博碩士論文 973206007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:64 、訪客IP:18.216.3.58
姓名 廖振淵(Chen-yuan Liao)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 熱裂解降解飛灰中戴奧辛之研究
(Degradation of Dioxin in Fly Ashes via Pyrolysis)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 國內飛灰主要來源為垃圾焚化爐、電弧爐煉鋼廠及二次金屬冶煉產業,由於含高濃度之戴奧辛及重金屬,屬有害事業廢棄物。每年產生之飛灰量佔有害事業廢棄物總量的62 %,且穩定化後之體積明顯增加,該如何有效降低飛灰毒性、減少固化體積及提升飛灰再利用之可行性已成為國內迫在眉捷亟需解決之環境議題。本研究擬針對都市垃圾焚化爐飛灰、二次銅冶煉飛灰、電弧爐集塵灰及電弧爐集塵灰處理廠飛灰進行特性分析,並透過熱解方式分解飛灰中之戴奧辛,為我國飛灰處理問題尋求完善且可行之處理技術。其結果指出,溫度越高、反應時間越長,飛灰有較高之PCDD/Fs去除率,在3小時、400oC、有氣流及無氧的環境下,都市垃圾焚化爐飛灰之PCDD/Fs去除率為98.1%,二次銅冶煉飛灰之PCDD/Fs去除率為26%,電弧爐集塵灰處理廠飛灰之PCDD/Fs去除率為72%,顯示此操作條件下,都市垃圾焚化爐飛灰之PCDD/Fs去除率為最高。而氣流之有無對不同產業飛灰而言,PCDD/Fs去除效率差異不大。若飛灰操作於3小時、400oC及含5%氧之氣流中,四種飛灰皆有顯著PCDD/Fs生成,其中以二次銅冶煉之PCDD/Fs生成毒性濃度值最高,為304.5 ng-TEQ/g。添加氧化鈣與氫氧化鈣於四種飛灰上,大體而言氫氧化鈣對飛灰中PCDD/Fs之去除效率較氧化鈣好,在各種添加量下,氫氧化鈣之毒性去除效率大多高於氧化鈣。
摘要(英) The major fly ash sources in Taiwan include municipal solid waste incinerators (MSWIs), electric arc furnaces (EAFs) and secondary metal smelting processes. Because fly ashes contain high concentration of dioxin and heavy metal, they belong to hazardous waste and have to be treated before its releases. Fly ashes account for 62% of total hazardous industrial waste in Taiwan, and fly ashes are mostly treated with stabilization/solidification in Taiwan, resulting in the increase of fly ash volume. So how to efficiently lower the toxicity in fly ashes, reducing the stabilization/solidification fly ashes volume are the most important issue in Taiwan. This study is motivated to understand the fly ash characteristics and construct a pyrolysis system for degrading dioxins in the fly ashes. The fly ashes investigated in this study include municipal solid waste incinerators fly ashes, electric arc furnaces fly ashes, Waelz process fly ashes and secondary copper smelting fly ashes. The results show that the dioxin removal efficiency is higher as the reaction time gets longer or temperature gets higher. At 3 hour, 400oC, 100% nitrogen flow, the dioxin removal efficiency is 98.1% in MWI fly ashes, 26% in secondary copper smelting fly ashes, 72% in EAF fly ashes; it shows that MWI fly ash has the highest dioxin removal efficiency. The dioxin removal efficiencies do not change significantly whether the system contains the flow or not. Dioxin formation is observed when the flow contains 5% oxygen, and the secondary copper smelting fly ashes is of the highest formation. The dioxin removal efficiency achieved by adding Ca(OH)2 is higher than that of adding CaO.
