博碩士論文 973204066 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:34.204.180.223
姓名 陳人豪(Ren-hao chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用表面電漿共振儀和圓二色光譜儀來探討不同凝血酶核適體對凝血酶的作用機制
(Studies of the Binding Mechanism between Aptamers and Thrombin by Surface Plasmon Resonance and Circular Dichroism)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用圓二色光譜儀(CD)和表面電漿共振儀(SPR)來探討凝血酶(thrombin)和其核酸核適體(aptamer)之間的作用行為。凝血酶是一種在人體的凝血機制中伴演重要角色的蛋白質,而為了抑制其活性來達到抗凝血效果。科學家於九零年代已利用SELEX技術篩選出兩條抗凝血酶核適體(15-mer aptamer和29-mer aptamer),分別可結合於凝血酶上的纖維蛋白結合區和肝素結合區。近年來雖然有大量抗凝血酶核適體的相關研究,但大部份集中於15-mer aptamer上,因此29-mer aptamer在文獻的研究並不完整,且針對其和凝血酶的結合機制的文獻探討仍相當缺乏。因此本研究期望利用圓二色光譜儀獲得核適體構形資訊,並以表面電漿共振儀獲得凝血酶和其核適體間的動力學資訊,以探討不同抗凝血酶適合體和凝血酶之間的作用機制。
在本研究中我們設計不同實驗條件,包含不同鹽濃度、金屬離子種類、不同凝血酶濃度,並利用圓二色光譜儀(CD)觀測核適體的構形變化,以探討29-mer aptmer的折疊行為,並和20-mer aptamer(含有15-mer aptamer序列)作一系統的比較。由實驗結果發現29-mer aptmer以hairpin結構與凝血酶結合,且誘導hairpin結構中的duplex部份由B-form轉換為A-form,這和20-mer aptamer以G-guadruplex結構與凝血酶結合行為有很大的差異。此外我們利用了表面電漿共振儀(SPR)來觀測在不同操作環境下(鹽濃度、pH),此兩條核適體對於凝血酶的結合的行為,並搭配反應速率式來計算分析凝血酶吸附和脫附曲線,以獲得動力學常數常數(Ka)。實驗結果發現,隨著溶液中鈉鹽濃度的上升導致20-mer aptamer與Ka下降,推測20-mer aptamer與凝血酶進行結合為靜電作用主導的過程;相反地隨著溶液中鈉鹽濃度的上升,導致29-mer aptamer與凝血酶的Ka上升,推測29-mer aptamer與凝血酶結合為疏水作用主導的過程。最終利用恆溫滴定卡計(ITC)觀測此兩條核適體對於凝血酶之反應焓 (△H),也發現20-mer aptamer與凝血酶反應之放熱量大於29-mer aptamer,推測其為不同作用力主導的結合過程所造成的結果。總結上述,我們認為此兩條核適體對凝血酶擁有相當不同的結合機制,且核適體的結構為影響其辨認凝血酶的重要因素。
摘要(英) This study characterizes the interaction mechanism between aptamers and human thrombin by surface plasmon resonance (SPR) and ciucular dichroism (CD). Thrombin, a multifunctional serine protease, has both procoagulant and anticoagulant functions in human blood. Thrombin involves two electropositive exosites;one is fibrinogen-binding site and the other is heparin-binding site. Two thrombin-binding aptamers have been selected by SELEX technique over the past decade, respectively. One is 15-mer aptamer binds at fibrinogen-binding site of thrombin, while 29-mer aptamer binds at the heparin binding site of thrombin. In the past years many papers have reported the interaction between 15-mer aptamer and thrombin, however the difference of the two aptamers bind to thrombin is still lacking and worth of investigation. In this study, we combined kinetics and conformational information to compare the binding mechanism between these two aptamers with thrombin.
