博碩士論文 973204036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:113 、訪客IP:3.145.51.102
姓名 黃彥智(Yen-chih Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 抗甲醇毒化DMFC陰極觸媒合成及ORR活性探討
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 目前應用於直接甲醇燃料電池最有效率的觸媒為鉑觸媒,包含陽極與陰極觸媒,主要原因是鉑對陽極甲醇的催化氧化及陰極氧分子還原反應,顯示出較高的活性,且鉑在酸性介質中有較高的穩定性及耐腐蝕性。而其他金屬雖然也可以催化甲醇的氧化反應,但性能和穩定性都不如鉑。然而鉑金屬價格昂貴,造成直接燃料電池的成本大大的提高,所以尋找較廉價的觸媒來替代鉑金屬是讓直接甲醇燃料電池能商業化的重要課題。使用鉑金屬當陰極觸媒還有甲醇會從陽極滲透到陰極的問題,甲醇滲透到陰極會造成混合電位及鉑金屬的活性中心被毒化這二種問題。對於陰極觸媒,尋求對氧分子還原反應有高活性且廉價的非鉑金屬觸媒是讓直接甲醇燃料電池能商業化的重點之一。
本論文探討利用鈀金屬來代替鉑金屬作為直接甲醇燃料電池陰極觸媒主要元素的可能性,並加入鈷當作第二金屬來形成二元合金鈀鈷觸媒以提升鈀的活性,並嘗試利用金屬鎢、鉬、金與鈀鈷觸媒形成三元合金觸媒,探討製備方法、活化方法及觸媒配製對氧分子還原反應及甲醇毒化的影響。利用旋轉圓盤電極和循環伏安法來判斷觸媒的活性。結果顯示鈀鈷系列觸媒有好的抗甲醇毒化能力。不論在有甲醇或無甲醇的環境下,觸媒對於氧分子還原反應的活性順序:鈀鈷鉬觸媒>鈀鈷金觸媒、鈀鈷鎢觸媒>鈀鈷觸媒。此外,所有鈀鈷系列觸媒在有甲醇的環境下的活性表現皆優於商用觸媒JM13100。另外使用醋酸鈀當鈀的前驅物製備的鈀鈷觸媒活性優於使用氯化鈀當鈀的前驅物製備的鈀鈷觸媒。
摘要(英) Platinum is the most effective electrocatalysts for use in Direct Methanol Fuel Cell (DMFC), both anode and cathode, because of its’ high catalytic activity for methanol oxidation and oxygen reduction reactions (ORR). Another advantage for using platinum is it has very high stability and good corrosion resistant under acidic operating medium. Even though other metals have similar activity capabilities but fail to perform in acidic condition. However, platinum is too expensive for use in DMFC and finding an alternative much cheaper catalyst is desirable towards the realization of DMFC. Another problem in using platinum at the cathode is the methanol crossover problem. Methanol crossover to the cathode created both over-potential and active site poisoning problems when Pt is used. The search for more active and less expensive non-platinum based catalysts for oxygen reduction reaction (ORR) is one of the most important issues towards the commercialization of DMFC.
This thesis explores the possibility of using palladium, instead of platinum, as the basic component of the DMFC cathode catalyst. In order to boost the performance of Pd, Co was added to form a binary catalyst (PdCo/C). Furthermore, ternary PdCoW, PdCoAu and PdCoMo catalysts were also studied. The effect of preparation method, activation method and catalyst formulations towards ORR activity and methanol tolerance were explored in this thesis. Catalyst performance were studied using Rotating Disk Electrode (RDE) and Cyclic Voltammetry (CV). Results in this study revealed that PdCo based catalyst have good tolerance in methanol. The ORR activity, with and without added methanol, decreases in the following order: PdCoMo/C > PdCoAu~PdCoW > PdCo. Futhermore, all PdCo based catalysts have higher activity than commercial Johnson Matthey Pt/C catalysts in the presence of methanol. Catalysts prepared with Pd(CH3CO2)2 as the Pd precursor have better activity over PdCl2 precursor.
