博碩士論文 973204040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:52.14.121.242
姓名 莊仲維(Chung-Wei Chuang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 小鼠脂肪幹細胞之膜純化法及細胞外間質對人類脂肪幹細胞影響之研究
(Mouse adipose tissue-derived stromal cell purification by perfusion type filtration and human adipose tissue-derived stromal cell cultivation with extracellular matrix)
相關論文
★ 於不同彈性係數的生醫材料上體外培植造血幹細胞★ 藉由調整水凝膠之表面電荷及軟硬度並嫁接玻連蛋白用以培養人類多功能幹細胞
★ 可見光對羊水間葉幹細胞成骨分化之影響★ 可見光調控神經細胞之基因表現及突觸生長
★ 膜純化法及免疫抗體磁珠法用於分離及體外增殖血液幹細胞之研究★ 人類表皮成長因子的結構穩定性及生物活性測定
★ 微環境對羊水間葉幹細胞多功能性基因表現及分化之影響★ 奈米片段與細胞外基質之改質膜用於臍帶血中造血幹細胞之純化與培養
★ 利用具有奈米片段與細胞外間質蛋白質的表面改殖材質進行臍帶血造血幹細胞體外培養★ 在不同培養條件下針對大腸癌細胞及組織中癌細胞進行純化、剔除及鑑定之研究
★ 羊水間葉幹細胞培養於細胞外間質改質表面其分化能力及多能性之研究★ 人類脂肪幹細胞的膜純化法與分化能力研究
★ 具有抗藥性之大腸癌細胞株能提高癌胚抗原的表現,但並非是癌症起始細胞★ 羊水間葉幹細胞培養於接枝細胞外間質寡肽與環狀肽具有最佳表面硬度的生醫材料,其增殖能力及多能性之研究
★ 人類體細胞從組成誘導型多能性幹細胞培養在無飼養層上★ 使用不同孔洞大小之耐倫薄膜從脂肪組織中分離及純化人類脂肪幹細胞之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 脂肪幹細胞可分化為許多種細胞,如脂肪細胞、成骨母細胞、軟骨細胞等間葉細胞,也因如此、脂肪幹細胞在組織再生工程學上被視為一種極具潛力的細胞來源。現今的幹細胞分離技術中,膜分離技術乃是一種相當簡便、快速、易保持細胞活性的方法,此項研究意圖針對小鼠脂肪幹細胞的初代細胞溶液做出進一步的膜純化技術。我們準備了具有11微米孔徑簡單結構的尼龍過濾膜及12 微米複雜結構的聚氨酯膜進行過濾。此外,我們也準備了兩種過濾方法來進行膜純化法,分別是槽式過濾及傾注式過濾,不同點在於槽式過濾中存在一適當壓力使細胞通過過濾膜,而傾注式過濾則有一開孔以宣洩壓力,不會推擠細胞通過過濾膜。在初代細胞溶液通過過濾膜後稱為過濾液,而在相反方向注入培養基以取得未能通過過濾膜的細胞的溶液則稱為回收液。在此項研究中使用流式細胞儀及分化實驗來比較不同過濾條件下其過濾液及回收液中脂肪幹細胞之純度。其結果顯示,11微米的尼龍過濾膜無法有效分離脂肪幹細胞,即使增加至五層尼龍過濾膜亦無法有效分離脂肪幹細胞。而12微米孔徑的聚氨酯膜在搭配傾注式過濾法的條件下,其回收液可取得最高純度的脂肪幹細胞溶液。但在經過一代的增殖培養後,其脂肪幹細胞之表面抗體的表現量及分化比率並無顯著差異。
另一研究則討論細胞外間質對人類脂肪細胞之影響,有許多研究顯示細胞外間質如膠原蛋白會對幹細胞之分化、增殖能力產生影響,且幹細胞於繼代後可能失去其多能性。故此研究將三種典型之細胞外間質塗佈於培養盤上,並將第三代的人類脂肪幹細胞培養於其上,以QRT-PCR及分化實驗測試其多能性基因的表現量及分化能力。結果顯示於膠原蛋白塗佈條件下培養之脂肪幹細胞具有較強之多能性基因表現,且同樣具有較強之脂肪細胞分化能力,此兩項檢測應可得到同樣的結論,膠原蛋白可保持較多的人類脂肪幹細胞之多能性。
摘要(英) Adipose tissue-derived stromal cells (ADSCs) can be induced into several mesenchymal cell lineages such as adipocytes, osteoblasts, and chondrocytes, and other germ layer cell lineages. Therefore, ADSCs are considered as a promising stem cell source for tissue engineering repair. Purification and isolation of specific mesenchymal stem cells are necessary to obtain adequate stem cells for use in clinical applications. The membrane filtration method is a good candidate for the purification of ADSCs because it is simple, inexpensive and because it is easy to maintain sterility during the filtration process. In this study, we developed a novel method to purify primary mouse ADSCs (mADSCs) by the membrane filtration method for rapid use. We investigated two filtration methods to purify mADSC, (i.e., batch-type and perfusion-type). Main