lett. 6 (2006) 973-977.
[25] M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells,” Nano Lett. 8 (2008) 710-714.
[26] D. Zschech, D. H. Kim, A. P. Milenin, R. Scholz, R. Hillebrand, C. J. Hawker, T. P. Russell, M. Steinhart, and U. Gösele, “Ordered Arrays of <100>-Oriented Silicon Nanorods by CMOS-Compatible Block Copolymer Lithography,” Nano Lett. 7 (2007) 1516-1520.
[27] B. Yang, K. D. Buddharaju, S. H. G. Teo, N. Singh, G. Q. Lo, and D. L. Kwong, “Vertical Silicon-Nanowire Formation and Gate-All-Around MOSFET,” IEEE Electron Device Lett. 29 (2008) 791-794.
[28] R. S. Wanger and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4 (1964) 89-90.
[29] N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, “Nucleation and Growth of Si Nanowires from Silicon Oxide,” Phys. Rev. B 58 (1998) R16024-R16026.
[30] H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng, “Growth of Amorphous Silicon Nanowires via a Solid-Liquid-Solid Mechanism,” Chem. Phys. Lett. 323 (2000) 224-228.
[31] G. S. Doerk, N. Ferralis, C. Carraro, and R. Maboudian, “Growth of Branching Si Nanowires Seeded by Au-Si Surface Migration,” J. Mater. Chem. 18 (2008) 5376-5381.
[32] K. J. Wang, K. X. Wang, H. Zhang, G. D. Li, and J. S. Chen, “Self-Oriented Single Crystalline Silicon Nanorod Arrays through a Chemical Vapor Reaction Route,” J. Phys. Chem. C 114 (2010) 2471-2475.
[33] F. Iacopi, P. M. Vereecken, M. Schaekers, M. Caymax, N. Moelans, B. Blanpain, O. Richard, C. Detavernier, and H. Griffiths, “Plasma-Enhanced Chemical Vapour Deposition Growth of Si Nanowires with Low Melting Point Metal Catalysts: An Effective Alternative to Au-Mediated Growth,” Nanotechnology 18 (2007) 505307-1~505307-7.
[34] Y. F. Zhang, Y. H. Tang, N. Wang, D. P. Yu, C. S. Lee, I. Bello, and S. T. Lee, “Silicon Nanowires Prepared by Laser Ablation at High Temperature,” Appl. Phys. Lett. 72 (1998) 1835-1837.
[35] N. Fukata, T. Oshima, N. Okada, T. Kizuka, T. Tsurui, S. Ito, and K. Murakami, “Phonon Confinement in Silicon Nanowires Synthesized by Laser Ablation,” Physica B 376 (2006) 864-867.
[36] R. Douani, T. Hadjersi, R. Boukherroub, L. Adour, and A. Manseri, “Formation of Aligned Silicon-Nanowire on Silicon in Aqueous HF/(AgNO3+Na2S2O8) Solution,” Appl. Surf. Sci. 254 (2008) 7219-7222.
[37] S. C. Shiu, S. C. Hung, J. J. Chao, and C. F. Lin, “Massive Transfer of Vertically Aligned Si Nanowire Array onto Alien Substrates and Their Characteristics,” Appl. Surf. Sci. 255 (2009) 8566-8570.
[38] K. Peng, A. Lu, R. Zhang, and S. T. Lee, “Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching,” Adv. Funct. Mater. 18 (2008) 3026-3035.
[39] X. Wang, K. L. Pey, W. K. Choi, C. K. F. Ho, E. Fitzgerald, and D. Antoniadis, “Arrayed Si/SiGe Nanowire and Heterostructure Formations via Au-Assisted Wet Chemical Etching Method,” Electrochem. Solid-State Lett. 12 (2009) K37-K40.
[40] Y. H. Pai, F. S. Meng, C. J. Lin, H. C. Kuo, S. H. Hsu, Y. C. Chang, and G. R. Lin, “Aspect-Ratio-Dependent Ultra-Low Reflection and Luminescence of Dry-Etched Si Nanopillars on Si Substrate,” Nanotechnology 20 (2009) 035303-1~035303-7.
[41] C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-Scale Silicon Nanopillars and Nanocones by Langmuir-Blodgett Assembly and Etching,” Appl. Phys. Lett. 93 (2008) 133109-1~133109-3.
[42] K. Peng and J. Zhu, “Morphological Selection of Electroless Metal Deposits on Silicon in Aqueous Fluoride Solution,” Electrochim. Acta 49 (2004) 2563-2568.