關鍵字(中) ★ 陰極鈀系觸媒
★ 抗甲醇毒化
關鍵字(英) ★ methanol tolerance
★ cathdoe catalyst
論文目次 第一章 緒論 1
1.1前言 1
1.2 質子交換膜燃料電池(PEMFC) 6
1.3 直接甲醇燃料電池操作原理 7
1.4 薄膜電極組(MEA) 9
第二章 文獻回顧 11
2.1陰極觸媒的材料 11
2.2 Pd/C觸媒 16
2.3 PdCo/C、PdCoM/C觸媒的合成與鑑定 21
第三章 實驗設備與方法 22
3.1 藥品 22
3.2 儀器設備 23
3.3陰極觸媒的合成與鑑定 24
3.3.1碳載體表面處理 24
3.3.2 陰極觸媒PdCo/C、PdCoM/C合成方法 25
3.4 改質碳黑與合金觸媒的表面分析 31
3.4.1 X光繞射分析(XRD) 31
3.4.2碳黑的比表面積與孔洞分析 33
3.4.3程式升溫脫附法(Temperature Programmed Desorption,TPD) 35
3.4.4氣相分析儀分析(Gas Chromatography,GC) 36
3.4.5高解析度穿透式電子顯微鏡(HRTEM) 36
3.4.6 熱重分析儀分析(TGA) 37
3.4.7 陰極觸媒PdCo/C、PdCoM/C活性測試 38
3.4.7.1 電極製作 39
3.4.7.2 tip上觸媒loading量的估計 40
3.4.7.3 電極特性的循環伏安法測量(Cyclic volatmmetery, CV) 41
3.4.7.4 陰極觸媒PdCo/C、PdCoM/C活性測試 42
3.4.7.5 陰極觸媒PdCo/C、PdCoM/C抗毒化程度測試 42
第四章 結果與討論 44
4.1 碳載體表面改質與測定 44
4.1.1 改質碳BET分析 45
4.1.2 改質碳載體表面官能基測定 ( TPD ) 45
4.1.3 碳材導電度測試 47
4.2 陰極觸媒PdCo/C的合成與鑑定 48
4.2.1 陰極觸媒PdCo/C熱重分析(TGA) 48
4.2.2 陰極觸媒PdCo/C XRD分析 50
4.2.3 陰極觸媒PdCo/C TEM分析 54
4.2.4 陰極觸媒PdCo/C抗甲醇毒化活性分析 57
4.2.4.1煅燒對PdCo/C觸媒活性之影響 60
4.2.4.2負載量對PdCo/C觸媒活性之影響 61
4.2.4.3 composition對PdCo/C觸媒活性之影響 62
4.2.4.4 煅燒溫度對PdCo/C觸媒活性之影響 63
4.2.4.5 前驅物對PdCo/C觸媒活性之影響 64
4.3 陰極觸媒PdCoW/C的合成與鑑定 66
4.3.1 陰極觸媒PdCoW/C TGA分析 66
4.3.2 陰極觸媒PdCoW/C XRD分析 69
4.3.3 陰極觸媒PdCoW/C TEM分析 72
4.3.4 陰極觸媒PdCoW/C 抗甲醇毒化活性分析 74
4.3.4.1 煅燒對PdCoW/C觸媒活性之影響 74
4.3.4.2 Composition對PdCoW/C觸媒活性之影響 75
4.3.4.3 製備方法對PdCoW/C觸媒活性之影響 76
4.3.4.4 前驅物對PdCoW/C觸媒活性之影響 77
4.3.4.5 還原溫度對PdCoW/C觸媒活性之影響 78
4.3.4.6 操作溫度對PdCoW/C觸媒活性之影響 79
4.3.5 陰極觸媒PdCoW/C 耐久測試分析 80
4.3.5.1 商用觸媒JM13100之耐久測試 80
4.3.5.2 Pd7Co2W1/C-H2觸媒之耐久測試 82
4.3.5.3 Pd7Co2W1/C-H2c500觸媒之耐久測試 87
4.4 陰極觸媒PdCoMo/C的合成與鑑定 90
4.4.1 陰極觸媒PdCoMo/C TGA分析 90
4.4.2 陰極觸媒PdCoMo/C XRD分析 92
4.4.3 陰極觸媒PdCoMo/C TEM分析 94
4.4.4 陰極觸媒PdCoMo/C 抗甲醇毒化活性分析 96
4.4.4.1 煅燒對PdCoMo/C觸媒活性之影響 96
4.4.4.2 負載量對PdCoMo/C觸媒活性之影響 97
4.4.4.3 操作溫度對PdCoMo/C觸媒活性之影響 98
4.4.4.4 Composition對PdCoMo/C觸媒活性之影響 99
4.4.4.5 製備方法對PdCoMo/C觸媒活性之影響 100
4.4.5 陰極觸媒PdCoMo/C 耐久測試分析 101
4.4.5.1 Pd7Co2Mo1/C-H2c500觸媒之耐久測試 102
4.4.5.2 Pd38Co55Mo7/C-H2c500觸媒之耐久測試 104
4.5 陰極觸媒PdCoAu/C的合成與鑑定 108
4.5.1 陰極觸媒PdCoAu/C TGA分析 108
4.5.2 陰極觸媒PdCoAu/C XRD分析 111
4.5.3 陰極觸媒PdCoAu/C TEM分析 112
4.5.4 陰極觸媒PdCoAu/C 抗甲醇毒化活性分析 115
4.5.4.1 煅燒對PdCoAu/C觸媒活性之影響 115
4.5.4.2 Composition對PdCoAu/C觸媒活性之影響 116
4.5.4.3 製備方法對PdCoAu/C觸媒活性之影響 117
4.5.4.4 操作溫度對PdCoAu/C觸媒活性之影響 118
4.6 不同陰極觸媒抗甲醇毒化活性分析 120
4.6.1 不同陰極觸媒在0M CH3OH的比較 120
4.6.2 不同陰極觸媒在1M CH3OH的比較 122
第五章 結論 124
參考文獻 126
參考文獻 (1.)http://www.tier.org.tw
(2.)http://www.antig.com/
(3.)Shukla, A. K., Raman , R. K. ,Choudhury, N. A., R.Priolkar; K.,Sarode., P. R , Emura, S., Kumashiro, R., “Carbon-supported Pt–Fe alloys methanol-resistant oxygen-reduction catalyst for direct methanol fuel cells”, Journal of Electroanalytical Chemistry, Vol. 563, pp. 181-190(2004).