differences between these two filtration methods are cell flow direction to the membranes. Nylon mesh filters having 11 μm of pore size and polyurethane foaming (PU) membranes having 12 μm of pore size were used as the membranes for the filtration method. After filtration of adipose-tissue digestion solution, the recovery solution was permeated through the membranes to recovery the adhered cells on the membranes. The cells in permeate and recovery solutions were analyzed by flow cytometry from ADSC surface marker (CD73 and CD90) and Nile-red staining. The differentiation capability of cells separated by the membrane filtration method was also evaluated to confirm the enriched mADSCs. The results indicate that the Nylon mesh filter of 11 μm can not effectively separate mADSCs because of the simple membrane structure, even though we increased sheet numbers of Nylon mesh filters. We found that cells separated through PU membranes by the perfusion method showed twice higher MSCs surface marker expression and differentiation capability. It is concluded that the recovery solution by perfusion-type with polyurethane foaming membranes is the best condition to purify mADSC from mouse adipose tissue by the membrane filtration method.
The micro-environment of stem cells plays an important role on gene expression and differentiation. Therefore, the effect of interaction between human ADSCs (hADSCs) and extracellular matrix (ECM)-coated dishes on the expression and maintenance of pluripotent genes (Oct-4 and Sox-2) and differentiation ability was investigated from qRT-PCR analysis and differentiation experiments. The decrease of pluripotent gene expressions was found in hADSCs from passage 2 to passage 3, which were cultured on TCPS. It seems that the pluripotant gene expression of hADSCs is gradually losing during culture. The hADSCs cultured on collagen-coated dishes showed the highest expression of Oct-4, followed by that on gelatin and fibronectin, while TCPS was the lowest at passage 3. Sox-2 expression of hADSCs also showed similar tendency to the Oct-4 expression. In this point, Collagen-coated dishes should be the best dishes for the culture of hADSCs keeping pluripotent genes. The result of differentiation of hADSCs cultured on ECM-coated dishes also showed the same tendency to qRT-PCR result. It is concluded that hADSCs cultured on collagen-coating dishes could keep higher pluripotency and higher differentiation ability than TCPS and other ECM-coating dishes in this research.