[43] T. Qiu, X. L. Wu, Y. F. Mei, P. K. Chu, and G. G. Siu, “Self-Organized Synthesis of Silver Dendritic Nanostructures via an Electroless Metal Deposition Method,” Appl. Phys. A 81 (2005) 669-671.
[44] K. Peng, M. Zhang, A. Lu, N. B. Wong, R. Zhang, and S. T. Lee, “Ordered Silicon Nanowire Arrays via Nanosphere Lithography and Metal-Induced Etching,” Appl. Phys. Lett. 90 (2007) 163123-1~163123-3.
[45] J. D. Boor, N. Geyer, J. V Wittemann, U. Gösele, and V. Schmidt, “Sub-100 nm Silicon Nanowires by Laser Interference Lithography and Metal-Assisted Etching,” Nanotechnology 21 (2010) 095302-1~095302-5.
[46] T. I. Kim, D. Tahk, and H. H. Lee, “Wettability-Controllable Super Water- and Moderately Oil-Repellent Surface Fabricated by Wet Chemical Etching,” Langmuir 25 (2009) 6576-6579.
[47] Y. R. Lin, H. P. Wang, C. A. Lin, and J. H. He, “Surface Profile-Controlled Close-Packed Si Nanorod Arrays for Self-Cleaning Antireflection Coatings,” J. Appl. Phys. 106 (2009) 114310-1~114310-4.
[48] Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, and C. M. Lieber, “Diameter-Controlled Synthesis of Single-Crystal Silicon Nanowires,” Appl. Phys. Lett. 78 (2001) 2214-2216.
[49] Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell, and C. M. Lieber, “Controlled Growth and Structures of Molecular-Scale Silicon Nanowires,” Nano Lett. 4 (2004) 433-436.
[50] V. Schmidt, S. Senz, and U. Gösele, “Diameter-Dependent Growth Direction of Epitaxial Silicon Nanowires,” Nano Lett. 5 (2005) 931-935.
[51] N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, ”Nucleation and Growth of Si Nanowires from Silicon Oxide,” Phys. Rev. B 58 (1998) R16024-R16026.
[52] N. Wang, C. S. Lee, and S. T. Lee, “Semiconductor Nanowires: Synthesis, Structure and Properties,” Mater. Sci. Eng., A A286 (2000) 16-23.
[53] R. Q. Zhang, Y. Lifshitz, and S. T. Lee, “Oxide-Assisted Growth of Semiconducting Nanowires,” Adv. Mater. 15 (2003) 635-640.
[54] Y. F. Zhang, Y. H. Tang, H. Y. Peng, N. Wang, C. S. Lee, I. Bello, and S. T. Lee, “Diameter Modification of Silicon Nanowires by Ambient Gas,” Appl. Phys. Lett. 75 (1999) 1842-1844.
[55] H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng, “Growth of Amorphous Silicon Nanowires via a Solid-Liquid-Solid Mechanism,” Chem. Phys. Lett. 323 (2000) 224-228.
[56] Y. J. Xing, Z. H. Xi, D. P. Yu, Q. L. Hang, H. F. Yan, S. Q. Feng, and Z. Q. Xue, “Growth of Silicon Nanowires by Heating Si Substrate,” Chin. Phys. Lett. 19 (2002) 240-242.
[57] Y. J. Xing, D. P. Yu, Z. H. Xi, and Z. Q. Xue, “Silicon Nanowires Grown from Au-Coated Si Substrate,” Appl. Phys. A 76 (2003) 551-553.
[58] S. Wan, Y. Yu, and J. Zhang, “The Synthesis of Aligned Silicon Nanowires under Ambient Atmospheric Pressure,” J. Non-Cryst. Solids 355 (2009) 518-520.
[59] E. K. Lee, B. L. Choi, Y. D. Park, Y. Kuk, S. Y. Kwon, and H. J. Kim, “Device Fabrication with Solid-Liquid-Solid Grown Silicon Nanowires,” Nanotechnology 19 (2008) 185701-1~185701-5.
[60] A. Sinitskii, S. Neumeier, J. Nelles, M. Fischler, and U. Simon, “Ordered Arrays of Silicon Pillars with Controlled Height and Aspect Ratio,” Nanotechnology 18 (2007) 305307-1~305307-6.
[61] H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic Antireflective Si Nanopillar Arrays,” Small 4 (2008) 1972-1975.
[62] A T. G. Cha, J. W. Yi, M. W. Moon, K. R. Lee, and H. Y. Kim, “Nanoscale Patterning of Microtextured Surfaces to Control Superhydrophobic Robustness,” Langmuir 26 (2010) 8319-8326.