關鍵字(中) ★ 戴奧辛
★ 飛灰
★ 熱裂解
★ 鹼劑
關鍵字(英) ★ Dioxin
★ Fly Ashes
★ Pyrolysis
★ Alkali Additive
論文目次 摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 VIII
第一章 前言 1
1.1 研究源起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 飛灰種類及其基本特性 3
2.1.1 都市垃圾焚化爐 3
2.1.2 電弧爐煉鋼 16
2.1.3 集塵灰處理廠 19
2.1.4 二次冶煉銅 19
2.2 飛灰中的戴奧辛 20
2.3 飛灰的處理方式 22
2.3.1 固化法/穩定固化法 22
2.3.2 濕式化學處理 23
2.3.3 熔融法 23
2.3.4 再利用 25
2.4 飛灰的熱處理 25
第三章 研究方法與設備 36
3.1 研究方法與流程 36
3.2 批次熱裂解系統建立 36
3.3 飛灰基本性質分析方法及原理 39
3.3.1 重金屬溶出量 39
3.3.2 比表面積 42
3.3.3 表面特性 42
3.3.4 氯鹽分析 43
3.3.5 硫酸鹽分析 43
3.3.6 元素分析 43
3.3.7 pH值 44
3.3.8 含水率 44
3.4 實驗之藥品、溶劑、材料、設備 44
3.4.1 實驗藥品 44
3.4.2 實驗溶劑 45
3.4.3 實驗材料 45
3.4.4 實驗設備 46
3.4.5 飛灰中戴奧辛分析程序 46
第四章 結果與討論 57
4.1 飛灰基本性質探討 57
4.2 溶出特性 65
4.3 飛灰熱解探討 68
4.3.1 不同來源飛灰之原始戴奧辛濃度比較 68
4.3.2 都市垃圾焚化爐飛灰中戴奧辛裂解效率之探討 70
4.3.3 二次銅冶煉飛灰中戴奧辛裂解效率之探討 74
4.3.4 電弧爐集塵灰中戴奧辛裂解效率之探討 74
4.3.5 集塵灰處理廠飛灰中戴奧辛裂解效率之探討 75
4.3.6 不同飛灰裂解結果之比較 76
4.4 含鈣鹼劑對PCDD/Fs裂解之影響 77
4.4.1 含鈣鹼劑對都市垃圾焚化爐飛灰中戴奧辛裂解效率之探討 77
4.4.2 含鈣鹼劑對二次銅冶煉飛灰中戴奧辛裂解效率之探討 79
4.4.3 含鈣鹼劑對電弧爐集塵灰中戴奧辛裂解效率之探討 81
4.4.4 含鈣鹼劑對集塵灰處理廠飛灰中戴奧辛裂解效率之探討 81
4.4.5 總整理 82
第五章 結論與建議 84
5.1 結論 84
5.2 建議 86
參考文獻 86
參考文獻 1. Activities for a Recycling-Oriented Society, Daido Steel Environmental Report (2002).
2. Alorro, R. D., Hiroyoshi, N., Ito, M., Tsunekawa, M., “Recovery of heavy metals from MSW molten fly ash by CIP method”, Hydrometallurgy, vol. 97, pp. 8-14 (2009).
3. Addink, R., Olie, K., “Role of oxygen in formation of polychlorinated dibenzo-p-dioxins/dibenzofurans from carbon on fly ash,” Environ. Sci. Technol., vol. 29, pp. 1586-1590 (1995).
4. Bakhtiari, F., Zivdar, M., Atashi, H., Seyed Bagheri, S. A., “Bioleaching of copper from smelter dust in a series of airlift bioreactors”, Hydrometallurgy, vol. 90, pp. 40-45 (2008).
5. Buser, H. R., Bosshardt, H. P., Rappe, C., Lindahl, R., “Identification of polychlorinated dibenzofuran isomers in fly-ash and PCB pyrolysis”, Chemosphere, vol. 7, pp. 419-429 (1978).
6. Carsch, S., Thoma, H., Hutzinger, O., “Leaching of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans from municipal waste incinerator fly ash by water and organic solvents”, Chemosphere vol. 15, pp. 1927-1930 (1986).
7. Chang, M, B., Libourel, G., “Characterization of fuel gas residues from municipal solid waste combustors”, Environmental Science Technology, vol. 32,pp. 2250-2256 (1998).
8. Chang, M. B., Chung, Y. T., “Dioxin contents in fly ashes of MSW incineration in Taiwan”, Chemosphere, vol. 36, pp.1959-1968 (1998).
9. Chi, K. H., Chang, S. H., Chang, M. B., “Characteristics of PCDD/F distributions in vapor and solid phases and emissions from the Waelz process”, Environmental Science and Technology, Vol. 40, pp. 1770-1775 (2006).
10. Chi, K. H., Chang, S. H., Chang, M. B., “Reduction of dioxin-like compound emissions from a Waelz plant with adsorbent injection and a dual baghouse filter system”, Environmental Science and Technology, Vol. 42, pp. 2111-2117 (2008).
11. Choi, K. I., Lee, D. H., “PCDD/DF in leachates from Korean MSW landfills”, Chemosphere, vol. 63, pp. 1353-1360 (2006).