關鍵字(中) ★ 膜純化法
★ 脂肪幹細胞
★ 小鼠
關鍵字(英) ★ mouse adipose tissue
★ filtration method
★ mesenchymal stem cell
論文目次 摘要……………………………………………………………………………………………I
Abstract………………………………………………………………………………………II
致謝……………………………………………………………………………………………IV
Acknowledgement……………………………………………………………………………V
Index of Contents……………………………………………………………………………VI
Index of Figures………………………………………………………………………………IX
Index of Tables……………………………………………………………………………XIII
Chapter 1 Introduction…………………………………………………………………………1
1-1 Stem cells……………………………………………………………………………….1
1-2 Adipose -derived stromal cell (ADSC)…………………………………………………2
1-3 Immunophenotype………………………………………………………………………4
1-4 Gene expression comparison between ADSCs and BMSCs…………………………7
1-5 Lineage-Specific Differentiation Potential……………………………………………9
1-6 Extracellular matrix…………………………………………………………………15
1-7 Flow cytometry…………………………………………………… ……………………18
1-8 Quantitative real-time Polymerase chain reaction (QRT-PCR) …………………20
Chapter 2 Material and Method……………………………………………………………23
2-1 Materials………………………………………………………………………………23
2-1-1 Chemicals…………………………………………………………………………23
2-1-2 Consumable apparatus……………………………………………………………24
2-1-3 Animal………………………………………………………………………………25
2-1-4 Instruments…………………………………………………………………………25
2-2 Experimental Methods………………………………………………………………26
2-2-1 PBS (phosphate buffer saline solution) preparation……………………………26
2-2-2 Culture medium preparation………………………………………………………
2-2-3 Cell culture and passages…………………………………………………………26
2-2-4 Isolation and culture of adipose tissue-derived stromal cell……………………28
2-2-5 Cell purification……………………………………………………………………30
2-2-6 Flow cytometry analysis……………………………………………………………31
2-2-7 Differentiation of adipose tissue-derived stromal cell……………………………32
2-2-8 Imunology staining………………………………………………………………32
2-2-9 Oil red O staining…………………………………………………………………33
2-2-10 Alizarin red S staining……………………………………………………………33
2-2-11 Quantitative analysis of adipogenesis and osteogenesis…………………………34
2-2-12 Isolation of total RNA…………………………………………………………….34
2-2-13 Reverse Transcription of mRNA into cDNA……………………………………35
2-2-14 Quantitative PCR……………………………………………………………………36
Chapter 3 Results and Discussion……………………………………………………………38
3-1 Characterization of mouse adipose tissue-derived stromal cell (mADSC)…………38
3-1-1 Flow cytometry Analysis of mADSCSs……………………………………………38
3-1-2 Immunohistochemistry staining and flow cytometry analysis of ADSCs at passage 1……………………………………………………………………………40
3-2 Purification of adipose tissue-derived stromal cells by membrane filtration method…………………………………………………………………………………42
3-2-1 Purification of ADSCs through one sheet of Nylon mesh filters…………………44
3-2-2 Purification of ADSCs through 5 sheet of Nylon mesh filters……………………48
3-2-3 Purification of ADSCs through 1 sheet of polyurethane membrane filters……52
3-2-4. Comparison of membrane purification method…………………………………57
3-2-5 The differentiation ability of different membrane purification condition…….60
3-2-6 Cell properties of mADSC after 1 sheet PU membrane filtration………………65
3-3 Characterization of human adipose tissue-derived stromal cell (hADSC…………68
3-4 The pluripotency of hADSCs cultured on different extracellular matrix…………71
Chapter4 Conclusion………………………………………………………………………81
Reference……………………………………………………………………………………84
參考文獻 [1] Becker AJ, McCulloch EA, Till JE. "Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells". Nature 1963; 197: 452–4.
[2] Siminovitch L, McCulloch EA, Till JE. The distribution of colony-forming cells among spleen colonies. Journal of Cellular and Comparative Physiology 1963; 62: 327–36.
[3] Bruce A. Bunnell, Mette Flaat.” Adipose-derived stem cells: Isolation, expansion and differentiation”, Methods 2008; 45; 115–120
[4] Friedenstein, A.J., Gorskaja, J.F. & Kulagina, N.N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Experimental Hematology 1976; 4, 267–274.
[5] Caplan, A.I. Mesenchymal stem cells. Journal of Orthopaedic Research 1991; 9, 641–650.
