博碩士論文 973204060 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.235.41.241
姓名 呂芿欣(Reng-sin Lyu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 奈米金觸媒性質與富氫氣中選擇性一氧化碳氧化反應之應用
(Gold nanoparticles catalytic properties and selective CO oxidation in H2-rich stream of application)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 金一直以來都被視為不具活性且穩定的金屬物質,在其表面無法吸附反應物分子。直到日本Haruta教授提出奈米級金承載於擔體觸媒時具有很高的活性,能夠在低溫下催化CO氧化,而後才開始被重視並應用於各種反應。金觸媒重要的應用莫過於是在富含氫氣流下進行選擇性CO氧化反應;此反應之所以受到重視的原因不外乎由於氫能源可利用在燃料電池發電,然而以甲醇或汽油重組反應產生的氫氣來源,會含有大量副產物CO,若將其直接應用於燃料電池會毒化白金電極並降低電能轉化效率,使用金觸媒於產氫反應的尾氣處理,可有效降低一氧化碳濃度至5 ppm,避免白金電極毒化。故本研究目的即為發展金觸媒具備能降低一氧化碳濃度,同時不氧化氫燃料。金觸媒擔載在二氧化鈦上具有很高的CO轉化率但同時也使氫氣反應,為了改進CO選擇率過低的問題,本文中分別也討論了兩種氧化物如:氧化鈷及氧化鋅,作為促進劑,以改進單純使用Au/TiO2觸媒選擇率過低的問題。本研究以初濕含浸法製備複合性之金屬氧化物擔體,四氯化氫金為金的前驅物,於pH值為7且控制溫度在65 ℃,利用沉積沉澱法將奈米級金顆粒擔載於金屬氧化物上。經過180 ℃鍛燒四小時後,金觸媒具有高分散與熱穩定性,應用於燃料電池操作溫度範圍下,能有效的將一氧化碳去除。並以感應耦合電漿質譜分析儀,X光繞射分析儀、穿透式電子顯微鏡和高解析穿透式電子顯微鏡、X光電子能譜儀等儀器鑑定金觸媒的特性。反應則以固定床反應器填充0.1g觸媒,並以進料體積比CO: O2: H2: He = 1.33: 1.33: 65.33: 32.01,總流量控制在50 ml/min進行反應。根據文獻可知金擔載在二氧化鈦對一氧化碳的氧化有良好之催化效果,也是被研究與應用最多的擔體,但其在高於80 ℃時活性有大幅下降的趨勢,高溫轉化率皆在86 %以上,選擇率為43 %。由於氫氣與一氧化碳會進行競爭性氧化反應,如何有效的提高選擇率是主要關鍵。吾人使用氧化鈷及氧化鋅作為提升CO選擇率的促進劑,其中探討了添加劑鈷/鈦與鋅/鈦的莫耳比、製備時酸鹼值對反應活性的種種影響。研究中發現,在一系列Au/CoOx-TiO2觸媒中,最佳活性的觸媒取決於適當的添加量、對金顆粒大小的影響以及對金的化學狀態的影響,發現以鈷/鈦莫耳比5/95為最佳。而在Au/ZnO-TiO2觸媒中發現,在pH 6製備條件下之雙擔體金觸媒 (Zn/Ti為5/95),其CO轉化率不管相較於Au/TiO2或Au/ZnO觸媒都來的高,加入氧化鋅並可提升CO選擇率。此研究結果證實,適當的促進劑搭配製備時酸鹼值調整,可成功獲得一系列高分散性奈米金觸媒,並具有高CO轉化率,同時避免氫氣氧化,應用於選擇性CO氧化反應。
摘要(英) Bulk gold had been known as an inactive catalyst due to the smooth surface of gold which inhibits chemisorption of reactant molecules. Since Haruta and co-workers reported that the nano-gold catalysts could achieve CO oxidation efficiently below ambient temperature, several applications for gold catalysts have been under attention recently. One of the important cases in these applications for gold catalysts is preferential CO oxidation in hydrogen-rich stream (PROX). Hydrogen has been recognized as a good energy carrier since the development of fuel cell. When hydrogen-rich fuel is produced from methanol or gasoline by partial oxidation and/or steam reforming combined with water gas shift reaction, the Pt anodes in fuel cell at these low temperatures are poisoned by CO, reducing the overall fuel cell performance. Gold catalyst has been confirmed as a catalyst to oxidize CO in hydrogen stream to reduce CO concentration less than 5 ppm. Develop a catalyst which has high CO conversion and low H2 conversion is the target of this study. Au/TiO2 has high conversion of CO and low selectivity of CO oxidation; Au/CoOx and Au/ZnO have high selectivity for CO oxidation and low conversion of CO. It was expected that by adding suitable amount of CoOx or ZnO into Au/TiO2, the catalyst may retain high CO conversion and suppress H2 conversion. In this study, multiple metallic oxides are prepared by impregnation method. Hydrochloro-auric acid is the gold precursor used to load on the support by deposition-precipitation method at pH 7 and 65 °C. The catalysts were calcined at 180 °C for 4 h. The gold particles have high dispersion and thermal stability. In the fuel cell operating temperature range (50–100 °C), gold catalysts can remove CO almost completely. The catalysts were characterized by inductively coupled plasma-mass spectrometry, X-ray diffraction, transmission electron microscope and high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy. The PROX reaction was carried out in a fixed bed reactor with a feed containing 65.33% H2, 32.01% He, 1.33% CO and 1.33% O2 (vol. %) at 30000 h-1 (GHSV). According to literature, TiO2 has been widely used in the synthesis of supported gold catalysts and active for selective CO oxidation. But its activity decreases obviously when the temperature reaches above 80 °C. 1 wt % Au/TiO2 has the CO conversion 86 % and CO selectivity 43% at temperatures around 80 °C. In thermodynamic aspect, hydrogen will compete with CO for oxygen at high temperature. The method to improve the CO selectivity is the key point. Two metal oxides, CoOx and ZnO have been regarded as additives into TiO2 support which was prepared by incipient-wetness impregnation method. The effects of pH in preparation and Co or Zn/Ti ratios of the catalyst on the catalytic properties of the catalysts were investigated. The high catalytic activity of Au/CoOx-TiO2 over Au/TiO2 has been attributed to the synergistic effect of gold particle size, optimum of combination metallic and electron-deficient gold species, as well as to Au-support interactions. Moreover, the results of this study have demonstrated that Au/ZnO-TiO2 (Zn/Ti = 5/95) catalyst prepared at pH 6 is a better catalyst than Au/ZnO and Au/TiO2 for PROX reaction. By adding suitable amount of promoters and by choosing suitable pH value during DP process to deposit gold, one is able to obtain a catalyst which has the best performance in PROX reaction.