[63] K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry,” Adv. Mater. 14 (2002) 1164-1167.
[64] T. Qiu, X. L. Wu, G. G. Siu, and P. K. Chu, “Intergrowth Mechanism of Silicon Nanowires and Silver Dendrites,” J. Electron. Mater. 35 (2006) 1879-1884.
[65] K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan, and S. T. Lee, “Metal-Particle-Induced, Highly Localized Site-Specific Etching of Si and Formation of Single-Crystalline Si Nanowires in Aqueous Fluoride Solution,” Chem. Eur. J. 12 (2006) 7942-7947.
[66] K. Peng, Y. Yan, S. Gao, and J. Zhu, “Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition,” Adv. Funct. Mater. 13 (2003) 127-132.
[67] X. Li and P. W. Bohn, “Metal-Assisted Chemical Etching in HF/H2O2 Produces Porous Silicon,” Appl. Phys. Lett. 77 (2000) 2572-2574.
[68] C. Chartier, S. Bastide, and C. Lévy-Clément, “Metal-Assisted Chemical Etching of Silicon in HF-H2O2,” Electrochim. Acta 53 (2008) 5509-5516.
[69] N. Megouda, T. Hadjersi, G. Piret, R. Boukherroub, and O. Elkechai, “Au-Assisted Electroless Etching of Silicon in Aqueous HF/H2O2 Solution,” Appl. Surf. Sci. 255 (2009) 6210-6216.
[70] T. Qiu, X. L. Wu, X. Yang, G. S. Huang, and Z. Y. Zhang, “Self-Assembled Growth and Optical Emission of Silver-Capped Silicon Nanowires,” Appl. Phys. Lett. 84 (2004) 3867-3869.
[71] K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles,” Adv. Funct. Mater. 16 (2006) 387-394.
[72] K. Peng, Y. Wu, H. Fang, X. Zhong, Y. Xu, and J. Zhu, “Uniform, Axial-Orientation Alignment of One-Dimensional Single-Crystal Silicon Nanostructure Arrays,” Angew. Chem. Int. Ed. 44 (2005) 2737-2742.
[73] H. Fang, Y. Wu, J. Zhao, and J. Zhu, “Silver Catalysis in the Fabrication of Silicon Nanowire Arrays,” Nanotechnology 17 (2006) 3768-3774.
[74] H. W. Deckman and J. H. Dunsmuir, “Natural Lithography,” Appl. Phys. Lett. 41 (1982) 377-379.
[75] J. C. Hulteen and R. P. V. Duyne, “Nanosphere Lithography: A Materials General Fabrication Process for Periodic Particle Array Surfaces,” J. Vac. Sci. Technol., A 13 (1995) 1553-1558.
[76] Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed Colloidal Spheres: Old Materials with New Applications,” Adv. Mater. 12 (2000) 693-713.
[77] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates,” Langmuir 8 (1992) 3183-3190.
[78] J. Rybczynski, U. Ebels, and M. Giersig, ”Large-Scale, 2D Arrays of Magnetic Nanoparticles,” Colloids Surf., A 219 (2003) 1-6.
[79] H. Li, J. Low, K. S. Brown, and N. Wu, “Large-Area Well-Ordered Nanodot Array Pattern Fabricated with Self-Assembled Nanosphere Template,” IEEE Sensors J. 8 (2008) 880-884.
[80] J. Aizenberg, P. V. Braun, and P. Wiltzius, “Patterned Colloidal Deposition Controlled by Electrostatic and Capillary Forces,” Phys. Rev. Lett. 84 (2000) 2997-3000.
[81] A. Winkleman, B. D. Gates, L. S. McCarty, and G. M. Whitesides, “Directed Self-Assembly of Spherical Particles on Patterned Electrodes by an Applied Electric Field,” Adv. Mater. 17 (2005) 1507-1511.
[82] A. S. Dimitrov and K. Nagayama, “Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces,” Langmuir 12 (1996) 1303-1311.
[83] X. Chen, X. Wei, and K. Jiang, “The Fabrication of High-Aspect-Ratio, Size-Tunable Nanopore Arrays by Modified Nanosphere Lithography,” Nanotechnology 20 (2009) 425605-1~425605-5.
[84] S. Zhu and Y. Fu, “Fabrication and Characterization of Nanostructured Metallic Arrays with Multi-Shapes in Monolayer and Bilayer,” J. Nanopart. Res. (2009).