[6] Zuk, P.A., Zhu, M., Ashjian, P., De Ugarte, D.A., Huang, J.I., Mizuno, H., Alfonso, Z.C., Fraser, J.K., Benhaim, P. & Hedrick, M.H. Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell 2002; 13, 4279–4295.
[7] Lee, R.H., Kim, B., Choi, I., Kim, H., Choi, H.S., Suh, K., Bae, Y.C. & Jung, J.S. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cellular Physiology and Biochemistry 2004; 14, 311–324.
[8] Shih, D.T., Lee, D.C., Chen, S.C., Tsai, R.Y., Huang, C.T., Tsai, C.C., Shen, E.Y. & Chiu, W.T. Isolation and characterization of neurogenic mesenchymal stem cells in human scalp tissue. Stem Cells 2005; 23, 1012–1020.
[9] Toma, J.G., Akhavan, M., Fernandes, K.J., Barnabe-Heider, F., Sadikot, A., Kaplan, D.R. & Miller, F.D. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nature Cell Biology 2001; 3, 778–784.
[10] Wang, H.S., Hung, S.C., Peng, S.T., Huang, C.C., Wei, H.M., Guo, Y.J., Fu, Y.S., Lai, M.C. & Chen, C.C. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 2004; 22, 1330–1337.
[11] Coleman SR. Overview of structural fat grafting. In: Coleman SR, Mazzola RF (eds) Fat injection from filling to regeneration. Quality Medical Publishing, St. Louis, MO 2009; pp 93–110
[12] Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem 2006; 98(5):1076–1084
[13] Scadden DT. The stem-cell niche as an entity of action. Nature 2006; 441:1075–1079
[14] Horwitz EM, Gordon PL, Koo WK et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci U S A 2002; 99:8932– 8937.
[15] Arinzeh TL, Peter SJ, Archambault MP et al. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J Bone Joint Surg Am 2003; 85-A:1927–1935.
[16] Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284:143–147.
[17] Pountos I, Jones E, Tzioupis C et al. Growing bone and cartilage: The role of mesenchymal stem cells. J Bone Joint Surg Br 2006; 88:421– 426.
[18] Jeffrey M, Gimble, Adam J. Katz and Bruce A. Bunnell. Adipose-derived stem cells for regenerative medicine. Circulation Research 2007; 100, 1249-1260
[19] Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, Di Halvorsen Y, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM. The immunophenotype of human adipose derived cells: temporal changes in stromal- and stem cell-associated markers. Stem Cells 2006; 24: 376–385.
[20] McIntosh K, Zvonic S, Garrett S, Mitchell JB, Floyd ZE, Hammill L, Kloster A, Halvorsen YD, Ting JP, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM. The immunogenicity of human adipose derived cells: temporal changes in vitro. Stem Cells 2006; 24:1245–1253.
[21] Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284: 143–147.
[22] Young HE, Steele TA, Bray RA, Detmer K, Blake LW, Lucas PW, Black AC Jr. Human pluripotent and progenitor cells display cell surface cluster differentiation markers cd10, cd13, cd56, and mhc class-i. Proc Soc Exp Biol Med 1999; 221:63–71.
[23] Ryden M, Dicker A, Gotherstrom C, Astrom G, Tammik C, Arner P, Le Blanc K. Functional characterization of human mesenchymal stem cellderived adipocytes. Biochem Biophys Res Commun 2003; 311: 391–397.
[24] Dicker A, Le Blanc K, Astrom G, van Harmelen V, Gotherstrom C, Blomqvist L, Arner P, Ryden M. Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Exp Cell Res 2005; 308:283–290.