12. Choua, S. Y., Lo, S. L., Hsieha, C. H., Chen, C. L., “Sintering of MSWI fly ash by microwave energy”, Journal of Hazardous Materials, vol. 163, pp. 357-362 (2009).
13. Cobo, M., Gálvez, A., Conesa, J. A., de Correa, C. M., “Characterization of fly ash from a hazardous waste incinerator in Medellin, Colombia”, Journal of Hazardous Materials, vol. 168, pp.1223-1232 (2009).
14. Dattilo, M., Cole Jr, E. R., O'Keefe, T. J., “ Electrogalvanizing using zinc recovered from nonferrous smelter dusts”, Conservation & Recycling, vol. 9, pp. 55-66 (1986).
15. Dolezal, I. S., Segebarth, K. P., Zennegg, M., Wunderli, S., “Comparison between supercritical-fluid extraction (SFE) using carbon-dioxide acetone and conventional soxhlet extraction with toluene for the subsequent determination of PCDD/PCDF in a single electrofilter ash sample”, Chemosphere, vol. 31, pp. 4013-4024 (1995).
16. EAF dust treatment: United States Patent 5672146 http://www.freepatentsonline.com/5672146.html
17. Fedjea, K. K., Ekbergb, C., Skarnemarkc, G., Steenaria, B. M., “Removal of hazardous metals from MSW fly ash-An evaluation of ash leaching methods”, Journal of Hazardous Materials, vol. 173, pp. 310-317 (2010).
18. Fischer, G. L., Chang, D. P. Y., Brummer, M., “Fly ash collected from electrostatic precipitators: microcrystalline structures and the mystery of the spheres”, Science, vol. 192, pp. 553-555 (1976).
19. Fischer, J., Lorenz, W., Bahadir, M., “Leaching behavior of chlorinated aromatic compounds from fly ash of waste incinerators”, Chemosphere, vol. 25, pp. 543-552 (1992).
20. Forestier, L. L., Libourel, G., “Characterization of flue gas residues from municipal solid waste combustors”, Environ. Sci. Technol, vol. 32, pp 2250-2256 (1998).
21. Gardner, K. H., “Characterization of leachates from municipal incinerator ash materials”, Thesis, Clarkson University, 1991.
22. Graydon, J. W., Kirk, D. W., “Characterization of fly ash from a municipal solid waste incinerator”, Proceedings of EPD Congress, pp. 327–350 (1992).
23. Gullett, B. K., Bruce, K. R., Beach, L. O., Formation mechanisms of chlorinated organics and impacts of sorbent injection, Proceedings of the International Conference on Municipal Waste Combustion, Hollywood, Florida, pp. 801-825 (1989).
24. Hagenmaier, H., Brunner, H., Haag, R., Kraft, M., Lützke, K., “Problems associated with the measurement of PCDD and PCDF emissions from waste incineration plants”, Waste Management & Research, vol. 5, pp. 239-250 (1987a).
25. Hagenmaier, H., Kraft, M., Brunner, H., Haag, R., “Catalytic effects of fly ash from waste incineration facilities on the formation and decomposition of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans”, Environ. Sci. Technol, vol. 21, pp. 1080-1084 (1987b).
26. Hamemik, J. D., Frantz, G. C., ” Physical and chemical properties of municipal solid waste fly ash”, ACI Material Journal, vol. 88, pp. 294-301 (1991).
27. Havlik, T., Turzakova, M., Stopic, S., Friedrich, B., “Atmospheric leaching of EAF dust with diluted sulphuric acid”, Hydrometallurgy, vol. 77, pp. 41-50 (2005).
28. Ishida, M., Shiji, R., Nie, P., Nakamura, N., Sakai, S. I., “Full-scale plant study on low temperature thermal dechlorination of PCDDs/PCDFs in fly ash”, Chemosphere, vol. 37, pp. 2299-2308 (1998).
29. Kammel, R., Goktepe, M., Oelmann, H., “Zinc electrowinning from flue dusts at a secondary copper smelter and connected adhesion problems of the metal deposits”, Hydrometallurgy, vol. 19, pp. 11-24 (1987).
30. Karamanov, A., Pelino, M., Salvo, M., Metekovits, I., “Sintered glass-ceramics from incinerator fly ash. Part 2. The influence of the particle size and heat-treatment on the properties”, Journal of the European Ceramic Society, vol. 23, pp. 1609-1615 (2003).