關鍵字(中) ★ 四氧化三鈷
★ 氧化鋅
★ 選擇性一氧化碳氧化
★ 燃料電池
★ 金觸媒
★ 二氧化鈦
關鍵字(英) ★ fuel cell
★ PROX.
★ selective oxidation of CO
★ Co3O4,ZnO
★ TiO2
★ gold
論文目次 摘要 I
Abstract III
Table of Contents V
List of Figures VIII
List of Tables XII
Chapter 1 Introduction 1
Chapter 2 Literature review 6
2.1 Preparation method 6
2.1.1 Impregnation method 6
2.1.2 Deposition-precipitation method 7
2.1.3 Other methods 10
2.2 Active state of Au 11
2.3 Au-support interaction 13
2.4 Applications in gold catalysis 13
2.4.1 Pollution and emission control 13
2.4.2 Chemical processing 14
2.4.3 Fuel cell applications 15
2.5 Selective CO oxidation in H2 stream 19
2.5.1 Introduction of fuel cell 19
2.5.2 Gold catalysts for PROX 20
2.5.3 Particle size effect 22
2.5.4 Support effect 24
2.5.5 Promoter effect 25
2.5.6 Feed content effect (H2O and CO2) 27
2.5.7 Reaction mechanism 28
Chapter 3 Experimental 33
3.1 Chemicals 33
3.2.Catalyst preparation 33
3.2.1 Preparation of the mixed oxide supports 33
3.2.2 Preparation of gold catalysts by deposition-precipitation method 34
3.3. Characterization 36
3.3.1 ICP-MS 36
3.3.2 XRD 36
3.3.3 TEM and HRTEM 37
3.3.4 XPS 37
3.4 Reaction testing of Selective CO oxidation in H2 stream 38
Chapter 4 Au/CoOx-TiO2 Catalysts for Preferential Oxidation of CO in H2 Stream 40
4.1 Introduction 40
4.2 Result and Discussion 42
4.2.1 ICP-MS 42
4.2.2 XRD 43
4.2.3 TEM and HRTEM 45
4.2.4 TPR 50
4.2.5 XPS 51
4.2.6 Catalytic activity on PROX reaction 60
4.2.6.1 Size effect and active site of Au 60
4.2.6.2 Effect of Promoter 60
4.2.6.3 Effect of Co/Ti molar ratio 61
4.3 Summary 66
Chapter 5 Au/ZnO-TiO2 Catalysts for Preferential Oxidation of CO in H2 Stream 67
5.1 Introduction 67
5.2 Promoter effect of ZnO support 70
5.2.1 Exact gold loading analyzed by ICP-MS 70
5.2.2 Particle size determined by XRD 72
5.2.3 Gold particle size as determined by TEM and HRTEM 76
5.2.4 Surface composition determined by XPS 82
5.3 Catalytic activity of Au/ZnO-TiO2 on PROX reaction 96
5.3.1 Effect of Zn/Ti ratios of the catalysts prepared at pH 7 96
5.3.2 Effect of pH during DP process 97
5.4 Summary 110
Chapter 6 Conclusion 111
Chapter 7 Literature Cited 113
參考文獻 Andreeva, D., “Low Temperature Water Gas Shift over Gold Catalysts” Gold Bull. 35 (2002) 82-88.
Avgouropoulos G, Manzoli M, Boccuzzi F, Tabakova T, Papavasiliou J, Ioannides T, Idakiev, V., “Catalytic performance and characterization of Au/doped-ceria catalysts for the preferential CO oxidation reaction” J Catal. 256 (2008) 237-247.
Avgouropoulos G., T. Ioannides, Ch. Papadopoulou, J. Batista, S. Hocevar, H.K. Matralis, “A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO-CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen” Catal. Today 75 (2002) 157-167.
Avgouropoulos, G., J. Papavasiliou, T. Tabakova, V. Idakiev and T. Ioannides, “A comparative study of ceria-supported gold and copper oxide catalysts for preferential CO oxidation in H2-rich gas” Catal. Lett. 76 (2001) 143.
Bailie, J. E., H. A. Abdullah, J. A. Anderson, C. H. Rochester, N. V. Richardson, N. Hodge, Jian-Guo Zhang, A. Burrows, C. J. Kiel, G. J. Hutchings, “Hydrogenation of but-2-enal over supported Au/ZnO catalysts” Phys. Chem. Chem. Phys. 3 (2001) 4113-4121.