[25] Ippokratis Pountos, Diane Corscadden, Paul Emery, Peter V. Giannoudis. Mesenchymal stem cell tissue engineering: Techniques for isolation, expansion and application. Int. J. Care Injured 2007; 38S4, S23-S33
[26] Adam J. Katz, Ashok Tholpady, Sunil S. Tholpady, Hulan Shang, Roy C. Ogle. Cell Surface and Transcriptional Characterization of Human Adipose-Derived Adherent Stromal (hADAS) Cells. Stem Cells 2005; 23:412–423
[27] Winter A, Breit S, Parsch D, Benz K, Steck E, Hauner H, Weber RM, Ewerbeck V, Richter W. Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells. Arthritis Rheum 2003; 48: 418–429.
[28] Izadpanah R, Trygg C, Patel B, Kriedt C, Dufour J, Gimble JM, Bunnell BA. Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem 2006; 99:1286 –1297.
[29] Li X, Kato Y, Tsunoda Y. Comparative analysis of development-related gene expression in mouse preimplantation embryos with different developmental potential. Mol Reprod Dev 2005; 72:152–160.
[30] Delany J, Floyd ZE, Zvonic S, Smith A, Gravois A, Reiners E, Wu X, Kilroy G, Lefevre M, Gimble JM. Proteomic analysis of primary cultures of human adipose derived stem cells: modulation by adipogenesis. Mol Cell Proteomics 2005; 4:731–740.
[31] Zvonic S, Lefevre M, Kilroy G, Floyd ZE, Delany JP, Kheterpal I, Gravois A, Dow R, White A, Wu X, Gimble JM. Secretome of primary cultures of human adipose-derived stem cells: modulation of serpins by adipogenesis. Mol Cell Proteomics 2007; 6:18 –28.
[32] Hausman GJ, Poulos SP, Richardson RL, Barb CR, Andacht T, Kirk HC, Mynatt RL. Secreted proteins and genes in fetal and neonatal pig adipose tissue and stromal-vascular cells. J Anim Sci 2006; 84: 1666–1681.
[33] Chen X, Cushman SW, Pannell LK, Hess S. Quantitative proteomic analysis of the secretory proteins from rat adipose cells using a 2D liquid chromatography-ms/ms approach. J Proteome Res. 2005; 4:570 –577.
[34] Wang, D., Park, J. S., Chu, J. S., Krakowski, A., Luo, K., Chen, D. J., and Li, S. Proteomic profiling of bone marrow mesenchymal stem cells upon transforming growth factor _1 stimulation. J. Biol. Chem. 2004:279, 3725–3734
[35] Boraldi, F., Bini, L., Liberatori, S., Armini, A., Pallini, V., Tiozzo, R., Pasquali- Ronchetti, I., and Quaglino, D. Proteome analysis of dermal fibroblasts cultured in vitro from human healthy subjects of different ages. Proteomics 2003:3, 917–929
[36] Dasuri, K., Antonovici, M., Chen, K., Wong, K., Standing, K., Ens, W., El-Gabalawy, H., and Wilkins, J. A. The synovial proteome: analysis of fibroblast-like synoviocytes. Arthritis Res. Ther 2004:6, R161–R168
[37] Cowherd RM, Lyle RE, McGehee RE. Molecular regulation of adipocyte differentiation. Semin Cell Dev Biol 1999;10:3–10.
[38] Tong Ming Liu, Monique Martina, Dietmar W, Hutmacher, James Hoipo Hui, Eng Hin Lee, Bing Lim. Identification of Common Pathways Mediating Differentiation of Bone Marrow- and Adipose Tissue-Derived Human Mesenchymal Stem Cells into Three Mesenchymal Lineages. Stem Cells 2007; 25:750–760
[39] Sekiya I, Vuoristo JT, Larson BL et al. In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc Natl Acad Sci U S A 2002; 99:4397– 4402.
[40] Lin Y, Luo E, Chen X et al. Molecular and cellular characterization during chondrogenic differentiation of adipose tissue-derived stromal cells in vitro and cartilage formation in vivo. J Cell Mol Med 2005; 9: 929–939.
