博碩士論文 973204033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.129.13.201
姓名 葉秉昀(Ping-Yun Yeh)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 電鍍法製備準直排列ZnO 奈米結構陣列及其特性之研究
(Fabrication of large-area vertically aligned ZnO nanostructure arrays by electrodeposition and their properties.)
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究首先利用射頻磁控濺鍍系統沉積ZnO:Al透明導電薄膜作為後續電鍍沉積ZnO 奈米柱陣列之導電基材,並對此ZnO:Al導電薄膜經真空熱處理前後之晶體結構、表面形貌、顯微結構與光、電特性等方面進行探討,接著針對不同電鍍沉積ZnO 奈米柱陣列之控制參數,進行有系統的討論分析,找出大面積ZnO 奈米柱陣列之製備最佳製程參數,研究中並首度成功結合奈米球微影技術,在ZnO:Al透明導電薄膜的表面製備出具大面積碗形-蜂巢狀規則有序之ZnO 雙奈米結構。
在導電基材之ZnO:Al薄膜方面,由TEM橫截面影像可發現經真空退火熱處理前後的ZnO:Al 薄膜為多晶柱狀結構,擇優成長方向為[0001]。經真空退火後之在X光繞射圖中,其(0002)繞射峰所對應的角度位置,會明顯往高角度偏移,而在光學特性與電性上,除了光學吸收邊有藍位移現象,薄膜的電阻率也從初鍍膜之1.26 Ω-cm下降至3.0 x 10-3 Ω-cm,即結果可用Burstein–Moss現象解釋。
以電鍍沉積製備ZnO 奈米柱陣列於ZnO:Al 薄膜上之研究方面,實驗結果顯示在0.5mM的 ZnCl2 濃度和80 ℃沉積溫度,為最佳化的ZnO 奈米柱陣列生成條件,在沉積5 min與10 min ZnO 奈米柱陣列於ZnO:Al 薄膜上,不僅擁有最高光穿透率約為90 %,比平整ZnO:Al薄膜要多3-4 %,此結構也會提升光散射現象,比平整ZnO:Al 薄膜0.64 %高出1-4 %。
利用奈米球微影術製作不同大小之奈米球模板,並結合電化學沉積技術製備尺度大小可調變之碗形-蜂巢狀規則有序之ZnO 雙奈米結構,而此種具奈米雙結構之ZnO:Al透明導電薄膜,在400 nm-800 nm波長之光穿透率皆可>80%,其在波長550 nm霧度高達17.69 %,而可見光波長範圍平均霧度也有16.37 %,遠高於ZnO:Al薄膜與ZnO 奈米柱陣列結構薄膜的霧度約10 %。
摘要(英) In this study, ZnO:Al(AZO) transparent conducting oxide thin films were deposited on glass by a RF sputtering system to serve as the substrates for the electrodeposition of ZnO nanorods. The microstructue, surface morphology, and physical properties of the AZO thin films before and after annealing have been investigated. Large-area vertically aligned ZnO nanorod arrays were obtained under controlled electrodeposition conditions. Furthermore, bowl-like ZnO nanorod structures were successfully fabricated on AZO films by using nanosphere lithography combined with the electrodeposition technique.
According to the XTEM examinations, it is clearly revealed that the AZO films were polycrystalline and exhibited a wurtzite structure with a strong preferred [0002] orientation. From XRD & UV-VIS analyses, the (0002) peak position was found to shift toward higher angle and the optical transmittance spectra showed blue shift of annealed AZO films and their resistivity decreased from 1.26 Ω-cm to 3.0 x 10-3 Ω-cm. These observed results can be explained by Burstein–Moss effect.
In this work, the optimum electrodeposition conditions for the growth of ZnO nanorods were : 0.5 mM ZnCl2, 80 ℃, and 5–10 min. The formation of vertically aligned ZnO nanorod arrays was lead to enhance visible light transmittance and diffuse transmittances to 90 % and 2-5 % which is both higher than that of flat AZO thin films. The size and periodicity of bowl-like ZnO nanorodstructures can be controlled by turning the diameter of nanosphere and the electrodeposition conditions, In the optimum conditions, the transmittance of the ZnO nanorods sample was>80 % in the ranges of 400-800 nm. In addition, The HAZE of the bowl-like ZnO nanorods sample is 17.7 % at 550nm wavelength, and the average HAZE in the ranges of 400-800 nm is 16.4%. These exceed the ZnO nanorod samples(<10 %).