Bailie, J.E., G.J. Hutchings, “Promotion by sulfur of gold catalysts for crotyl alcohol formation from crotonaldehyde hydrogenation” Chem. Commun. (1999) 2151–2152.
Bamwenda, G. R., S. Tsubota, T. Nakamura, M. Haruta, “The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation” Catal. Lett. 44 (1997) 83-87.
Be´ne´zeth, P., D.A. Palmer, D.J. Wesolowski, “The solubility of zinc oxide in 0.03 m NaTr as a function of temperature, with in situ pH measurement” Geochim. Cosmochim. Acta 63 (1999) 1571-1586.
Bethke G.K., H.H. Kung, “Selective CO oxidation in a hydrogen-rich stream over Au/γ-Al2O3 catalysts” Appl. Catal. A 194-195 (2000) 43-53.
Boccuzzi, F. A., Chiorino, M. Manzoli, T. Tabakova, “FTIR Study of the Low-Temperature Water–Gas Shift Reaction on Au/Fe2O3 and Au/TiO2 Catalysts” J. Catal. 188 (1999) 176-185.
Boccuzzi, F., A. Chiorino, S. Tsubota and M. Haruta, “FTIR Study of Carbon Monoxide Oxidation and Scrambling at Room Temperature over Gold Supported on ZnO and TiO2. 2” J. Phys. Chem. 100 (1996) 3625-3631
Boccuzzi, F., A. Chiorino, S. Tsubota and M. Haruta, “The oxidation and scrambling of CO with oxygen at room temperature on Au/ZnO” Catal. Lett. 29 (1994) 225-234.
Boccuzzi, F., A. Chiorino, S. Tsubota, M. Haruta, “An IR study of CO-sensing mechanism on Au/ZnO” Sens. Actuators B 24–25 (1995) 540-543.
Bockris, J.O’M. and A.J. Appleby, “Assessment of research needs for advanced fuel cells,” S. Penner (Ed.), Energy 11 (1986) 110.
Bollinger, M.A. and M.A. Vannice, “A kinetic and DRIFTS study of low-temperature carbon monoxide oxidation over Au—TiO2 catalysts” Appl. Catal., B 8 (1996) 417-443.
Bond G. C., “Gold: a relatively new catalyst”, Catal. Today 72 (2002) 5-9.
Bond, G. C., C. Louis, D.T. Thompson, “Catalysis by Gold Catalytic” Sci. Series, vol. 6, Imp. College Press, (2006).
Bond, G. C., D. T. Thomphson, “Gold-catalysed oxidation of carbon monoxide” Gold Bull. 33 (2000) 41-52.
Bond, G. C., Francois Moreau, “Preparation and reactivation of Au/TiO2 catalysts” Catal. Today 122 (2007) 260–265
Bond, G. C., Thompson, D. T., “Catalysis by Gold” Catal. Rev.-Sci. Eng. 41 (1999) 319-388.
Bond, G.C. and P.A. Sermon, ”Gold catalysts for olefin hydrogenation” Gold Bull. 6 (1973) 102-105.
Bond, G.C., D.T. Thompson, JCPDS International Center for Diffraction Data, Powder Diffraction File Swarthmore, PA, 1991.
Brown, M. L., Green, A. W., Cohn, G. and Andersen, H. C., “Purifying Hydrogen by Selective Oxidation of Carbon Monoxide” Ind. Eng. Chem. 52 (1960) 841-844.
Busca, G., R. Guidetti, V. Lorenzelli, “Fourier-Transform Infrared Study of the Surface Properties of Cobalt Oxides”, J. Chem. Soc., Faraday Trans. 86 (1990) 989-994.
Cameron D., C. Corti, R. Holliday, D. Thompson, “Gold-based catalysts for hydrogen processing and fuel cell systems”, adapted from web site of World Gold Council, www.wgc.org. (2003).
Cameron, D., Holliday, R., hompson, D. “Gold’s future role in fuel cell systems” J. Power Sources 118 (2003) 298-303.
Casaletto M. P., A. Longo, A. Martorana, A. Prestianni, A. M. Venezia, “XPS study of supported gold catalysts: the role of Au0 and Au+δ species as active sites”, Surf. Interface Anal. 38 (2006) 215–218.
Casaletto, M. P., A. Longo, A. M. Venezia, A. Martorana, A. Prestianni, “Metal-support and preparation influence on the structural and electronic properties of gold catalysts” Appl. Catal., A 302 (2006) 309-316.
Chang, L. H., N. Sasirekha, Y. W. Chen, “Au/MnO2–TiO2 catalyst for preferential oxidation of carbon monoxide in hydrogen stream” Catal. Commun. 8 (2007) 1702-1710.
Che, M., O. Clause, Ch. Marcilly, in: G. Ertl, H. Kno¨zinger, J. Weitkamp (Eds.), 1st ed., Handbook of Heterogeneous Catalysis, vol. 1, Wiley–VCH, Weinheim, 1997, p. 191.
Chen M. S., D. W. Goodman “The structure of catalytically active gold on titania” Science 306 (2004) 252-255.
Cho, A., “Connecting the Dots to Custom Catalysts” Science 299 (2003) 1684-1685.
Choudhary, T. V., Goodman, D. W. “CO-free fuel processing for fuel cell applications” Catal. Today 77 (2002) 65-78.
Choudhary, T.V., D.W. Goodman, “Oxidation catalysis by supported gold nano-clusters” Top. Catal. 21 (2002) 25-34.