31. Keegel Jr, J. F., “Methods for recycling electric arc furnace dust”, United States Patent 5,538,532 (1996), www.patentstorm.us/patents/5538532-description.html.
32. Kida, A., Yukio, N., Imada, T., “Chemical speciation and leaching properties of elements in municipal incinerator ashes”,Waste Management, vol. 16, pp. 527-536 (1996).
33. Kim, B. H., Lee, S., Maken, S., Song, H. J., Park, J. W., Min, B., “Removal characteristics of PCDDs/Fs from municipal solid waste incinerator by dual bag filter (DBF) System”, Fuel, vol. 86, pp. 813-819 (2007).
34. Kim, Y. J., Lee, D H., Osako, M., “Effect of dissolved humic matters on the leachability of PCDD/F from fly ash--Laboratory experiment using Aldrich humic acid”, Chemosphere, vol.47, pp. 599-605 (2002).
35. Klein, D. H., Andren, A. W., Carter, J. A., Emery , J. F., Feldmen, C., Fulkerson, W., Lyon, W. S., Ogle, J. C., Talmi, Y., Vanhook, R. I., Bolton, N., “Pathways of thirty-seven trace elements through coal-fired power plant”, Environmental Science and Technology, vol. 9, pp. 973-979 (1975).
36. Kola, R., “The treatment of EAF-dust in Europe”, In Proceedings of the Conference on Recycling Lead and Zinc, the Challenge of the 1990s, Rome, Italy, pp. 279-295 (1991).
37. Kooke, R. M. M., Lustenhouwer, J. W. A., Olie, K., Hutzinger, O., “Extraction efficiencies of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans from fly ash”, Analytical Chemistry, vol. 53, pp. 461-463 (1981).
38. Lee, G. S., Son, Y. J., “Recycling EAF dust by heat treatment with PVC”, Minerals Engineering, vol. 20, pp. 739-746 (2007).
39. Lundin, L., Marklund, S., “Thermal degradation of PCDD/F in municipal solid waste ashes in sealed glass ampules”, Environ. Sci. Technol, vol. 39, pp. 3872-3877 (2005).
40. Masaki, T., Takeda, N., Mirua, S., “The behavior of heavy metals and phosphorus in an ash melting process”, Waste Science Technology, vol. 36, pp. 275-282 (1997).
41. Matsunaga, T., Kim J. K., Hardcastle, S., Rohatgi, P. K., ” Crystallinity and selected properties of fly ash particles ”, Materials Science and Engineering, vol. 325, pp. 333-343 (2002)
42. Mecozzi, R., Palma, L. D., Pilone, D., Cerboni, L., “Use of EAF dust as heterogeneous catalyst in Fenton oxidation of PCP contaminated wastewaters”, Journal of Hazardous Materials, vol. 137, pp. 886-892 (2006).
43. Misaka, Y., Yamanaka, K., Takeuchi, K., Sawabe, K., Shobatake, K., “Removal of PCDDs/DFs and dl-PCBs in MWI fly ash by heating under vacuum”, Chemosphere, vol. 64, pp. 619-627 (2006).
44. Mizutani, S., Yoshida, T., Sakai, S. I., Takatsuki, H., “Release of metals from MSWI fly ash and availability in alkali condition”, Waste Management, vol. 16, pp. 537-544 (1996).
45. Moon, M. H., Kang, D., Lim, H., Oh, J. E., Chang, Y. S., “Continuous fractionation of fly ash particles by SPLITT for the investigation of PCDD/Fs levels in different sizes of insoluble particles”, Environ. Sci. Technol, vol. 36, pp. 4416-4423 (2002).
46. Olie, K., Vermeulen, P. L., Hutzinger, D., “Chlorobenzo-p-dioxins and chlorodibenzofurans are trace components of fly ash and flue gas of some municipal incinerators in the Netherlands”, Chemosphere, vol. 6, pp. 455–459 (1977).
47. Ontiveros, J. T., Clapp, T. L., Kosson, D. S., “Physical properties and chemical species distribution within municipal waste combustor ash”, Environmental Progress, vol. 8, pp. 200-209 (1989).
48. Querol, X., Fernhndez-Turiel, J. L., Lbpez-Soler, A., “Trace elements in coal and their behavior during combustion in a large power station”, Fuel, vol. 74, pp. 331-343 (1995).
49. Roffman, H. K., In: Proc. Municipal Waste Combustion Conf, papers and abstracts from the Second Annual Int. Specialty Conf., Air & Waste Management Association, Tampa, FL, pp. 96 (1991) .