Two experiments were mainly performed in this investigation. CD assay demonstrated the comformational feature of different aptamers binding to thrombin, while SPR provided kinetic constant (Ka) in different binding parameters of aqueous solution (salt concentration and pH). From the results, we found that 20-mer aptamer binding to thrombin by G-guadruplex structure and dominated by electrostatic interactions. The 29-mer aptamer binds to thrombin by hairpin structure and is driven by hydrophobic effects. Furthermore, we comfirmed this argument by Isothermal Titration Calometry measurements . By experimental results, we suggested that the structure of these two aptamers is an important factor to cause the different binding mechanism between these two aptamers with thrombin.
關鍵字(中) ★ 凝血酶
★ 核酸核適體
★ 圓二色光譜儀
★ 表面電漿共振儀
關鍵字(英) ★ aptamer
★ thrombin
★ surface plasmon resonance
★ ciucular dichroism
論文目次 中文摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
第二章 文獻回顧 3
2.1 核酸核適體 3
2.1.1 核酸核適體(Aptamers)介紹 3
2.1.2 Systematic Evolution of Ligands by Exponential Enrichment (SELEX) 6
2.1.3 核酸核適體之應用 8
2.1.3.1 Biosensors之應用 9
2.1.3.2毛細管電泳與管柱層析之應用 12
2.1.3.3 藥物發展、治療與臨床之應用 13
2.1.3.4 奈米科技之應用 15
2.1.4 抗凝血酶核酸核適體 17
2.1.4.1 15-mer aptamer 17
2.1.4.1 29-mer aptamer 20
2.2凝血酶 23
2.2.1 凝血機制 23
2.2.2 凝血酶介紹 25
2.1.2凝血酶結構 27
2.3 凝血酶和其核酸核適體作用機制之研究 30
2.3.1 表面電漿共振儀 31
2.3.2 圓二色光譜儀 32
2.3.3 恆溫滴定卡計(ITC) 34
第三章 實驗藥品與儀器設備 36
3.1 實驗藥品 36
3.2 實驗儀器 38
3.3 實驗方法 39
3.3.1 緩衝溶液之配製 39
3.3.2 表面電漿共振儀實驗 40
3.3.2.1 製備蛋白質溶液 40
3.3.2.2 表面電漿共振感測儀晶片的改質 40
3.3.3圓二色光譜儀實驗 44
3.3.3.1製備核酸核適體和凝血酶溶液 44
3.3.3.2 圓二色光譜儀之操作 44
3.3.4 恆溫滴定卡計實驗 45
3.3.4.1製備核酸核適體和凝血酶溶液 45
3.3.4.2恆溫滴定卡計之操作 45
第四章 結果與討論 47
4.1 抗凝血核酸核適體折疊行為之探討 47
4.1.1 抗凝血酶核酸核適體在不同鹽類實驗條件下之構形變化 47
4.1.1.1 氯化鈉對抗凝血酶核酸核適體構形之影響 50
4.1.1.2 氯化鉀對抗凝血酶核酸核適體構形之影響 52
4.1.1.3 氯化鎂對抗凝血酶核酸核適體構形之影響 54
4.1.2 抗凝血核酸核適體適體和凝血酶反應之構形變化 55
4.1.2.1 20-mer aptamer與凝血酶反應之構形變化 56
4.1.2.2 29-mer aptamer與凝血酶反應之構形變化 59
4.2凝血酶和其核酸核適體結合行為之動力學分析 63
4.2.1 SPR晶片改質與測試 63
4.2.1.1 晶片改質 63
4.2.1.2 凝血酶專一性測試 68
4.2.2 核酸核適體與凝血酶之動力學分析 71
4.2.2.1 在不同鈉鹽濃度下對凝血酶和其核酸核適體結合行為之影響 72
4.2.2.2 在不同pH環境下對凝血酶和其核酸核適體結合行為之影響 79
4.3凝血酶和其核酸核適體結合行為之熱力學分析 84
第五章 結論 88
第六章 參考文獻 90
參考文獻 1. Robertson, D.L.; Joyce, G.F., Selection in Vitro of an RNA Enzyme that Specifically Cleaves Single-stranded DNA. Nature (London) 1990, 344(6265), 467–468.
2. Tuerk, C.; Gold, L., Systematic Evolution of Ligands by Exponential Enrichment - Rna Ligands to Bacteriophage-T4 DNA-Polymerase. Science 1990, 249 (4968), 505-510.