Costello C. K., M. C. Kung, H. S. Oh, Y. Wang and H. H. Kung, “Nature of the active site for CO oxidation on highly active Au/γ-Al2O3” Appl. Catal., A 232 (2002) 159-168.
Costello, C. K., J. H. Yang, H. Y. Law, Y. Wang, J. N. Lin, L. D. Marks, M. C. Kung, H. H. Kung, “On the potential role of hydroxyl groups in CO oxidation over Au/Al2O3” Appl. Catal., A 243 (2003) 15-24.
Coville, N.J., J. Li, “Effect of boron source on the catalyst reducibility and Fischer–Tropsch synthesis activity of Co/TiO2 catalysts” Catal. Today 71 (2002) 403-410.
Cunningham, D.A.H., W. Vogel, H. Kageyama, S. Tsubota and M. Haruta, “The relationship between the structure and activity of nonometer size gold when supported on Mg(OH)2” J. Catal. 177 (1998) 1-10.
Date, M., and Haruta, M., “Moisture effect on CO oxidation over Au/TiO2 catalyst” J. Catal. 201 (2001) 221-224.
Daté, M., M. Okumura, S. Tsubota and M. Haruta, “Vital role of moisture in the catalytic activity of support of gold nanoparticles” Angew. Chem. Int. Ed. 43 (2004) 2129.
Daté, M., Y. Ichihashi, T. Yamashita , A. Chiorino, F. Boccuzzi , M. Haruta, “Performance of Au/TiO2 catalyst under ambient conditions” Catal. Today 72 (2002) 89-94.
Dekkers, M.A., M.J. Lippits and B.E. Nieuwenhuys, “Supported gold/MOx catalysts for NO/H2 and CO/O2 reactions” Catal. Today 54 (1999) 381-390.
Deng, W., J. De Jesus, H. Saltsburg, M. Flytzani-Stephanopoulos, “Low-content gold-ceria catalysts for the water–gas shift and preferential CO oxidation reactions” Appl. Catal., A 291 (2005) 126-135.
Duvenhage, D.J., N.J. Coville, “Fe:Co/TiO2 bimetallic catalysts for the Fischer–Tropsch reaction Part 2. The effect of calcination and reduction temperature” Appl. Catal. A 233 (2002) 63-75.
El Fallah, J., S. Boujana, H. Dexpert, A. Kiennemann, J. Majerus, O. Touret, F. Villani, F. Le Normand, “Redox Processes on Pure Ceria and on Rh/CeO2 Catalyst Monitored by X-ray Absorption (Fast Acquisition Mode)” J. Phys. Chem. 98 (1994) 5522-5533.
Epling, S. W., G. B. Hoflund, J. F. Weaver, S. Tsubota, M. Haruta, “Surface characterization study of Au/α-Fe2O3 and Au/Co3O4 low-temperature CO oxidation catalysts” J. Phys. Chem. 100 (1996) 9929-9934.
Fu, Q., H. Saltsburg, M. Flytzani-Stephanopoulos, “Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts” Science 301 (2003) 935-938.
Gavril D, A. Georgaka, V. Loukopoulos, G. Karaiskakis, B. E. Nieuwenhuys, “On the mechanism of selective CO oxidation on nanosized Au/γ-Al2O3 catalysts” Gold Bull. 39 (2006) 192-199.
Ghenciu, A. F., “Review of fuel processing catalysts for hydrogen production in PEM fuel cell system” Curr. Opin. Solid. State. Mater. Sci 6 (2002) 389-399.
Gluhoi, A.C., N. Bogdanchikova and B.E. Nieuwenhuys, “The effect of different types of additives on the catalytic activity of Au/Al2O3 in propene total oxidation: transition metal oxides and ceria” J. Catal. 229 (2005) 154-162.
Griesel, R. J. H., K. J. Weststrate, A. Gluhoi, B.E. Nieuwenhuys, “Catalysis by gold nanoparticles” Gold Bull. 35 (2002) 39-45.
Grisel, R. J. H.; B. E. Nieuwenhuys, “Selective oxidation of CO, over supported Au catalysts” J. Catal. 199 (2001) 48-59.
Grisel, R.J.H. and B.E. Nieuwenhuys, “A comparative study of the oxidation of CO and CH4 over Au/MOx/Al2O3 catalysts” Catal. Today 64 (2001) 69-81.
Grunwaldt,J.-D., M. Maciejewski, O.S. Becker, P. Fabrizioli, A. aiker, “Comparative Study of Au/TiO2 and Au/ZrO2 Catalysts for Low-Temperature CO Oxidation” J. Catal. 186 (1999) 458-469.
Guczi, L., Beck, A.. Frey, K. “Role of promoting oxide morphology dictating the activity of Au/SiO2 catalyst in CO oxidation” Gold Bull. 42 (2009) 5-12.
Guzman, J., B. C. Gates, “Catalysis by supported gold: Correlation between catalytic activity for CO oxidation and oxidation states of gold” J. Am. Chem. Soc. 126 (2004) 2672-2673.
Hammer, B., Norskov., J. K., “Why gold is the noblest of all the metals”, Nature 376 (1995) 238-240.
Haruta, M., “Catalysis of gold nanoparticles deposited on metal oxides,” CATTECH 6 (2002) 102-115.
Haruta, M., “Gold as a Novel Catalyst in the 21st Century: Preparation, Working Mechanism and Applications” Gold Bull. 37 (2004) 27-36.
Haruta, M., “Nanoparticulate gold catalysts for low-temperature CO oxidation” J. New Mater. Electrochem. Sys. 7 (2004) 163.