[85] Y. Li, E. J. Lee, W. Cai, K. Y. Kim, and S. O. Cho, “Unconventional Method for Morphology-Controlled Carbonaceous Nanoarrays Based on Electron Irradiation of a Polystyrene Colloidal Monolayer,” ACS Nano 2 (2008) 1108-1112.
[86] C. Cong, W. C. Junus, Z. Shen, and T. Yu, “New Colloidal Lithographic Nanopatterns Fabricated by Combining Pre-Heating and Reactive Ion Etching,” Nanoscale Res. Lett. 4 (2009) 1324-1328.
[87] D. G. Choi, H. K. Yu, S. G. Jang, and S. M. Yang, “Colloidal Lithographic Nanopatterning via Reactive Ion Etching,” J. Am. Chem. Soc. 126 (2004) 7019-7025.
[88] Z. Huang, H. Fang, and J. Zhu, “Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density,” Adv. Mater. 19 (2007) 744-748.
[89] Y. Xiu, S. Zhang, V. Yelundur, A. Rohatgi, D. W. Hess, and C. P. Wong, “Superhydrophobic and Low Light Reflectivity Silicon Surfaces Fabricated by Hierarchical Etching,” Langmuir 24 (2008) 10421-10426.
[90] H. M. Shang, Y. Wang, S. J. Limmer, T. P. Chou, K. Takahashi, and G. Z. Cao, “Optically Transparent Superhydrophobic Silica-Based Films,” Thin Solid Films 472 (2005) 37-43.
[91] T. Onda, S. Shibuichi, N. Satoh, and K. Tsujii, “Super-Water-Repellent Fractal Surfaces,” Langmuir 12 (1996) 2125-2127.
[92] Z. Guo, F. Zhou, J. Hao, and W. Liu, “Stable Biomimetic Super-Hydrophobic Engineering Materials,” J. Am. Chem. Soc. 127 (2005) 15670-15671.
[93] M. Li, J. Zhai, H. Liu, Y. Song, L. Jiang, and D. Zhu, “Electrochemical Deposition of Conductive Superhydrophobic Zinc Oxide Thin Films,” J. Phys. Chem. B 107 (2003) 9954-9957.
[94] J. Lee and C. J. Kim, “Surface-Tension-Driven Microactuation Based on Continuous Electrowetting,” J. Microelectromech. Syst. 9 (2000) 171-180.
[95] N. Verplanck, E. Galopin, J. C. Camart, and V. Thomy, “Reversible Electrowetting on Superhydrophobic Silicon Nanowires,” Nano Lett. 7 (2007) 813-817.
[96] Y. B. Park, M. Im, H. Im, and Y. K. Choi, “Superhydrophobic Cylindrical Nanoshell Array,” Langmuir 26 (2010) 7661-7664.
[97] A. B. D. Cassie, “Contact Angles,” Discuss Faraday Soc. 3 (1948) 11-16.
[98] B. He, N. A. Patankar, and J. Lee, “Multiple Equilibrium Droplet Shapes and Design Criterion for Rough Hydrophobic Surfaces,” Langmuir 19 (2003) 4999-5003.
[99] N. A. Patankar, “On the Modeling of Hydrophobic Contact Angles on Rough Surfaces,” Langmuir 19 (2003) 1249-1253.
[100] E. C. Garnett and P. Yang, “Silicon Nanowire Radial p-n Junction Solar Cells,” J. Am. Chem. Soc. 130 (2008) 9224-9225.
[101] L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon Nanowire Solar Cells,” Appl. Phys. Lett. 91 (2007) 233117-1~233117-3.
[102] H. D. Um, J. Y. Jung, H. S. Seo, K. T. Park, S. W. Jee, S. A. Moiz, and J. H. Lee, “Silicon Nanowire Array Solar Cell Prepared by Metal-Induced Electroless Etching with a Novel Processing Technology,” Jpn. J. Appl. Phys. 49 (2010) 04DN02-1~04DN02-5.
[103] M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced Absorption and Carrier Collection in Si Wire Arrays for Photovoltaic Applications,” Nat. Mater. 9 (2010) 239-244.
[104] S. M. Wong, H. Y. Yu, J. S. Li, G. Zhang, P. G. Q. Lo, and D. L. Kwong, “Design High-Efficiency Si Nanopillar-Array-Textured Thin-Film Solar Cell,” IEEE Electron Device Lett. 31 (2010) 335-337.
[105] B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon,” J. Appl. Phys. 36 (1965) 3770-3778.