[41] Benz K, Breit S, Lukoschek M, Mau H, Richter W. Molecular analysis of expansion, differentiation and growth factor treatment of human chondrocytes identifies differentiation markers and growth-related genes. Biochem Biophys Res Commun 2002; 293: 284–92.
[42] Zheng Q, Zhou G, Morello R et al. Type X collagen gene regulation by Runx2 contributes directly to its hypertrophic chondrocyte-specific expression in vivo. J Cell Biol 2003; 162:833– 842.
[43] Buchaille R, Couble ML, Magloire H et al. Expression of the small leucine-rich proteoglycan osteoadherin/osteomodulin in human dental pulp and developing rat teeth. Bone 2000; 27: 265–270.
[44] Ikeda R, Yoshida K, Tsukahara S et al. The promyelotic leukemia zinc finger promotes osteoblastic differentiation of human mesenchymal stem cells as an upstream regulator of CBFA1. J Biol Chem 2005; 280: 8523– 8530.
[45] De Ugarte DA, Alfonso Z, Zuk PA, Elbarbary A, Zhu M, Ashjian P, et al. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol Lett 2003; 89: 267-270
[46] Gun-II Im M.D.*, Yong-Woon Shin M.D. and Kee-Byung Lee M.D. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? OsteoArthritis and Cartilage (2005) 13, 845-853
[47] Ikeda R, Yoshida K, Tsukahara S et al. The promyelotic leukemia zinc finger promotes osteoblastic differentiation of human mesenchymal stem cells as an upstream regulator of CBFA1. J Biol Chem 2005; 280: 8523– 8530.
[48] Hubler TR, Denny WB, Valentine DL et al. The FK506-binding immunophilin FKBP51 is transcriptionally regulated by progestin and attenuates progestin responsiveness. Endocrinol 2003; 144: 2380 –2387.
[49] Mamane Y, Sharma S, Petropoulos F et al. Posttranslational regulation of IRF-4 activity by the immunophilin FKBP52. Immunity 2000; 12:129 –140.
[50] Guo Y, Guettouche T, Fenna M et al. Evidence for a mechanism of repression of heat shock factor 1 transcriptional activity by a multichaperone complex. J Biol Chem 2001; 276:45791– 45799.
[51] Craveiro RB, Ramalho JD, Chagas JR et al. High expression of human carboxypeptidase M in Pichia pastoris: Purification and partial characterization. Braz J Med Biol Res 2006; 39:211–217.
[52] B.A. Reynolds, S. Weiss, Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992; 255 1707–1710.
[53] L.J. Richards, T.J. Kilpatrick, P.F. Bartlett, De novo generation of neuronal cells from the adult mouse brain Proc. Natl. Acad. Sci. USA 1992; 89; 8591–8595.
[54] D. Woodbury, E.J. Schwarz, D.J. Prockop and I.B. Black J. Adult rat and human bone marrow stromal cells differentiate into neurons. Neurosci. 2000; Res. 61 ; pp. 364–370.
[55] J. Sanchez-Ramos, S. Song, F. Cardozo-Pelaez, C. Hazzi, T. Stedeford, A. Willing, T.B. Freeman, S. Saporta, W. Janssen, N. Patel, D.R. Cooper and P.R. Sanberg J. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp. Neurol. 2000; 164; pp. 247–256.
[56] Kristine M. Safford, Kevin C. Hicok, Shawn D. Safford, Yuan-Di C. Halvorsen, William O. Wilkison, Jeffrey M. Gimble and Henry E. Rice. Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun. 2002 Jun 7; 294(2):371-9.
[57] P. A. Zuk, M. Zhu, H. Mizuno, J. Huang, J. W. Futrell, A. J. Katz, P. Benhaim, H. P. Lorenz, and M. H. Hedrick, Multilineage cells from human adipose tissue: implications for cell-based therapies, Tissue Eng 2001; 7(2), 211-228 .