Haruta, M., “Novel catalysis of gold deposited on metal oxides” Catal. Surv. Jpn. 1 (1997b) 61-73.
Haruta, M., “Size- and support-dependency in the catalysis of gold” Catal. Today. 36 (1997a) 153-166.
Haruta, M., “When Gold Is Not Noble: Catalysis by Nanoparticle” Chem. Rec. 3 (2003) 75-87.
Haruta, M., M. Date, “Advances in the catalysis of Au nanoparticles” Appl. Catal., A 222 (2001) 427-437.
Haruta, M., N. Yamada, T. Kobayashi, S. Iijima, “Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide” J. Catal. 115 (1989) 301-309.
Haruta, M., Sano, H., “Preparation Of Highly Active Composite Oxides Of Silver For Hydrogen And Carbon Monoxide Oxidation” Studies Surf. Sci. Catal. 16 (1983) 225-236.
Haruta, M., T. Kobayashi, H. Sano, N. Yamada, “Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far below 0 degree C” Chem. Lett. 16 (1987) 405-408.
Haruta, M., T. Kobayashi, S. Iijima and F. Delannay, in: Proc. 9th Int. Congress on Catalysis, Calgary, Vol. 2, eds. M.J. Phillips and M. Ternan (The Chemical Institute of Canada, Ottawa, 1988) p. 1206
Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M. J., Delmon, B., “Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4” J. Catal. 144 (1993) 175–92.
Hodgea ,N.A., C.J. Kiely, R. Whymanb, M.R.H. Siddiqui, G.J. Hutchings, Q.A. Pankhurst, F.E. Wagner, R.R. Rajaram, S.E. Golunski, “Microstructural comparison of calcined and uncalcined gold/iron-oxide catalysts for low-temperature CO oxidation” Catal. Today 72 (2002) 133-144.
Hoflund, G. B., Gardner, S. D., Schryer, D. R., Upchurch, B. T., Kielin, E. J., “Au/MnOx catalytic performance characteristics for low-temperature carbon monoxide oxidation” Appl. Catal. B. 6 (1995) 117-126.
Hutchings, G.J., “Gold catalysis in chemical processing” Catal. Today 72 (2002) 11–17.
Hutchings, G.J., “New directions in gold catalysis” Gold Bull. 37 (2004) 3-11.
Hutchings, G.J., “Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts” J. Catal. 96 (1985) 292-295.
Hutchings, G.J., M.R.H. Siddiqui, A. Burrows, C.J. Kiely and R. Whyman, “High activity Au/CuO-ZnO catalysts for the oxidation of carbon monoxide at ambient temperature” J. Chem. Soc., Faraday Trans. 93 (1997) 187-188.
Igarashi, H., H. Uchida, M. Suzuki, Y. Sasaki, M. Watanabe, “Removal of carbon monoxide from hydrogen-rich fuels by selective oxidation over platinum catalyst supported on zeolite” Appl. Catal. A Gen. 159 (1997) 159-169.
Jain, A., X. Zhao, S. Kjergaard, S.M. Stagg-Williams, “Effect of Aging Time and Calcination on the Preferential Oxidation of CO Over Au Supported on Doped Ceria” Catal. Lett. 104 (2005) 191-197.
Jansson, J., A. Palmqvist, E. Fridell, M. Skoglundh, L. O¨ sterlund, P. horma¨hlen, V. Langer, “On the Catalytic Activity of Co3O4 in Low-Temperature CO Oxidation” J. Catal. 211 (2002) 387-397.
Jasos, G., U.M. Graham, E. Chenu, P.M. Patterson, A. Dozier, B.H. Davis, “Low-temperature water–gas shift: impact of Pt promoter loading on the partial reduction of ceria and consequences for catalyst design” J. Catal. 229 (2005) 499-512.
Kahlich, M.J., H.A. Gasteiger, R.J. Behm, “Kinetics of the Selective Low-Temperature Oxidation of CO in H2-Rich Gas over Au/α-Fe2O3” J. Catal. 182 (1999) 430-440.
Kahlich, M.J., H.A. Gasteiger, R.J., “Behm, Kinetics of the Selective CO Oxidation in H2-Rich Gas on Pt/Al2O3” J. Catal. 171 (1997) 93-105.
Kajikawa, O., X.S.Wang, , T. Tabata and O.Okada, “Catalytic Destruction of Dioxins over Gole-deposited Metal Oxides,” Organohalogen Comp. 40 (1999) 581.
Korotkikh, O. and R. Farrauto, “Selective catalytic oxidation of CO in H2: fuel cell applications” Catal. Today 62 (2000) 249-254.
Landon, P., J. Ferguson, B. E. Solsona, T. Garcia, A. F. Carley, A. A. Herzing, C. J. Kiely, S. E. Golunski, G. J. Hutchings, “Selective oxidation of CO in the presence of H2, H2O and CO2 via gold for use in fuel cells” Chem. Commun. 27 (2005) 3385-3387.
Landon, P., J. Ferguson, B. E. Solsona, T. Garcia, S. Al-Sayari, A. F. Carley, A. A. Herzing, C. J. Kiely, M. Makkee, J. A. Moulijn, A. Overweg, S. E. Golunskie, G. J. Hutchings G.J., “Selective oxidation of CO in the presence of H2, H2O and CO2 utilizing Au/α-Fe2O3 catalysts for use in fuel cells” J. Mater. Chem. 16 (2006) 199-208.
Lemire, C., R. Meyer, K. Shaikhutdinov, H.-J. Freund, “CO adsorption on oxide supported gold: from small clusters to monolayer islands and three-dimensional nanoparticles” Surf. Sci. 552 (2004) 27-34.