[106] D. B. Kao, J. P. Mcvittie, W. D. Nix, and K. C. Saraswat, “Two-Dimensional Thermal Oxidation of Silicon-I. Experiments,” IEEE Trans. Electron Devices ED-34 (1987) 1008-1017.
[107] S. Y. Kim, S. W. Kim, H. J. Chang, H. K. Seong, H. J. Choi, and D. H. Ko, “Oxidation Characteristics of Si0.85Ge0.15 Nanowires,” Mater. Sci. Semicond. Process. 11 (2008) 182-186.
[108] S. L. Cheng, C. Y. Chen, and S. W. Lee, “Kinetic Investigation of the Electrochemical Synthesis of Vertically-Aligned Periodic Arrays of Silicon Nanorods on (001)Si Substrate,” Thin Solid Films 518 (2010) S190-S195.
[109] F. Wang, A. Dong, J. Sun, R. Tang, H. Yu, and W. E. Buhro, “Solution-Liquid-Solid Growth of Semiconductor Nanowires,” Inorg. Chem. 45 (2006) 7511-7521.
[110] L. Wan, W. Gong, K. Jiang, H. Li, B. Tao, and J. Zhang, “Selective Formation of Silicon Nanowires on Pre-Patterned Substrates,” Appl. Surf. Sci. 255 (2009) 3752-3758.
[111] M. K. Dawood, T. H. Liew, P. Lianto, M. H. Hong, S. Tripathy, J. T. L. Thong, and W. K. Choi, “Interference Lithographically Defined and Catalytically Etched, Large-Area Silicon Nanocones from Nanowires,” Nanotechnology 21 (2010) 205305-1~205305-8.
[112] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced Thermoelectric Performance of Rough Silicon Nanowires,” Nature 451 (2008) 163-167.
[113] H. E. Jeong, S. H. Lee, J. K. Kim, and K. Y. Suh, “Nanoengineered Multiscale Hierarchical Structures with Tailored Wetting Properties,” Langmuir 22 (2006) 1640-1645.
[114] X. Li, B. K. Tay, P. Miele, A. Brioude, and D. Cornu, “Fabrication of Silicon Pyramid/Nanowire Binary Structure with Superhydrophobicity,” Appl. Surf. Sci. 255 (2009) 7147-7152.
[115] A. Winkleman, G. Gotesman, A. Yoffe, and R. Naaman, “Immobilizing a Drop of Water: Fabricating Highly Hydrophobic Surfaces that Pin Water Droplets,” Nano Lett. 8 (2008) 1241-1245.
[116] J. Bae, H. Kim, X. M. Zhang, C. H. Dang, Y. Zhang, Y. J. Choi, A. Nurmikko, and Z. L. Wang, “Si Nanowire Metal-Insulator-Semiconductor Photodetectors as Efficient Light Harvesters,” Nanotechnology 21 (2010) 095502-1~095502-5.
[117] J. Zhong, H. Chen, G. Saraf, Y. Lu, C. K. Choi, J. J. Song, D. M. Mackie, and H. Shen, “Integrated ZnO Nanotips on GaN Light Emitting Diodes for Enhanced Emission Efficiency,” Appl. Phys. Lett. 90 (2007) 203515-1~ 203515-3.
[118] Y. R. Lin, H. P. Wang, C. A. Lin, and J. H. He, “Surface Profile-Controlled Close-Packed Si Nanorod Arrays for Self-Cleaning Antireflection Coatings,” J. Appl. Phys. 106 (2009) 114310-1~114310-4.
[119] C. C. Buttner and M. Zacharias, “Retarded Oxidation of Si Nanowires,” Appl. Phys. Lett. 89 (2006) 263106-1~263106-3.
[120] D. B. Kao, J. P. Mcvittie, W. D. Nix, and K. C. Saraswat, “Two-Dimensional Thermal Oxidation of Silicon-II. Modeling Stress Effect in Wet Oxides,” IEEE Trans. Electron Devices ED-35 (1988) 25-37.
[121] H. I. Liu, D. K. Biegelsen, F. A. Ponce, N. M. Johnson, and R. F. W. Pease, “Self-Limiting Oxidation for Fabrication Sub-5 nm Silicon Nanowires,” Appl. Phys. Lett. 64 (1994) 1383-1385.
[122] D. Shir, B. Z. Liu, A. M. Mohammad, K. K. Lew, and S. E. Mohney, “Oxidation of Silicon Nanowires,” J. Vac. Sci. Technol. B24 (2006) 1333-1336.
指導教授 鄭紹良(Shao-liang Cheng) 審核日期 2010-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明