關鍵字(中) ★ 大面積
★ 奈米結構
★ 氧化鋅
★ 電鍍法
關鍵字(英) ★ Zinc Oxide
★ Electrodeposition
★ nanostructure
★ large-area
論文目次 目錄 I
第一章 緒論(簡介) 1
1-1 前言 1
1-2 太陽光能電池 2
1-3 透明導電薄膜 2
1-4 氧化鋅薄膜 4
第二章 理論基礎與文獻回顧 7
2-1 太陽能電池原理 7
2-2 透明導電金屬氧化物薄膜導電機制 9
2-3 電化學理論基礎 10
2-4 氧化鋅電化學沉積理論與機制 12
2-5 奈米球自組裝顯微影術 14
2-6 研究動機與實驗目的 16
第三章 實驗步驟 17
3-1 實驗步驟 17
3-1-1 實驗試片前處理 17
3-1-2 濺鍍沉積法製備ZnO:Al透明導電薄膜特性分析 18
3-1-3 電化學沉積法製備ZnO奈米結構薄膜特性分析 18
3-1-4 電化學沉積法結合奈米球微影術製備ZnO雙奈米結構分析 18
3-2 電化學沉積溶液配置 19
3-3 實驗設備 19
3-3-1 濺鍍系統(Sputtering System) 19
3-3-2 電化學沉積設備(Electro-deposition System) 20
3-3-3 真空退火系統(Vacuum Annealing System) 20
3-4 實驗分析設備 21
3-4-1 紫外光-可見光光譜儀(UV-VIS Spectrophotometer) 21
3-4-2 XRD 繞射分析 21
3-4-3 掃描式電子顯微鏡(Scanning Electron Microscope) 22
3-4-4 穿透式電子顯微鏡(Transmission Electron Microscope) 22
第四章 結果與討論 24
4-1 濺鍍沉積ZnO:Al透明導電薄膜基材之製備與分析 24
4-1-1 濺鍍法製備ZnO:Al透明導電薄膜基材之特性分析 24
4-1-2 ZnO:Al透明導電薄膜基材熱退火處理後之顯微結構分析 25
4-1-3 ZnO:Al透明導電薄膜基材熱退火處理後之光、電特性分析 27
4-2 電化學沉積ZnO 奈米結構之製備與分析 29
4-2-1 溫度對於電化學沉積製備ZnO 奈米結構薄膜之影響 29
4-2-2 濃度對於電化學沉積製備ZnO 奈米結構薄膜之影響 32
4-2-3 溶液體積對於電化學沉積製備ZnO 奈米結構薄膜之影響 35
4-2-4 時間對於電化學沉積製備ZnO 奈米結構薄膜之變化 37
4-3 大面積規則ZnO:Al雙奈米結構之製備與分析 39
4-3-1 ZnO:Al 透明導電薄膜基材上製備規則奈米球陣列 39
4-3-2奈米球微影術結合電化學沉積製備ZnO 雙奈米結構即其特性分析 40
4-3-3 二維 ZnO 雙奈米結構之光特性分析 43
第五章 結論 46
參考文獻 48
圖目錄表目錄 54
參考文獻圖目錄 58
參考文獻 [1] A.A. Lacis, J.E. Hansen, A Parameterization for the Absorption of Solar Radiation in the Earth's Atmosphere, J. Astronaut Sci., 31 (1974) 118-133.
[2] 陳頤承, 黃志仁, 吳建樹, 翁得期, 陳麒麟, 矽薄膜太陽能電池技術, 電子月刊, 145 (2007) 149-164.
[3] J.J. Huang, Y.K. Su, S.H. Wang, Y.H. Liu, F.S. Juang, Efficiency Enhancement of Top Emission Organic Light-Emitting Diodes with Ni/Au Periodic Anode, Jpn. J. Appl. Phys., 47 (2008) 7359-7362.
[4] H.J. Peng, X.L. Zhu, J.X. Sun, Z.L. Xie, S. Xie, M. Wong, H.S. Kwok, Efficient Organic Light-Emitting Diode Using Semitransparent Silver as Anode, Appl. Phys. Lett., 87 (2005) 3.
[5] A. Gassmann, C. Melzer, H. von Seggern, The Li3PO4/Al Bilayer: An Efficient Cathode for Organic Light Emitting Devices, J. Appl. Phys., 105 (2009) 084513.