50. Sarbak, Z., Kramer-Wachowiak, M., “Porous structure of waste fly ashes and their chemical modifications”, Powder Technology, vol. 123, pp. 53-58 (2002).
51. Sarbak, Z., Staczyk, A., Kramer-Wachowiak, M., “Characterisation of surface properties of various fly ashes”, Powder Technology, vol. 145, pp. 82-87 (2004).
52. Schoonenboom, M. H., Zoetemeijer, H. E., Oile, K., “Dechlorination of octachlorodibenzo-p-dioxin and octachlorodibenzofuran on an alumina support”, Applied Catalysis B: Environmental, vol. 6, pp. 11-20 (1995).
53. Schramm, K. W., Merk, M., Henkelmann, B., Kettrup, A., “Leaching of PCDD/F from fly ash and soil with fire-extinguishing water”, Chemosphere, vol. 30, pp. 2249-2257 (1995a).
54. Schramm, K. W., Wu, W. Z., Henkelmann, B., Merk, M., Xu, Y., Zhang, Y. Y., Kettrup, A., “Influence of linear alkylbenzene sulfonate LAS as organic cosolvent on leaching behavior of PCDD/Fs from fly ash and soil”, Chemosphere, vol. 31, pp. 3445-3453 (1995b).
55. Shia, H. S., Kan, L. L., “Characteristics of municipal solid wastes incineration (MSWI) fly ash–cement matrices and effect of mineral admixtures on composite system”, Construction and Building Materials, vol. 23, pp. 2130-2166 (2009).
56. Song, G. J., Kim, S. H., Seo, Y. C., Kim, S. C., “Dechlorination and destruction of PCDDs/PCDFs in fly ashes from municipal solid waste incinerators by low temperature thermal treatment”, Chemosphere, vol. 71, pp. 248-257 (2008).
57. Vehlow, J., Bergfeldt, B., Hunsinger, H., “PCDD/F and related compounds in solid residues from municipal solid waste incineration - a literature review”, Waste Management Research, vol. 24, pp. 404-420 (2006).
58. Vogg, H., Metzger, M., Stieglitz, L., “Recent findings on the formation and decomposition of PCDD/PCDF in solid municipal waste incineration”. Presented at the seminar:Emissions of Trace Organics from Municipal Solid Waste Incinerators , Copenhagen, January, 1987。
59. Wang, Q., Yang, J., Wang, Q., Wu, T., “Effects of water-washing pretreatment on bioleaching of heavy metals from municipal solid waste incinerator fly ash”, Journal of Hazardous Materials, vol. 162, pp. 812-818(2009).
60. Weber, R., Takasuga, T., Nagai, K., Shiraishi, H., Sakurai, T., Matuda, T., Hiraoka, M., “Dechlorination and destruction of PCDD, PCDF and PCB on selected fly ash from municipal waste incineration”, Chemosphere, vol. 46, pp. 1255-1262 (2002a).
61. Weber, R., Nagai, K., Nishino, J., Shiraishi, H., Ishida, M., Takasuga, T., Konndo, K., Hiraoka, M., “Effects of selected metal oxides on the dechlorination and destruction of PCDD and PCDF”, Chemosphere, vol. 46, pp. 1247-1253 (2002b)
62. Weber, R., Sakurai, T., “Formation characteristics of PCDD and PCDF during pyrolysis processes”, Chemosphere, vol. 45, pp. 1111-1117 (2001).
63. Wey, M. Y., Liu, K. Y., Tsai, T. H., Chou, J. T., “Thermal treatment of the fly ash from municipal solid waste incinerator with rotary kiln”, Journal of Hazardous Materials, vol. 137, pp. 981-989 (2006).
64. Wiles, C. C., “Municipal solid waste combustion ash: State-of-the-knowledge”, Journal of Hazardous Material, vol. 47, pp. 325-329 (1996).
65. Wilewska-Bien, M., Lundberg, M., Steenari, B. M., Theliander, H., “Treatment process for MSW combustion fly ash laboratory and pilot plant experiments”, Waste Management, vol. 27, pp. 1213-1224 (2007).
66. Xia, D. K., Pickles, C. A., “Microwave caustic leaching of electric arc furnace dust”, Minerals Engmeering, vol. 13, pp. 79-94 (2000).