3. Ellington, A.D.; Szostak, J.W., In Vitro Selection of RNA Molecules that Bind Specific Ligands. Nature (London) 1990, 346(6287), 818–822.
4. Bock, L. C.; Griffin, L. C.; Latham, J. A.; Vermaas, E. H.; Toole, J. J., Selection of Single-Stranded-DNA Molecules That Bind and Inhibit Human Thrombin. Nature 1992, 355 (6360), 564-566.
5. Tsiang, M.; Gibbs, C. S.; Griffin, L. C.; Dunn, K. E.; Leung, L. L. K., Selection of a Suppressor Mutation That Restores Affinity of an Oligonucleotide Inhibitor for Thrombin Using in-Vitro Genetics. Journal of Biological Chemistry 1995, 270 (33), 19370-19376.
6. Rando, R. F.; Ojwang, J.; Elbaggari, A.; Reyes, G. R.; Tinder, R.; Mcgrath, M. S.; Hogan, M. E., Suppression of Human-Immunodeficiency-Virus Type-1 Activity in-Vitro by Oligonucleotides Which Form Intramolecular Tetrads. Journal of Biological Chemistry 1995, 270 (4), 1754-1760.
7. Lin, C. H.; Patel, D. J., Encapsulating an amino acid in a DNA fold. Nature Structural Biology 1996, 3 (12), 1046-1050.
8. Breaker, R. R., Natural and engineered nucleic acids as tools to explore biology. Nature 2004, 432 (7019), 838-845.
9. Osborne, S. E.; Ellington, A. D., Nucleic acid selection and the challenge of combinatorial chemistry. Chemical Reviews 1997, 97 (2), 349-370.
10. Gopinath, S. C. B.; Misono, T. S.; Kawasaki, K.; Mizuno, T.; Imai, M.; Odagiri, T.; Kumar, P. K. R., An RNA aptamer that distinguishes between closely related human influenza viruses and inhibits haemagglutinin-mediated membrane fusion. Journal of General Virology 2006, 87, 479-487.
11. Sekiya, S.; Noda, K.; Nishikawa, F.; Yokoyama, T.; Kumar, P. K. R.; Nishikawa, S., Characterization and application of a novel RNA aptamer against the mouse prion protein. Journal of Biochemistry 2006, 139 (3), 383-390.
12. Nishikawa, F.; Funaji, K.; Fukuda, K.; Nishikawa, S., In vitro selection of RNA aptamers against the HCVNS3 helicase domain. Oligonucleotides 2004, 14 (2), 114-129.
13. Ciesiolka, J.; Gorski, J.; Yarus, M., Selection of an Rna Domain That Binds Zn2+. Rna 1995, 1 (5), 538-550.
14. Nieuwlandt, D.; Wecker, M.; Gold, L., In-Vitro Selection of Rna Ligands to Substance-P. Biochemistry 1995, 34 (16), 5651-5659.
15. Khati, M.; Schuman, M.; Ibrahim, J.; Sattentau, Q.; Gordon, S.; James, W., Neutralization of infectivity of diverse R5 clinical isolates of human immunodeficiency virus type 1 by gp120-binding 2 ' F-RNA aptamers. Journal of Virology 2003, 77 (23), 12692-12698.
16. Pileur, F.; Andreola, M. L.; Dausse, E.; Michel, J.; Moreau, S.; Yamada, H.; Gaidamakov, S. A.; Crouch, R. J.; Toulme, J. J.; Cazenave, C., Selective inhibitory DNA aptamers of the human RNase H1. Nucleic Acids Res 2003, 31 (19), 5776-5788.
17. Misono, T. S.; Kumar, P. K. R., Selection of RNA aptamers against human influenza virus hemagglutinin using surface plasmon resonance. Anal Biochem 2005, 342 (2), 312-317.
18. Mendonsa, S. D.; Bowser, M. T., In vitro selection of aptamers with affinity for neuropeptide Y using capillary electrophoresis. Journal of the American Chemical Society 2005, 127 (26), 9382-9383.