[58] Kristine M. Safford, Kevin C. Hicok, Shawn D. Safford, Yuan-Di C. Halvorsen, William O. Wilkison, Jeffrey M. Gimble, and Henry E. Rice. Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochemical and Biophysical Research Communications 2002; 294; 371–379
[59] K.S. O'Shea. Neuronal differentiation of mouse embryonic stem cells: Lineage selection and forced differentiation paradigms. Blood Cells Mol. Dis. 2001; 27; pp. 705–712.
[60]S. Okabe, K. Forsberg-Nilsson, A.C. Spiro, M. Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Segal and R.D.G. McKay Mech. Dev. 1996; 59 ; pp. 89–102.
[61] H.B. Sarnat, D. Nochlin and D.E. Born. Neuronal nuclear antigen (NeuN): A marker of neuronal maturation in the early human fetal nervous system. Brain Res.1998; 20; pp. 88–94.
[62]M.G. Ormerod. Flow cytometry: A practical approach, 3rd Edition. Oxford Unversity Press, 2000
[63]JamesV. Watson. Introduction to flow cytometry, First paperback edition. Cambridge University Press, 2004.
[64] Matthews JA, Wnek GE, Simpson DG, et al. Electrospinning of
collagen nanofibers. Biomacromolecules 2002: 3(2): 232–238.
[65] Adams JC,, Watt FM. Regulation of development and differentiation by the extracellular-matrix. Development 1993; 117(4): 1183–1198.
[66] McBeath R, Pirone DM, Nelson CM, et al. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 2004; 6(4): 483–495.
[67] Schiller PC, D’Ippolito G, Balkan W, et al. Gap-junctional communication is required for the maturation process of osteoblastic cells in culture. Bone 2001; 28(4): 362–369.
[68] Lauren S. Sefcik1, Rebekah A. Neal1, Edward A. Botchwey, et al. Collagen nanofibres are a biomimetic substrate for the serum-free osteogenic differentiation of human adipose stem cells. J Tissue Eng Regen Med 2008; 2: 210–220.
[69] Josh Mauney , Vladimir Volloch. Collagen I matrix contributes to determination of adult human stem cell lineage via differential, structural conformation-specific elicitation of cellular stress response. Matrix Biology 2009; 28; 251–262
[70] K.M. Yamada, Fibronectins: structure, functions and receptors, Curr. Opin. Cell.
Biol. 1989; 1; 956–963.
[71] S. Johansson, G. Svineng, K. Wennerberg, A. Armulik, L. Lohikangas. Fibronectin-integrin interactions. Front. Biosci 1997; 2; d126–d146.
[72] U. Hersel, C. Dahmen, H. Kessler, RGD modified polymers: biomaterials for stimulated cell adhesion and beyond, Biomaterials. 2003; 24; 4385–4415.
[73] Y. Ikada, Y. Tabata. Protein release from gelatin matrices. Adv. Drug Delivery Rev 1998; 31; 287– 301.
[74] M. Yamamoto, Y. Ikada, Y. Tabata, Controlled release of growth factors based on biodegradation of gelatin hydrogel, J. Biomater. Sci., Polym. Ed. 2001; 12; 77– 88.
[75] B. Balakrishnan, A. Jayakrishnan, Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds, Biomaterials 2005; 26; 3941– 3951.
[76] C.H. Yao, B.S. Liu, S.H. Hsu, Y.S. Chen, C.C. Tsai, Biocompatibility and biodegradation of a bone composite containing tricalcium phosphate and genipin crosslinked gelatin, J. Biomed. Mater. Res. 2004; 69A ; 709– 717.
[77] A.J. Kuijpers, G.H. Engbers, J. Krijgsveld, S.A. Zaat, J. Dankert, J. Feijen, Cross-linking and characterisation of gelatin matrices for biomedical applications, J. Biomater. Sci., Polym. Ed. 2000; 11; 225– 243.