Li, J., N.J. Coville, “The effect of boron on the catalyst reducibility and activity of Co/TiO2 Fischer-Tropsch catalysts” Appl. Catal. A 181 (1999) 201-208.
Lin, H.Y., Y.-W. Chen, “The mechanism of reduction of cobalt by hydrogen” Mater. Chem. Phys. 85 (2004) 171-175.
Lin, J. N., Chen, J. H., Hsiao, C. Y., Kang, Y. M., and Wan B. Z., “Gold supported on surface acidity modified Y-type and iron/Y-type zeolite for CO oxidation”, Appl. Catal., B 36 (2002) 19-29.
Lin, S., Bollinger, M., Vannice, M. A., “Low temperature CO oxidation over Au /TiO2 and Au/SiO2 catalysts” Catal. Lett. 17 (1993) 245-262.
Liotta, L.F., G. Di Carlo, A. Longo, G. Pantaleo, A.M. Venezia, “Support effect on the catalytic performance of Au/Co3O4–CeO2 catalysts for CO and CH4 oxidation” Catal. Today 139 (2008) 174-179.
Liotta, L.F., G. Di Carlo, G. Pantaleo, A.M. Venezia, G. Deganello, “Co3O4/CeO2 composite oxides for methane emissions abatement: Relationship between Co3O4–CeO2 interaction and catalytic activity” Appl. Catal. B (2006) 217-277.
Liotta, L.F., G. Di Carlo, G. Pantaleo, G. Deganello, “Co3O4/CeO2 and Co3O4/CeO2–ZrO2 composite catalysts for methane combustion: Correlation between morphology reduction properties and catalytic activity” Catal. Commun. 6 (2005) 329-336.
Lipkowski, J.; Ross, P.N.Jr., Eds., “Electrocatalysis, Frontiers in Electrochemistry” VCH: New York,1997, Vol. 5.
Liu, Z. M., Vannice, M. A., “CO and O2 adsorption on model Au-TiO2 systems” Catal. Lett. 43 (1997) 51-54.
Łojewska, J., A. Kołodziej, J. Z˙ ak, J. Stoch, “Pd/Pt promoted Co3O4 catalysts for VOCs combustion Preparation of active catalyst on metallic carrier” Catal. Today 105 (2005) 655-661.
Lopez, N., Janssens, T. V. W., Clausen, B. S., Xu, Y., Mavrikakis, M., Bligaard, T., Nørskov, J. K., “On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation” J. Catal. 223 (2004) 232-235.
Luengnaruemitchai, A., D. T. K. Thoa, S. Osuwan, E. Gulari,. “A comparative study of Au/MnOx and Au/FeOx catalysts for the catalytic oxidation of CO in hydrogen rich stream” Int. J. Hydrogen Energy 30 (2005) 981-987.
Luengnaruemitchaia, A., S. Osuwana, E. Gularib, “Selective catalytic oxidation of CO in the presence of H2 over gold catalyst” Int. J. Hydrogen Energy 29 (2004) 429-435.
Mallick K., M. S. Scurrell, “CO oxidation over gold nanoparticles supported on TiO2 and TiO2-ZnO: catalytic activity effects due to surface modification of TiO2 with ZnO”, Appl. Catal., A 253 (2003) 527-536.
Manzoli M, Avgouropoulos G, Tabakova T, Papavasiliou J, Ioannides T, Boccuzzi F., “Preferential CO oxidation in H2-rich gas mixtures over Au/doped ceria catalysts” Catal. Today 138 (2008) 239-243.
Manzoli, M., A. Chiorino, F. Boccuzzi, “FTIR study of nanosized gold on ZrO2 and TiO2” Surf. Sci. 532–535 (2003) 377-382.
Manzoli, M., A. Chiorino, F. Boccuzzi, “Interface species and effect of hydrogen on their amount in the CO oxidation on Au/ZnO” Appl. Catal., B 52 (2004) 259–266.
Margitfalvi, J. L., A. Fási, A. M. Hegedűs, F. Lónyi, F. S. Gőbölös, S. N. Bogdanchikova, “Au/MgO catalysts modified with ascorbic acid for low temperature CO oxidation” Catal. Today 72 (2002) 157-169.
Mavrikakis, M., Stoltze, P., Norskov, J. K., “Making gold less noble” Catal. Lett., 64 (2000) 101-106.
Maye, M.M., J. Luo, L. Han, N.L. Kariuki and C.-J. Zhong, “Synthesis, processing, assembly & activation of core-shell structured gold nanoparticle catalysts,” Gold Bull. 36 (2003) 75.
McIntosh, D. and G.A. Ozin, “Synthesis of binary gold carbonyls, Au(CO)n (n=1 or 2).Spectroscopic evidence for isocarbonyl (carbonyl) gold, a linkage isomer of bis(carbonyl)gold” Inorg. Chem. 16 (1977) 51.
Minico S., S. Scire, C. Crisafulli and S. Galvagno, “Influence of catalyst pretreatments on volatile organic compounds oxidation over gold/iron oxide”, Appl. Catal., B 34 (2001) 277–285.
Moreau, F., G. C. Bond, “Influence of the surface area of the support on the activity of gold catalysts for CO oxidation” Catal. Today 122 (2007) 215-221.
Moreau, F., G. C. Bond, A. O. Taylor, “Gold on titania catalysts for the oxidation of carbon monoxide: control pH during preparation with various gold content” J. Catal. 231 (2005) 105-114.