19. Mendonsa, S. D.; Bowser, M. T., In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis. Analytical Chemistry 2004, 76 (18), 5387-5392.
20. Drabovich, A.; Berezovski, M.; Krylov, S. N., Selection of smart aptamers by equilibrium capillary electrophoresis of equilibrium mixtures (ECEEM). Journal of the American Chemical Society 2005, 127 (32), 11224-11225.
21. Berezovski, M. V.; Musheev, M. U.; Drabovich, A. P.; Jitkova, J. V.; Krylov, S. N., Non-SELEX: selection of aptamers without intermediate amplification of candidate oligonucleotides. Nature Protocols 2006, 1 (3), 1359-1369.
22. Blank, M.; Weinschenk, T.; Priemer, M.; Schluesener, H., Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels - Selective targeting of endothelial regulatory protein pigpen. Journal of Biological Chemistry 2001, 276 (19), 16464-16468.
23. Yang, X. B.; Li, X.; Prow, T. W.; Reece, L. M.; Bassett, S. E.; Luxon, B. A.; Herzog, N. K.; Aronson, J.; Shope, R. E.; Leary, J. F.; Gorenstein, D. G., Immunofluorescence assay and flow-cytometry selection of bead-bound aptamers. Nucleic Acids Res 2003, 31 (10), e54.
24. Bunka, D. H. J.; Stockley, P. G., Aptamers come of age - at last. Nature Reviews Microbiology 2006, 4 (8), 588-596.
25. Cox, J. C.; Ellington, A. D., Automated selection of anti-protein aptamers. Bioorgan Med Chem 2001, 9 (10), 2525-2531.
26. Bock, C.; Coleman, M.; Collins, B.; Davis, J.; Foulds, G.; Gold, L.; Greef, C.; Heil, J.; Heilig, J. S.; Hicke, B.; Hurst, M. N.; Husar, G. M.; Miller, D.; Ostroff, R.; Petach, H.; Schneider, D.; Vant-Hull, B.; Waugh, S.; Weiss, A.; Wilcox, S. K.; Zichi, D., Photoaptamer arrays applied to multiplexed proteomic analysis. Proteomics 2004, 4 (3), 609-618.
27. Eulberg, D.; Buchner, K.; Maasch, C.; Klussmann, S., Development of an automated in vitro selection protocol to obtain RNA-based aptamers: identification of a biostable substance P antagonist. Nucleic Acids Res 2005, 33 (4), e45.
28. Marshall, K. A.; Ellington, A. D., In vitro selection of RNA aptamers. Rna-Ligand Interactions, Part B 2000, 318, 193-214.
29. Eaton, B. E.; Pieken, W. A., Ribonucleosides and Rna. Annual Review of Biochemistry 1995, 64, 837-863.
30. Balamurugan, S.; Obubuafo, A.; Soper, S. A.; McCarley, R. L.; Spivak, D. A., Designing highly specific biosensing surfaces using aptamer monolayers on gold. Langmuir 2006, 22 (14), 6446-6453.
31. Ostatna, V.; Vaisocherova, H.; Homola, J.; Hianik, T., Effect of the immobilisation of DNA aptamers on the detection of thrombin by means of surface plasmon resonance. Analytical and Bioanalytical Chemistry 2008, 391 (5), 1861-1869.
32. Tang, Q. J.; Su, X. D.; Loh, K. P., Surface plasmon resonance spectroscopy study of interfacial binding of thrombin to antithrombin DNA aptamers. Journal of Colloid and Interface Science 2007, 315 (1), 99-106.
33. Liss, M.; Petersen, B.; Wolf, H.; Prohaska, E., An aptamer-based quartz crystal protein biosensor. Analytical Chemistry 2002, 74 (17), 4488-4495.
34. Hianik, T.; Ostatna, V.; Sonlajtnerova, M.; Grman, I., Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin. Bioelectrochemistry 2007, 70 (1), 127-133.