[6] C.F. Qiu, H.J. Peng, H.Y. Chen, Z.L. Xie, M. Wong, H.S. Kwok, Top-Emitting OLED Using Praseodymium Oxide Coated Platinum as Hole Injectors, IEEE Trans. Electron Devices, 51 (2004) 1207-1210.
[7] P.A.K. Moorthy, G.K. Shivakumar, Approximations of Fuchs-Sondheimer Theory for the Case of Total Diffuse-Scattering in Thin-Films, J. Mater. Sci. Lett., 1 (1982) 453-454.
[8] V.D. Mihailetchi, P.W.M. Blom, J.C. Hummelen, M.T. Rispens, Cathode Dependence of The Open-Circuit Voltage of Polymer : Fullerene Bulk Heterojunction Solar Cells, J. Appl. Phys., 94 (2003) 6849-6854.
[9] H. Cho, C. Yun, J.W. Park, S. Yoo, Highly Flexible Organic Light-Emitting Diodes Based on ZnS/Ag/WO3 Multilayer Transparent Electrodes, Org. Electron., 10 (2009) 1163-1169.
[10] H.J. Cho, K.W. Park, J.K. Ahn, N.J. Seong, S.G. Yoon, W.H. Park, S.M. Yoon, D.J. Park, J.Y. Lee, Nanoscale Silver-Based Al-Doped ZnO Multilayer Transparent-Conductive Oxide Films, J. Electrochem. Soc., 156 (2009) J215-J220.
[11] M.G. Kang, L.J. Guo, Nanoimprinted Semitransparent Metal Electrodes and Their Application in Organic Light-Emitting Diodes, Adv. Mater., 19 (2007) 1391-1396.
[12] Y. Sato, J. Kiyohara, A. Hasegawa, T. Hattori, M. Ishida, N. Hamada, N. Oka, Y. Shigesato, Study on Inverse Spinel Zinc Stannate, Zn2SnO4, as Transparent Conductive Films Deposited by RF Magnetron Sputtering, Thin Solid Films, 518 (2009) 1304-1308.
[13] S. Ouendadji, K. Ait-Hamouda, N. Gabouze, N. Saoula, K. Henda, Electrochemical behavior of p-Si/TiC in aqueous HF, Vacuum, 71 (2003) 517-522.
[14] V. Adamovich, A. Shoustikov, M.E. Thompson, TiN as an Anode Material for Organic Light-Emitting Diodes, Adv. Mater., 11 (1999) 727-730.
[15] N.W. Cheung, H. Vonseefeld, M.A. Nicolet, F. Ho, P. Iles, Thermal-Stability of Titanium Nitride for Shallow Junction Solar-Cell Contacts, J. Appl. Phys., 52 (1981) 4297-4299.
[16] D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Longitudinal Unzipping of Carbon Nanotubes to Form Graphene Nanoribbons, Nature, 458 (2009) 872-U875.
[17] X. Wang, L.J. Zhi, K. Mullen, Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells, Nano Lett., 8 (2008) 323-327.
[18] P.R. Somani, Pressure Sensitive Multifunctional Solar Cells Using Carbon Nanotubes, Appl. Phys. Lett., 96 (2010) 3.
[19] W.J. Fan, J.B. Xia, P.A. Agus, S.T. Tan, S.F. Yu, X.W. Sun, Band Parameters and Electronic Structures of Wurtzite ZnO and ZnO/MgZnO Quantum Wells, J. Appl. Phys., 99 (2006) 4.
[20] Ü.Ö. Hadis Morkoç, Zinc Oxide: Fundamentals, Materials and Device Technology, Chapter 1, 2009, WILEY-VCH.
[21] F. Decremps, J. Zhang, R.C. Liebermann, New Phase Boundary and High-Pressure Thermoelasticity of ZnO, Europhys. Lett., 51 (2000) 268-274.
[22] A. Ashrafi, A. Ueta, A. Avramescu, H. Kumano, I. Suemune, Y.W. Ok, T.Y. Seong, Growth and Characterization of Hypothetical Zinc-Blende ZnO Films on GaAs(001) Substrates with ZnS Buffer Layers, Appl. Phys. Lett., 76 (2000) 550-552.
[23] K.I. Hagemark, P.E. Toren, Determination of Excess Zn in ZnO-Phase Boundary Zn-Zn1+XO, J. Electrochem. Soc., 122 (1975) 992-994.