Moulder, J. F., W. F. Stickle, P. E. Sobol, K. E. Bomben, Handbook of X-ray Photoelectron Spectroscopy. Physical Electronics 1995.
Naknam, P., Luengnaruemitchai, A., Wongkasemjit, S., “Preferential CO oxidation over Au/ZnO and Au/ZnO–Fe2O3 catalysts prepared by photodeposition” Int. J. Hydrogen Energy 34 (2009) 9838-9846.
Neri G., A. M. Visco, S. Galvagno, A. Donato and M. Panzalorto, “Au/iron oxide catalysts: temperature programmed reduction and X-ray diffraction characterization”, Thermochimica Acta. 329 (1999) 39-46.
Oh, H.S., J.H. Yang, C.K. Costello, Y.M. Wang, S.R. Bare, H.H. Kung, M.C. Kung, “Selective Catalytic Oxidation of CO: Effect of Chloride on Supported Au Catalysts” J. Catal. 210 (2002) 375-386.
Okazaki, K.; Ichikawa, S.; Maeda, Y.; Haruta, M.; Kohyama, M. Electronic structures of Au supported on TiO2, “Electronic structures of Au supported on TiO2” Appl. Catal. A. 291 (2005) 45-54.
Okumura M, Kitagawa Y, Haruta M, Yamaguchi K. “The interaction of neutral and charged Au cluster with O2, CO and H2” Appl. Catal., A 291 (2005) 37-44.
Okumura, M., “Report of the Research Achievement of Interdisciplinary Basic Research Scetion: No. 393”, Osaka National research Institute, 1999, 6.
Okumura, M., S. Nakamura, S. Tsubota, T. Nakamura, M. Azuma, M. Haruta, “Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for the oxidation of CO and of H2” Catal. Lett. 51 (1998) 53-58.
Okumura, M., S. Tsubota, M. Haruta, “Preparation of supported gold catalysts by gas-phase grafting of gold acethylacetonate for low-temperature oxidation of CO and of H2” J. Mol. Catal. A: Chem. 199 (2003) 73-84.
Pansare, S. S., A. Sirijaruphan, J. G. Goodwin Jr., “Au-catalyzed selective oxidation of CO: a steady-state isotopic transient kinetic study” J. Catal. 234 (2005) 151-160
Panzera, G., V. Modafferi, V. S. Candamano, A. Donato, F. Frusteri, P. L. Antonucci, “CO selective oxidation on ceria-supported Au catalysts for fuel cell application” J. Power Sources 135 (2004) 177-183.
Park, E. D., J. S. Lee, “Effects of pretreatment conditions on CO oxidation over supported Au catalysts” J. Catal. 186 (1999) 1.
Parks, G.A., “Isoelectric points of solid oxides solid hydroxides and aqueous hydroxo complex systems” Chem. Rev. 65 (1965) 177-198.
Pattrick,G., E. van der Lingen, C.W. Corti, R.J. Holliday and D.T. Thompson, “The Potential for Use of Gold in Automotive Pollution Control Technologies: A Short Review” Top. Catal. 273 (2004) 30–31.
Phala, N. S., G. Klatt, E. van Steen, S. A. French, A. A. Sokol and C. R. A. Catlow, “The nature of the oxidation states of gold on ZnO” Phys. Chem. Chem. Phys. 7 (2005) 2440-2445
Qi, G., R. T. Yang, “Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania” Appl. Catal., B 44 (2003) 217-225.
Riva, R., H. Miessner, R. Vitali, G. Del Piero, “ Metal–support interaction in Co/SiO2 and Co/TiO2” Appl. Catal. A Gen. 196 (2000) 111-123.
Rossignol, C., S. Arrii, F. Morfin, L. Piccolo, V. Caps, J.L. Rousset, “Selective oxidation of CO over model gold-based catalysts in the presence of H2” J. Catal. 230 (2005) 476-483.
Rosso, I., Galletti, C., Saracco, G., Garrone, E., Specchia, V., “Development of A zeolite-supported noble-metal catalysts for CO preferential oxidation: H2 gas purification for fuel cell” Appl. Catal., B 48 (2004) 195-203.
Ruszel M., B. Grzybowska, M. Łaniecki, M. Wo´jtowski, “Au/Ti-SBA-15 catalysts in CO and preferential (PROX) CO oxidation” Catal. Commun. 8 (2007) 1284-1286.
Sakurai, H., M. Haruta, “Carbon dioxide and carbon monoxide hydrogenation over gold supported on titanium, iron, and zinc oxides” Appl. Catal., A 127 (1995) 93-105.
Sakurai, H., M. Haruta, “Synergism in methanol synthesis from carbon dioxide over gold catalysts supported on metal oxides” Catal. Today 29 (1996) 361-365.
Schubert, M. M., A. Venugopal, M. J. Kahlich, V. Plzak, R. J. Behm, “Influence of H2O and CO2 on the selective CO oxidation in H2-rich gases over Au/α-Fe2O3” J. Catal. 222 (2004) 32-40.
Schubert, M. M., V. Plzak, J. Garvhe, R. J. Behm, “Activity, selectivity, and long-term stability of different metal oxide supported gold catalysts for the preferential CO oxidation in H2-rich gas” Catal. Lett. 76 (2001a) 143-150.
Schubert, M. M., S. Hackenberg, A. C. Veen, M. Muhler, V. Plzak, R. J. Behm, “CO oxidation over supported gold catalysts—“inert” and “active” support materials and their role for the oxygen supply during reaction” J. Catal. 197 (2001b) 113-122.