35. Huizenga, D. E.; Szostak, J. W., A DNA Aptamer That Binds Adenosine and Atp. Biochemistry 1995, 34 (2), 656-665.
36. Ravelet, C.; Grosset, C.; Peyrin, E., Liquid chromatography, electrochromatography and capillary electrophoresis applications of DNA and RNA aptamers. J Chromatogr A 2006, 1117 (1), 1-10.
37. Romig, T. S.; Bell, C.; Drolet, D. W., Aptamer affinity chromatography: combinatorial chemistry applied to protein purification. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 1999, 731 (2), 275-284.
38. Connor, A. C.; McGown, L. B., Aptamer stationary phase for protein capture in affinity capillary chromatography. J Chromatogr A 2006, 1111 (2), 115-119.
39. Deng, Q.; German, I.; Buchanan, D.; Kennedy, R. T., Retention and separation of adenosine and analogues by affinity chromatography with an aptamer stationary phase. Analytical Chemistry 2001, 73 (22), 5415-5421.
40. Vo, T. U.; McGown, L. B., Effects of G-quartet DNA stationary phase destabilization on fibrinogen peptide resolution in capillary electrochromatography. Electrophoresis 2006, 27 (4), 749-756.
41. Michaud, M.; Jourdan, E.; Villet, A.; Ravel, A.; Grosset, C.; Peyrin, E., A DNA aptamer as a new target-specific chiral selector for HPLC. Journal of the American Chemical Society 2003, 125 (28), 8672-8679.
42. Ruta, J.; Ravelet, C.; Grosset, C.; Fize, J.; Ravel, A.; Villet, A.; Peyrin, E., Enantiomeric separation using an L-RNA aptamer as chiral additive in partial-filling capillary electrophoresis. Analytical Chemistry 2006, 78 (9), 3032-3039.
43. Pich, E. M.; Epping-Jordan, M. P., Transgenic mice in drug dependence research. Annals of Medicine 1998, 30 (4), 390-396.
44. Blank, M.; Blind, M., Aptamers as tools for target validation. Curr Opin Chem Biol 2005, 9 (4), 336-342.
45. Pendergrast, P. S.; Marsh, H. N.; Grate, D.; Healy J. M.; Stanton, M., Nucleic acid aptamers for target validation and therapeutic applications. Journal of Biomolecular Techniques 2005,16(3), 224-34.
46. Lee, J. F.; Stovall, G. M.; Ellington, A. D., Aptamer therapeutics advance. Curr Opin Chem Biol 2006, 10 (3), 282-289.
47. Floege, J.; Ostendorf, T.; Janssen, U.; Burg, M.; Radeke, H. H.; Vargeese, C.; Gill, S. C.; Green, L. S.; Janjic, N., Novel approach to specific growth factor inhibition in vivo - Antagonism of platelet-derived growth factor in glomerulonephritis by aptamers. American Journal of Pathology 1999, 154 (1), 169-179.
48. Nelson, J. S.; Giver, L.; Ellington, A. D.; Letsinger, R. L., Incorporation of a non-nucleotide bridge into hairpin oligonucleotides capable of high-affinity binding to the Rev protein of HIV-1. Biochemistry 1996, 35 (16), 5339-5344
49. Pavlov, V.; Xiao, Y.; Shlyahovsky, B.; Willner, I., Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. Journal of the American Chemical Society 2004, 126 (38), 11768-11769.
50. Huang, C. C.; Huang, Y. F.; Cao, Z. H.; Tan, W. H.; Chang, H. T., Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Analytical Chemistry 2005, 77 (17), 5735-5741.
51. Polsky, R.; Gill, R.; Kaganovsky, L.; Willner, I., Nucleic acid-functionalized Pt nanoparticles: Catalytic labels for the amplified electrochemical detection of biomolecules. Analytical Chemistry 2006, 78 (7), 2268-2271.
52. Gill, R.; Polsky, R.; Willner, I., Pt Nanoparticles Functionalized with Nucleic Acid Act as Catalytic Labels for the Chemiluminescent Detection of DNA and Proteins. Small 2 2006, 8(9),1037-1041.