[78] S.W. Kim, T. Ogawa, Y. Tabata, I. Nishimura, Efficacy and cytotoxicity of cationic-agent-mediated nonviral gene transfer into osteoblasts, J. Biomed. Mater. Res. 2004; 71A; 308– 315
[79] T.A. Holland, Y. Tabata, A.G. Mikos, In vitro release of transforming growth factor-beta1 from gelatin microparticles encapsulated in biodegradable, injectable oligo(poly(ethylene glycol) fumarate) hydrogels, J. Controlled Release 2003; 91;
299– 313.
[80] T.A. Holland, Y. Tabata, A.G. Mikos, Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering, J. Controlled Release 2005; 101; 111– 125.
[81] T. Wang and M. J. Brown. mRNA quantification by real time TaqMan polymerase chain reaction: Validation and comparison with RNase protection. Anal. Biochem. 1999; 269; pp. 198–201.
[82] K. A. Kreuzer, A. Bohn, J. Lupberger, J. Solassol, P. le Coutre and C. A. Schmidt. Simultaneous absolute quantification of target and control templates by real-time fluorescence reverse transcription-PCR using 4-(4′-dimethylaminophenylazo)bezoic acid as a dark quencher dye. Clin. Chem. 2001; 47; pp. 486–490.
[83] M. L. Smit, B.A. J. Giesenford, J.A. M. Vet, F.J. M. Trijbels and H. J. Blom. Semiautomated DNA mutation analysis using a robotic workstation and molecular beacons. Clin. Chem. 2001; 47; pp. 739–744.
[84] N. Thelwell, S. Millington, A. Solinas, J. Booth and T. Brown. Mode of action and application of Scorpion primers to mutataon detection. Nucl. Acids Res. 2000; 28; pp. 3752–3761.
[85] M. Emig, S. Saussele, H. Wittor, A. Weisser, A. Reiter, A. Willer, U. Berger, R. Hehlmann, N. C. Cross and A. Hochhaus. Accurate and rapid analysis of residual disease in patients with CML using specific fluorescent hybridization probes for real time quantitative RT-PCR. Leukemia 1999; 13; pp. 1825–1832.
[86] V. Blaschke, K. Reich, S. Blaschke, S. Zipprich and C. Neumann. J. Rapid quantitation of proinflammatory and chemoattractant cytokine expression in small tissue samples and monocyte-derived dendritic cells: Validation of a new real-time RT-PCR technology. Immunol. Methods 2000; 246; pp. 79–90.
[87] A. D. Billiau, H. Sefrioui, L. Overbergh, O. Rutgeerts, J. Goebels, C. Mathieu and M. Waer. Transforming growth factor-β inhibits lymphokine activated killer cytotoxicity of bone marrow cells: Implications for the graft-versus-leukemia effect in irradiation allogeneic bone marrow chimeras. Transplantation 2001; 71; pp. 292–299.
[88] Lauren S. Sefcik, Rebekah A. Neal, Edward A. Botchwey. Collagen nanofibres are a biomimetic substrate for the serum-free osteogenic differentiation of human adipose stem cells. J Tissue Eng Regen Med 2008; 2: 210–220.
[89] Hani A. Awad, M. Quinn Wickham, Holly A. Leddy, Jeffrey M. Gimble, Farshid Guilak. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25 ;2004; 3211–3222.
[90] van Dijk A, Niessen HW, Zandieh Doulabi B, Visser FC, van Milligen FJ. Differentiation of human adipose-derived stem cells towards cardiomyocytes is facilitated by laminin. Cell Tissue Res. 2008 Dec;334(3):457-67.
[91] James E. Dennis, Pierre Charbord. Origin and Differentiation of Human and Murine Stroma. Stem Cells 2002; 20: 205-214
指導教授 樋口亞紺(Akon Higuchi) 審核日期 2010-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明