Schubert, M.M., M.J. Kahlich, H.A. Gasteiger, R.J. Behm, “Correlation between CO surface coverage and selectivity/kinetics for the preferential CO oxidation over Pt/γ-Al2O3 and Au/α-Fe2O3: an in-situ DRIFTS study” J. Power Sources 84 (1999) 175-182.
Schumacher, B., Y. Denkwitz, V. Plzak, M. Kinne, R. J. Behm, “Kinetics, mechanism, and the influence of H2 on the CO oxidation reaction on a Au/TiO2 catalyst” J. Catal. 224 (2004) 449-462.
Shan, G., Zhong, M., Wang, S., Li, Y., Liu, Y., “The synthesis and optical properties of the heterostructured ZnO/Au nanocomposites” J. Colloid Interface Sci. 326 (2008) 392–395.
Soares, J. M. C., P. Morrall, A. Crossley, P. Harris, M. Bowker, “Catalytic and noncatalytic CO oxidation on Au/TiO2 catalysts” J. Catal. 219 (2003) 17-24.
Su Y. S., M. Y. Lee, S. D. Lin, “XPS and DRS of Au/TiO2 catalysts: effect of pretreatment” Catal. Lett. 57 (1999) 49-53.
Sun, S., N. Tsubaki, K. Fujimoto, “The reaction performances and characterization of Fischer–Tropsch synthesis Co/SiO2 catalysts prepared from mixed cobalt salts” Appl. Catal. A 202 (2000) 121-131.
Tabakova T, Idakiev V, Andreeva D, Mitov I., “Influence of the microscopic properties of the support on the catalytic activity of Au/ZnO, Au/ZrO2, Au/Fe2O3, Au/Fe2O3–ZnO, Au/ Fe2O3–ZrO2 catalysts for the WGS reaction” Appl. Catal., A 202 (2000) 91-97.
Tabakova T., Boccuzzi F., Manzoli M., Sobczak J.W., Idakiev V., Andreeva D., “Effect of synthesis procedure on the WGS activity of Au/ceria catalysts” Appl. Catal., B 49 (2004) 73-81.
Tabakova, T., V. Idakiev, K. Tenchev, F. Boccuzzi, M. Manzoli, A. Chiorino, “Pure hydrogen production on a new gold–thoria catalyst for fuel cell applications” Appl. Catal., B 63 (2006) 94-103.
Thormahlen, P., M. Skoglundh, E. Fridell, B. Andersson, “Low-Temperature CO Oxidation over Platinum and Cobalt Oxide Catalysts” J. Catal. 188 (1999) 300-310.
Torres Sanchez, R.M., A. Ueda, K. Tanaka, M. Haruta, “Selective Oxidation of CO in Hydrogen over Gold Supported on Manganese Oxides” J. Catal. 168 (1997) 125-127.
Troncrona, A., M. Skoglundh, P. Thorrnahlen, E. Fridell, E. Jobson, “Low temperature catalytic activity of cobalt oxide and ceria promoted Pt and Pd: -influence of pretreatment and gas composition” Appl. Catal. B Environ. 14 (1997) 131-146.
Valden, M., Goodman, D. W., “Structure-activity correlations for Au nanoclusters supported on TiO2” Isr. J. Chem. 38 (1998) 285-292.
Valden, M., X. Lai, D.W. Goodman, “Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties” Science 281 (1998) 1647-1650.
Venezia, A. M., G. Pantaleo, A. Longo, G. D. Carlo, M. P. Casaletto, F L. Liotta, G. Deganello, “Relationship between structure and CO oxidation activity of ceria-supported gold catalysts” J. Phys. Chem. B 109 (2005) 2821-2827.
Wang, G.Y., W.X. Zhang, H.L. Lian, D.Z. Jiang, T.H. Wu, “Effect of calcination temperatures and precipitant on the catalytic performance of Au/ZnO catalysts for CO oxidation at ambient temperature and in humid circumstances” Appl. Catal. A Gen. 239 (2003) 1–10.
Watanabe, M., Uchida, H., Ohkubo, K., Igarashi, H., “Hydrogen purification for fuel cells: selective oxidation of carbon monoxide on Pt–Fe/zeolite catalysts” Appl. Catal., B 46 (2003) 595-600.
Waters, R.D., J.J. Weimer, J.E. Smith, “An investigation of the activity of coprecipitated gold catalysts for methane oxidation” Catal. Lett. 30 (1995) 181-188.
Yao, H. C., and Shelef, M., “Nitric Oxide a dl Carbon Monoxide Chemisorption on Cobalt-Containing Spinels” J. Phys. Chem. 78 (1974) 2490-2496.
Yoshida, H., T. Shimizu, C. Murata, T. Hattori, “Highly dispersed zinc oxide species on silica as active sites for photoepoxidation of propene by molecular oxygen” J. Catal. 220 (2003) 226-232.
Zhang, J., Wang, Y., Chen, B., Li, C., Wu, D., and Wang, X., “Selective oxidation of CO in hydrogen rich gas over platinum-gold catalyst supported on zinc oxide for potential application in fuel cell” Energy Convers. Manage. 44 (2003) 1805-1815.
Zhang, Y., D. Wei, S. Hammache, J.G. Goodwin Jr., “Effect of Water Vapor on the Reduction of Ru-Promoted Co/Al2O3” J. Catal. 188 (1999) 281-290.
Zhong, C.-J., J. Luo, M.M. Maye, L. Han and N. Kariuki, “Proceeding of the GOLD 2003” Vancouver, Canada, September–October (2003).
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2010-6-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明