53. Dwarakanath, S.; Bruno, J. G.; Shastry, A.; Phillips, T.; John, A.; Kumar, A.; Stephenson, L. D., Quantum dot-antibody and aptamer conjugates shift fluorescence upon binding bacteria. Biochem Bioph Res Co 2004, 325 (3), 739-743.
54. Levy, M.; Cater, S. F.; Ellington, A. D., Quantum-dot aptamer beacons for the detection of proteins. Chembiochem 2005, 6 (12), 2163-2166.
55. So, H. M.; Park, D. W.; Jeon, E. K.; Kim, Y. H.; Kim, B. S.; Lee, C. K.; Choi, S. Y.; Kim, S. C.; Chang, H.; Lee, J. O., Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors. Small 2008, 4 (2), 197-201.
56. Liu, J. W.; Lu, Y., Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angewandte Chemie-International Edition 2006, 45 (1), 90-94.
57. Liu, J. W.; Mazumdar, D.; Lu, Y., A simple and sensitive "dipstick" test in serum based on lateral flow separation of aptamer-linked nanostructures". Angewandte Chemie-International Edition 2006, 45 (47), 7955-7959.
58. Wang, J. L.; Zhou, H. S., Aptamer-based Au nanoparticles-enhanced surface plasmon resonance detection of small molecules. Analytical Chemistry 2008, 80 (18), 7174-7178.
59. Macaya, R. F.; Schultze, P.; Smith, F. W.; Roe, J. A.; Feigon, J., Thrombin-Binding DNA Aptamer Forms a Unimolecular Quadruplex Structure in Solution. P Natl Acad Sci USA 1993, 90 (8), 3745-3749.
60. Feigon, J.; Dieckmann, T.; Smith, F. W., Aptamer structures from A to zeta. Chem Biol 1996, 3 (8), 611-617.
61. Wyatt, J. R.; Vickers, T. A.; Roberson, J. L.; Buckheit, R. W.; Klimkait, T.; Debaets, E.; Davis, P. W.; Rayner, B.; Imbach, J. L.; Ecker, D. J., Combinatorially Selected Guanosine-Quartet Structure Is a Potent Inhibitor of Human-Immunodeficiency-Virus Envelope-Mediated Cell-Fusion. P Natl Acad Sci USA 1994, 91 (4), 1356-1360.
62. Nagatoishi, S.; Tanaka, Y.; Tsumoto, K., Circular dichroism spectra demonstrate formation of the thrombin-binding DNA aptamer G-quadruplex under stabilizing-cation-deficient conditions. Biochem Bioph Res Co 2007, 352 (3), 812-817.
63. Jayapal, P.; Mayer, G.; Heckel, A.; Wennmohs, F., Structure-activity relationships of a caged thrombin binding DNA aptamer: Insight gained from molecular dynamics simulation studies. Journal of Structural Biology 2009, 166 (3), 241-250.
64. Tasset, D. M.; Kubik, M. F.; Steiner, W., Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. Journal of Molecular Biology 1997, 272 (5), 688-698.
65. Salvagnini, C., Thrombin inhibitors grafting on polyester membranes for the preparation of blood-compatible materials. The doctoral dissertation 2005.
66. Hu, J.; Zheng, P. C.; Jiang, J. H.; Shen, G. L.; Yu, R. Q.; Liu, G. K., Electrostatic Interaction Based Approach to Thrombin Detection by Surface-Enhanced Raman Spectroscopy. Analytical Chemistry 2009, 81 (1), 87-93.
67. Di Cera, E., Thrombin as procoagulant and anticoagulant. Journal of Thrombosis and Haemostasis 2007, 5 (s1), 196-202.
68. Esmon, C. T., The protein C pathway. Chest 2003, 124 (3), 26s-32s.
69. Bichler, J.; Heit, J. A.; Owen, W. G., Detection of thrombin in human blood by ex-vivo hirudin. Thrombosis Research 1996, 84 (4), 289-294.
70. Bode, W., Structure and interaction modes of thrombin. Blood Cells Molecules and Diseases 2006, 36 (2), 122-130.
71. Huntington, J. A., Molecular recognition mechanisms of thrombin. Journal of Thrombosis and Haemostasis 2005, 3 (8), 1861-1872.