(4.)http://thefraserdomain.typepad.com/
(5.)www.udomi.de/
(6.)Watanabe, M., Uchida , M. , Motoo S., “Preparation of highly dispersed Pt plus Ru alloy clusters and the activity for the electrooxidation of methanol”, Journal of Electroanalytical Chemistry, Vol. 299, pp. 395(1987).
(7.)Gasteriger , H. A., Markovic, N., Ross , P. N., Jr. and Elton J.Cairns, “Temperature-dependent methanol electro-oxidation on well-characterized Pt-Ru alloys”, Journal of the Electrochemical Society ,Vol. 141, pp.1795(1994).
(8.)Liu, L., C. Pu, Viswanathan , R., Fan, Q., Liu , R., and Smotkin, E. S., “Carbon supported and unsupported PtRu anodes for liquid feed direct methanol fuel cells”, Electrochimica Acta., Vol. 43, pp. 3657(1998).
(9.)Gojkovic, S. L., Vidakovic , T. R., and Durovic , D. R., “Kinetic Study of Methanol Oxidation on Carbon-Supported PtRu Electrocatalyst”, Electrochimica Acta., Vol. 48, pp. 3607-3614(2003).
(10.)Iwasita, T., “Electrocatalysis of methanol oxidation”, Electrochimica Acta., Vol. 47, pp. 3663-3674(2002).
(11.)Christensen, P. A., Hamnett , A., Troughton , G. L., “The role of morphology in the methanol electro-oxidation reaction”, Journal of Electroanalytical Chemistry, Vol. 362, pp.207(1993).
(12.)Shukla, K., Ravikumar , M. K., Arico, A. S., Candiano , G., Antonucci,V., Giordano, N., Hamnett ,A., “Methanol electrooxidation on carbon-supported Pt-WO3−xelectrodes in sulphuric acid electrolyte”, Journal of Applied Electrochemistry, Vol. 25, pp. 528-532(1995).
(13.)Shukla, A.K., Raman ,R.K., “Methanol-resistant oxygen-reduction catalysts for direct methanol fuel cells”, Annual Review of Materials Research, Vol. 33, pp. 155-168(2003).
(14.)Fenske ,D., Greshnykh ,D., Neuendorf ,S., Hoogestraat , D.,Borchert ,H., Al-Shamery ,K., “Ligand effects observed for the adsorption of CO on Co–Pt alloys”, Surface Science, Vol. 602,pp. 2101–2106(2008).
(15.)Antolini ,E., Salgado , J.R.C., Giz ,M.J., Gonzalez ,E.R., “Effects of geometric and electronic factors on ORR activity of carbon supported Pt–Co electrocatalysts in PEM fuel cells”, International Journal of Hydrogen Energy, Vol. 30 , pp. 1213 – 1220(2005)
(16.)Jalan, V., Taylor, E. J., “Importance of Interatomic Spacing in Catalytic Reduction of Oxygen in Phosphoric Acid”, Journal of the Electrochemical Society, vol. 130, pp.2299(1983).
(17.)Paffett, M.T., Berry, G. J., Gottesfeld, S., “Oxygen Reduction at Pt0.65Cr0.35, Pt0.2Cr0.8 and Roughened Platinum”, Journal of The Electrochemical Society, Vol. 135, pp. 1431(1998).
(18.)Mukerjee, S., Srinivasan ,S., Soriaga ,M. P., McBreen ,J., “Role of Structural and Electronic Properties of Pt and Pt Alloys on Electrocatalysis of Oxygen Reduction”, Journal of The Electrochemical Society, Vol. 142, pp. 1409 (1995).
(19.)Toda , T., Igarashi , H., Watanabe , M., “Enhancement of the electrocatalytic O2 reduction on Pt–Fe alloys”, Journal of Electroanalytical Chemistry, Vol 460, pp. 258–262(1999).