[24] K. Lott, S. Shinkarenko, T. Kirsanova, L. Tum, E. Gorohova, A. Grebennik, A. Vishnjakov, Zinc Nonstoichiometry in ZnO, Solid State Ion., 173 (2004) 29-33.
[25] M.P. Lu, J. Song, M.Y. Lu, M.T. Chen, Y. Gao, L.J. Chen, Z.L. Wang, Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays, Nano Lett., 9 (2009) 1223-1227.
[26] J.C. Sun, H.W. Liang, J.Z. Zhao, J.M. Bian, Q.J. Feng, L.Z. Hu, H.Q. Zhang, X.P. Liang, Y.M. Luo, G.T. Du, Ultraviolet Electroluminescence from N-ZnO : Ga/P-ZnO : N Homojunction Device on Sapphire Substrate with p-Type ZnO : N Layer Formed by Annealing in N2O Plasma Ambient, Chem. Phys. Lett., 460 (2008) 548-551.
[27] O. Isabella, F. Moll, J. Krc, M. Zeman, Modulated Surface Textures Using Zinc-Oxide Films for Solar Cells Applications, Phys. Status Solidi A-Appl. Mat., 207 (2010) 642-646.
[28] M. Berginski, J. Hupkes, M. Schulte, G. Schope, H. Stiebig, B. Rech, M. Wuttig, The Effect of front ZnO : Al Surface Texture and Optical Transparency on Efficient Light Trapping in Silicon Thin-Film Solar Cells, J. Appl. Phys., 101 (2007) 11.
[29] R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, D. Knipp, Light Trapping in Thin-Film Silicon Solar Cells with Submicron Surface Texture, Opt. Express, 17 (2009) 23058-23065.
[30] S.M. Sze, Semiconductor Devices: Physics and Technology, 2nd Ed., Chapter 2, 2001, Wiley.
[31] R. Hull, R.M. Osgood, J. Parisi, H. Warlimint, Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cell, Chapter 8, 2007, Springer.
[32] N.P. Deshpande, Electronic Devices and Circuits: Principles and Applications, Chapter 2, 2008, Tata McGraw-Hill.
[33] T.K. Tsai, H.C. Chen, J.H. Lee, Y.Y. Huang, J.S. Fang, Highly Conductive Indium Zinc Oxide Prepared by Reactive Magnetron Cosputtering Technique Using Indium and Zinc Metallic Targets, J. Vac. Sci. Technol. A, 28 (2010) 425-430.
[34] X. Bie, J.G. Lu, L. Gong, L. Lin, B.H. Zhao, Z.Z. Ye, Transparent Conductive ZnO:Ga Films Prepared by DC Reactive Magnetron Sputtering at Low Temperature, Appl. Surf. Sci., 256 (2009) 289-293.
[35] Y.H. Lee, 微奈米化氧化亞銅之電化學沈積行為及其在鋰離子二次電池之應用, 國立成功大學博士論文, 2006.
[36] A.J. Bard, L.R. Faulkner, Electrochemical methods: Fundamentals and Applications, 1980, Wiley.
[37] I. Zhitomirsky, Cathodic Electrodeposition of Ceramic and Organoceramic Materials. Fundamental Aspects, Adv. Colloid Inter. Sci., 97 (2002) 279-317.
[38] J.A. Switzer, The N-Silicon Thallium(III) Oxide Heterojunction Photoelectrochemical Solar-Cell, J. Electrochem. Soc., 133 (1986) 722-728.
[39] D. Tench, L.F. Warren, Electroposition of Conducting Transition-Metal Oxide Hydroxide Films from Aqueous-Solution, J. Electrochem. Soc., 130 (1983) 869-872.
[40] M. Izaki, T. Omi, Transparent Zinc Oxide Films Prepared by Electrochemical Reaction, Appl. Phys. Lett., 68 (1996) 2439-2440.
[41] S. Peulon, D. Lincot, Cathodic Electrodeposition from Aqueous Solution of Dense or Open-Structured Zinc Oxide Films, Adv. Mater., 8 (1996) 166-170.
[42] M. Izaki, T. Omi, Electrolyte Optimization for Cathodic Growth of Zinc Oxide Films, J. Electrochem. Soc., 143 (1996) L53-L55.
[43] L. Galor, I. Silberman, R. Chaim, Electrolytic ZrO2 coatings.1.Electrochemical Aspects, J. Electrochem. Soc., 138 (1991) 1939-1942.