72. Bode, W.; Turk, D.; Karshikov, A., The Refined 1.9-Angstrom X-Ray Crystal-Structure of D-Phe-Pro-Arg Chloromethylketone-Inhibited Human Alpha-Thrombin - Structure-Analysis, Overall Structure, Electrostatic Properties, Detailed Active-Site Geometry, and Structure-Function-Relationships. Protein Science 1992, 1 (4), 426-471.
73. Gopinath, S. C. B., Methods developed for SELEX. Analytical and Bioanalytical Chemistry 2007, 387 (1), 171-182.
74. Morgan, H.; Taylor, D. M., A Surface-Plasmon Resonance Immunosensor Based on the Streptavidin Biotin Complex. Biosensors & Bioelectronics 1992, 7 (6), 405-410.
75. Boozer, C.; Ladd, J.; Chen, S. F.; Jiang, S. T., DNA-directed protein immobilization for simultaneous detection of multiple analytes by surface plasmon resonance biosensor. Analytical Chemistry 2006, 78 (5), 1515-1519.
76. Ladd, J.; Boozer, C.; Yu, Q. M.; Chen, S. F.; Homola, J.; Jiang, S., DNA-directed protein immobilization on mixed self-assembled monolayers via a Streptavidin bridge. Langmuir 2004, 20 (19), 8090-8095.
77. Myszka, D. G., Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Current Opinion in Biotechnology 1997, 8 (1), 50-57.
78. Myszka, D. G.; Jonsen, M. D.; Graves, B. J., Equilibrium analysis of high affinity interactions using BIACORE. Anal Biochem 1998, 265 (2), 326-330.
79. Velluz, L.; Legrand, M.; Grosjean, M., Optical circular dichroism. Academic Press, Inc., 1965.
80. Kankia, B. I.; Marky, L. A., Folding of the thrombin aptamer into a G-quadruplex with Sr2+: Stability, heat, and hydration. Journal of the American Chemical Society 2001, 123 (44), 10799-10804.
81. Olsen, C. M.; Lee, H. T.; Marky, L. A., Unfolding Thermodynamics of Intramolecular G-Quadruplexes: Base Sequence Contributions of the Loops. J Phys Chem B 2009, 113 (9), 2587-2595.
82. Pagano, B.; Martino, L.; Randazzo, A.; Giancola, C., Stability and binding properties of a modified thrombin binding aptamer. Biophys J 2008, 94 (2), 562-569.
83. Hamaguchi, N.; Ellington, A.; Stanton, M., Aptamer beacons for the direct detection of proteins. Anal Biochem 2001, 294 (2), 126-131.
84. Cho, E. J.; Collett, J. R.; Szafranska, A. E.; Ellington, A. D., Optimization of aptamer microarray technology for multiple protein targets. Analytica Chimica Acta 2006, 564 (1), 82-90.
85. Lao, Y. H.; Peck, K.; Chen, L. C., Enhancement of Aptamer Microarray Sensitivity through Spacer Optimization and Avidity Effect. Analytical Chemistry 2009, 81 (5), 1747-1754.
86. Bozza, M.; Sheardy, R. D.; Dilone, E.; Scypinski, S.; Galazka, M., Characterization of the secondary structure and stability of an RNA aptamer that binds vascular endothelial growth factor. Biochemistry 2006, 45 (24), 7639-7643.
87. McDonald, R. J.; Dragan, A. I.; Kirk, W. R.; Neff, K. L.; Privalov, P. L.; Maher, L. J., DNA bending by charged peptides: Electrophoretic and spectroscopic analyses. Biochemistry 2007, 46 (9), 2306-2316.
88. Johnson, W. C., Determination of the conformation of nucleic acid by electronic CD. In Circular Dichroism and the Conformational Analysis of Biomolecules 1996, p 433.