(20.)Toda ,T., Igarashi ,H., Watanabe M., “Role of Electronic Property of Pt and Pt Alloys on Electrocatalytic Reduction of Oxygen”, Journal of The Electrochemical Society, Vol. 145, pp. 4185-4188(1998).
(21.)Savadogo , O., Lee, K., Oishi, K., Mitsushima , S., Kamiya ,N., Ta ,K.I., “New palladium alloys catalyst for the oxygen reduction reaction in an acid medium”, Electrochemistry Communications, Vol. 6, pp. 105-109(2004).
(22.)Lee ,K., Savadogo ,O., Ishihara ,A., Mitsushima , S., Kamiya , N., Ota ,K. I., “Methanol-Tolerant Oxygen Reduction Electrocatalysts Based on Pd-3D Transition Metal Alloys for Direct Methanol Fuel Cells”, Journal of the Chemical Society,Vol. 153,pp .A20-A24(2006).
(23.)A. Capon, R. Parsons, “The Oxidation of Formic Acid on Noble Metal Electrodes, Part II. Comparison of the Behavior of Pure Metals,” Journal of the Chemical Society, Vol 44, pp. 239-254(1973).
(24.)Lamy ,C., “Electrocatalytic oxidation of organic compounds on noble metals in aqueous solution”, Electrochimica Acta, Vol. 29,pp. 1581-1588 (1984).
(25.)Fernandez, J.L., Raghuveer ,V., Manthiram , A., Bard ,A.J., “Pd-Ti and Pd-Co-Au Electrocatalysts as a Replacement for Platinum for Oxygen Reduction in Proton Exchange Membrane Fuel Cells”, Journal of the American Chemical Society,Vol. 127, pp. 13100-13101(2005).
(26.)Nie ,M., Shen ,P.K., Wei ,Z., “Nanocrystalline tungsten carbide supported Au-Pd electrocatalyst for oxygen reduction”, Journal of Power Sources, Vol 167, pp. 69-73(2007).
(27.)Raghuveer ,V., Manthiram ,A., Bard ,A.J., “Pd−Co−Mo Electrocatalyst for the Oxygen Reduction Reaction in Proton Membrane Fuel Cells”, The Journal of Physical Chemistry, Vol. 109, pp. 22909-22912(2005).
(28.)Tarasevich , M.R., Chalykh, A.E., Bogdanovskaya, V.A.,Kuznetsova, L.N., Kapustina , N.A., Efremov, B.N., Ehrenburg, M.R., Reznikova , L.A., “Kinetics and mechanism of oxygen reduction reaction at CoPd system synthesized on XC72”,Electrochimica Acta, Vol. 51, pp. 4455-4462(2006).
(29.)Mustain ,W.E., Kepler ,K., Prakash , J., “Investigations of Carbon-Supported CoPd3 Catalysts as Oxygen Cathodes in PEM Fuel Cells”, Electrochemistry Communications , Vol. 8, pp.406-410(2006).
(30.)Wang ,W.M., Zheng ,D., Du, C., Zou ,Z.Q., Zhang , X.G., Xia ,B.J., Yang , H., Akins , D.L., “Carbon-supported Pd–Co bimetallic nanoparticles as electrocatalysts for the oxygen reduction reaction”, Journal of Power Sources, Vol. 167, pp. 243-249(2007).
(31.)Mathiyarasu ,J., Phani , K.L.N., “Carbon-Supported
Palladium-Cobalt-Noble Metal (Au, Ag, Pt) Nanocatalysts as
Methanol Tolerant Oxygen-Reduction Cathode Materials in
DMFCs”, Journal of the Chemical Society, Vol.154, pp. B1100-B1105(2007).
(32.)Zhang ,L., Lee , K., Zhang , J., “The effect of heat treatment on nanoparticle size and ORR activity for carbon-supported Pd-Co alloy electrocatalysts”, Electrochiica. Acta, Vol.52 , pp. 3088-3094(2007).
(33.)Zhang, L., Lee , K., Zhang, J., “Effect of synthetic reducing agents on morphology and ORR activity of carbon-supported nano-Pd-Co alloy electrocatalysts”, Electrochimica Acta, Vol. 52, pp.7964-7971(2007).
(34.)Shao , M.H., Sasaki, K., Adzic , R.R., “Pd-Fe nanoparticles as electrocatalysts for oxygen reduction”, Journal of the American Chemical Society, Vol.128, pp.3526-3527 (2006).
(35.)Yasuda, K., and Nishimura, Y., “The deposition of ultrafine platinum particles on carbon black by surface ion exchange - increase in loading amount” , Materials Chem. and Phys. 82 (2003) 921.
(36.)Rodriguez, F., “The role of carbon materials in heterogeneous catalysis”, Carbon 36, 159 (1998).
指導教授 陳郁文(Yu-wen Chen) 審核日期 2010-6-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明