[44] S. Peulon, D. Lincot, Mechanistic Study of Cathodic Electrodeposition of Zinc Oxide and Zinc Hydroxychloride Films from Oxygenated Aqueous Zinc Chloride Solutions, J. Electrochem. Soc., 145 (1998) 864-874.
[45] G.H. Jeong, J.K. Park, K.K. Lee, J.H. Jang, C.H. Lee, H.B. Kang, C.W. Yang, S.J. Suh, Fabrication of Low-Cost Mold and Nanoimprint Lithography Using Polystyrene Nanosphere, Microelectron. Eng., 87 (2010) 51-55.
[46] L.S. Live, O.R. Bolduc, J.F. Masson, Propagating Surface Plasmon Resonance on Microhole Arrays, Anal. Chem., 82 (2010) 3780-3787.
[47] R. Bhardwaj, X.H. Fang, P. Somasundaran, D. Attinger, Self-Assembly of Colloidal Particles from Evaporating Droplets: Role of DLVO Interactions and Proposition of a Phase Diagram, Langmuir, 26 (2010) 7833-7842.
[48] V.Ng, Y.V. Lee, B.T. Chen, A.O. Adeyeye, Nanostructure Array Fabrication with Temperature-Controlled Self-Assembly Techniques, Nanotechnology, 13 (2002) 554-558.
[49] D.W. Schubert, T. Dunkel, Spin Coating from a Molecular Point of View: Its Concentration Regimes, Influence of Molar Mass and Distribution, Mater. Res. Innov., 7 (2003) 314-321.
[50] J. Rybczynski, U. Ebels, M. Giersig, Large-Scale, 2D Arrays of Magnetic Nanoparticles, Colloid Surf. A-Physicochem. Eng. Asp., 219 (2003) 1-6.
[51] P.I. Stavroulakis, N. Christou, D. Bagnall, Improved Deposition of Large Scale Ordered Nanosphere Monolayers Via Liquid Surface Self-Assembly, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 165 (2009) 186-189.
[52] H.Q. Li, J. Low, K.S. Brown, N.Q. Wu, Large-Area Well-Ordered Nanodot Array Pattern Fabricated with Self-Assembled Nanosphere Template, IEEE Sens. J., 8 (2008) 880-884.
[53] R. Caballero, C.A. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse, T. Unold, A. Eicke, R. Klenk, H.W. Schock, The Influence of Na on Low Temperature Growth of CIGS Thin Film Solar Cells on Polyimide sSubstrates, Thin Solid Films, 517 (2009) 2187-2190.
[54] 陳苡諺, ZnO:Al透明導電薄膜之特性分析與新穎表面粗糙化結構製備, 國立中央大學, (2009).
[55] Y.K. Wang, J.M. Zhang, M. Lan, Temperature Effects on ZnO Film Electrodeposition, Acta Phys.-Chim. Sin., 25 (2009) 1998-2004.
[56] R.E. Marotti, D.N. Guerra, C. Bello, G. Machado, E.A. Dalchiele, Bandgap Energy Tuning of Electrochemically Grown ZnO Thin Films by Thickness and Electrodeposition Potential, Sol. Energy Mater. Sol. Cells, 82 (2004) 85-103.
[57] A. Goux, T. Pauporte, J. Chivot, D. Lincot, Temperature effects on ZnO electrodeposition, Electrochim. Acta, 50 (2005) 2239-2248.
[58] X. Chen, W.J. Guan, G.J. Fang, X.Z. Zhao, Influence of Substrate Temperature and Post-Treatment on the Properties of ZnO : Al Thin Films Prepared by Pulsed Laser Deposition, Appl. Surf. Sci., 252 (2005) 1561-1567.
[59] C. Fournier, O. Bamiduro, H. Mustafa, R. Mundle, R.B. Konda, F. Williams, A.K. Pradhan, Effects of Substrate Temperature on the Optical and Electrical Properties of Al : ZnO Films, Semicond. Sci. Technol., 23 (2008) 085019.
[60] D.Y. Song, Effects of RF Power on Surface-Morphological, Structural and Electrical Properties of Aluminium-Doped Zinc Oxide Films by Magnetron Sputtering, Appl. Surf. Sci., 254 (2008) 4171-4178.
[61] J.G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z.Z. Ye, Y.J. Zeng, Y.Z. Zhang, L.P. Zhu, H.P. He, B.H. Zhao, Carrier Concentration Dependence of Band Gap Shift in N-Type ZnO : Al Films, J. Appl. Phys., 101 (2007) 083705.