89. Ratmeyer, L.; Vinayak, R.; Zhong, Y. Y.; Zon, G.; Wilson, W. D., Sequence-Specific Thermodynamic and Structural-Properties for DNA-Center-Dot-Rna Duplexes. Biochemistry 1994, 33 (17), 5298-5304.
90. Lin, P. H.; Yen, S. L.; Lin, M. S.; Chang, Y.; Louis, S. R.; Higuchi, A.; Chen, W. Y., Microcalorimetrics studies of the thermodynamics and binding mechanism between L-tyrosinamide and aptamer. J Phys Chem B 2008, 112 (21), 6665-6673.
91. De Filippis, V.; De Dea, E.; Lucatello, F.; Frasson, R., Effect of Na+ binding on the conformation, stability and molecular recognition properties of thrombin. Biochem J 2005, 390, 485-492.
92. Mao, X. A.; Marky, L. A.; Gmeiner, W. H., NMR structure of the thrombin-binding DNA aptamer stabilized by Sr2+. J Biomol Struct Dyn 2004, 22 (1), 25-33.
93. Mondragon-Sanchez, J. A.; Liquier, J.; Shafer, R. H.; Thillandier, E., Tetraplex structure formation in the thrombin-binding DNA aptamer by metal cations measured by vibrational spectroscopy. J Biomol Struct Dyn 2004, 22 (3), 365-373.
94. Su, X. D.; Wu, Y. J.; Robelek, R.; Knoll, W., Surface plasmon resonance spectroscopy and quartz crystal microbalance study of streptavidin film structure effects on biotinylated DNA assembly and target DNA hybridization. Langmuir 2005, 21 (1), 348-353.
95. Jung, L. S.; Nelson, K. E.; Stayton, P. S.; Campbell, C. T., Binding and dissociation kinetics of wild-type and mutant streptavidins on mixed biotin-containing alkylthiolate monolayers. Langmuir 2000, 16 (24), 9421-9432.
96. Hook, F.; Ray, A.; Norden, B.; Kasemo, B., Characterization of PNA and DNA immobilization and subsequent hybridization with DNA using acoustic-shear-wave attenuation measurements. Langmuir 2001, 17 (26), 8305-8312.
97. Su, X. D., Covalent DNA immobilization on polymer-shielded silver-coated quartz crystal microbalance using photobiotin-based UV irradiation. Biochem Bioph Res Co 2002, 290 (3), 962-966.
98. Skladal, P., Piezoelectric quartz crystal sensors applied for bioanalytical assays and characterization of affinity interactions. Journal of the Brazilian Chemical Society 2003, 14 (4), 491-502.
99. Su, X. D.; Lin, C. Y.; O'Shea, S. J.; Teh, H. F.; Peh, W. Y. X.; Thomsen, J. S., Combinational application of surface plasmon resonance spectroscopy and quartz crystal microbalance for studying nuclear hormone receptor-response element interactions. Analytical Chemistry 2006, 78 (15), 5552-5558.
100. Boyer, M.; Poujol, N.; Margeat, E.; Royer, C. A., Quantitative characterization of the interaction between purified human estrogen receptor alpha and DNA using fluorescence anisotropy. Nucleic Acids Res 2000, 28 (13), 2494-2502.
101. Margeat, E.; Bourdoncle, A.; Margueron, R.; Poujol, N.; Cavailles, V.; Royer, C., Ligands differentially modulate the protein interactions of the human estrogen receptors alpha and beta. Journal of Molecular Biology 2003, 326 (1), 77-92.
102. Hianik, T.; Ostatna, V.; Zajacova, Z.; Stoikova, E.; Evtugyn, G., Detection of aptamer-protein interactions using QCM and electrochemical indicator methods. Bioorganic & Medicinal Chemistry Letters 2005, 15 (2), 291-295.
103. Buff, M. C. R.; Schafer, F.; Wulffen, B.; Muller, J.; Potzsch, B.; Heckel, A.; Mayer, G., Dependence of aptamer activity on opposed terminal extensions: improvement of light-regulation efficiency. Nucleic Acids Res 2010, 38 (6), 2111-2118.
指導教授 陳文逸(Wen-yih chen) 審核日期 2010-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明