[62] A. Walsh, J. L. F. D. Silva, S.H. Wei, Symmetry-Induced Transparency in Conductive Metal Oxides for Optoelectronics, SPIE Newsroom, (2008).
[63] W.J. Li, E.W. Shi, W.Z. Zhong, Z.W. Yin, Growth mechanism and growth habit of oxide crystals, J. Cryst. Growth, 203 (1999) 186-196.
[64] B. Meyer, D. Marx, Density-functional study of the structure and stability of ZnO surfaces, Phys. Rev. B, 67 (2003) 039902.
[65] J. Elias, R. Tena-Zaera, G.Y. Wang, C. Levy-Clement, Conversion of ZnO Nanowires into Nanotubes with Tailored Dimensions, Chem. Mat., 20 (2008) 6633-6637.
[66] S. Chatterjee, S. Gohil, B. Chalke, P. Ayyub, Optimization of the Morphology of ZnO Nanorods Grown by an Electrochemical Process, J. Nanosci. Nanotechnol., 9 (2009) 4792-4796.
[67] F. Ye, X.D. Wang, Z.Y. Yang, J.J. Li, C.S. Lin, T.T. Wang, Fabrication of highly Oriented ZnO Nanorod Arrays by Galvanostatic Deposition, Rare Metals, 27 (2008) 513-516.
[68] K.Y. Yang, K.M. Yoon, S. Lim, H. Lee, Direct Indium Tin Oxide Patterning Using Thermal Nanoimprint Lithography for Highly Efficient Optoelectronic Devices, J. Vac. Sci. Technol. B, 27 (2009) 2786-2789.
[69] J. Elias, R. Tena-Zaera, C. Levy-Clement, Electrochemical Deposition of ZnO Nanowire Arrays with Tailored Dimensions, J. Electroanal. Chem., 621 (2008) 171-177.
[70] R. Tena-Zaera, J. Elias, G. Wang, C. Levy-Clement, Role of Chloride Ions on Electrochemical Deposition of ZnO Nanowire Arrays from O2 Reduction, J. Phys. Chem. C, 111 (2007) 16706-16711.
[71] L.F. Xu, Y. Guo, Q. Liao, J.P. Zhang, D.S. Xu, Morphological Control of ZnO Nanostructures by Electrodeposition, J. Phys. Chem. B, 109 (2005) 13519-13522.
[72] H. El Belghiti, T. Pauporte, D. Lincot, Mechanistic Study of ZnO Nanorod Array Electrodeposition, Phys. Status Solidi A-Appl. Mat., 205 (2008) 2360-2364.
[73] T. Pauporte, I. Jirka, A Method for Electrochemical Growth of Homogeneous Nanocrystalline ZnO Thin Films at Room Temperature, Electrochim. Acta, 54 (2009) 7558-7564.
[74] J.J. Chen, Y.K. Su, C.L. Lin, C.C. Kao, Light Output Improvement of AlGaInP-Based LEDs with Nano-Mesh ZnO Layers by Nanosphere Lithography, IEEE Photonics Technol. Lett., 22 (2010) 383-385.
[75] B.J. Kim, J. Bang, S.H. Kim, J. Kim, Enhancement of the Light-Extraction Efficiency of GaN-Based Light Emitting Diodes Using Graded-Refractive-Index Layer by SiO2 Nanosphere Lithography, J. Electrochem. Soc., 157 (2010) H449-H451.
[76] Q.C. Li, V. Kumar, Y. Li, H.T. Zhang, T.J. Marks, R.P.H. Chang, Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions, Chem. Mat., 17 (2005) 1001-1006.
[77] R. Kitsomboonloha, S. Baruah, M.T.Z. Myint, V. Subramanian, J. Dutta, Selective Growth of Zinc Oxide Nanorods on Inkjet Printed Seed Patterns, J. Cryst. Growth, 311 (2009) 2352-2358.
[78] K. Jager, M. Zeman, A Scattering Model for Surface-Textured Thin Films, Appl. Phys. Lett., 95 (2009) 171108.
[79] H. L. Task, L.V. Genco, Method for Measuring Haze in Transparencies, in, The United States of America as represented by the Secretary of the Air Force, Washington, D.C., 1986.
指導教授 鄭紹良(Shao-Liang Cheng) 審核日期 2010-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明