67. Xu, T. J., Ting, Y. P., “Optimisation on bioleaching of incinerator fly ash by Aspergillus niger-use of central composite design”, Enzyme Microb. Technol, vol. 35, pp. 444-454 (2004).
68. 王更新,「都市垃圾焚化飛灰燒結處理再利用之可行性研究」,國立屏東科技大學碩士論文(2003)。
69. 台中縣環保局。http://bumf.teepb.gov.tw/index/i/i_013.asp?id=2565&idx=1
70. 行政院環境保護署,「垃圾焚化飛灰熔融資源再利用廠興建工程規劃、設計及監造專案工作計畫--服務建議書」,台北(2003)。
71. 行政院環境保護署,「有害事業廢棄物戴奧辛及重金屬管制之調查與評估專案研究計畫」,2010。
72. 行政院環境保護署,「固定污染源毒性空氣污染物(戴奧辛及重金屬)排放清冊調查及管制計畫」,2008。
73. 行政院環境保護署,「國內有害空氣污染物質排放調查及管制策略研擬計畫」,2006。
74. 行政院環境保護署,「廢棄物焚化灰渣材料化技術研究」,2003。
75. 行政院環境保護署,「鋼鐵冶煉業集塵灰之指紋技術建置計畫」,2004。
76. 余宗賢,「固化法於飛灰重金屬及戴奧辛之穩定化研究」,國立高雄第一科技大學環境與安全衛生工程所,碩士論文,2004。
77. 李仲虔,「重金屬離子於焚化飛灰中的表面結構與擴散行為」,國立屏東科技大學碩士論文(2003)。
78. 李建中,李釗,何啟華,鄭清江,「垃圾焚化灰爐之力學特性與大地工程之應用」 ,一般廢棄物焚化灰渣資源化技術與實務研討會論文集,第193-225頁,1996。
79. 村川中夫,Hagenmaier 式加熱分解技術之飛灰中戴奧辛類對策,第十講,飛灰對策,NTS 株式會社出版,1998
80. 周常華、李公哲、廖彥偉,「焚化底渣/氟化鈣污泥之共同熔融結晶化熔渣之特性及其資材化研究」,四屆廢棄物處理技術研討會,2007。
81. 岡村太助等,「都市垃圾底灰、飛灰之再資源化技術(燒結法人工骨材及透水磚製造)」,No. 164,Ebara 時報,1994。
82. 邱孔濱,「都市垃圾焚化飛灰無害化後資源再利用之研究」,國立聯合大學環境與安全衛生工程學系,碩士論文,2006。
83. 厚生省生活衛生局水道環境部環境整備課,高濃度戴奧辛類污染物分解處理技術手冊,環境施設,No.79,2000 年
84. 孫世勤、闕蓓德,「都市垃圾焚化廠飛灰處理方式評估」,工業污染防治期刊,第78 期,第170-206頁,2001。
85. 許桂秋,「以序列萃取探討集塵灰之重金屬與戴奧辛溶出特性」,國立中央大學環境工程研究所,碩士論文,2008。
86. 曾錦清、李文成、洪聰民、鄭大偉,「焚化飛灰電漿熔融資源化處理技術介紹」,台南市焚化灰渣資源化處理研討會,2004。
87. 黃千紋,「利用煉鋼電弧爐熔融處理垃圾焚化飛灰之效益評估」,國立中山大學環境工程研究所,碩士論文,2005。
88. 楊金鐘,「實例探討煉鋼廠電弧爐熔融處理垃圾焚化飛灰之效益」,產業環保工程實務技術研討會, 2002。
89. 趙永楠,「以動態/半動態溶出程序評估都市垃圾焚化底灰長期穩定特性研究」,國立台灣大學環境工程學研究所,碩士論文,2003。
90. 劉瓊芳、曹申“台灣電弧爐集塵灰物化特性研究”,工研院環安中心暨材料所,2006。。
91. 環保水泥資源再利用體系說明資料,Ebara Corporation, 1999。
92. 環保署,「金屬基本工業事業廢棄物有害物質戴奧辛含量流向調查專案工作計畫」,2008。
93. 環保署,「辦理特定有害事業廢棄物戴奧辛含量與流向調查專案工作計畫」,2007。
94. 環境檢驗所NIEA R306.13C「事業廢棄物萃出液中重金屬檢測方法-酸消化法」。
95. 環境檢驗所公告M801.11B「戴奧辛及呋喃檢測方法—同位素標幟稀釋氣相層析/高解析質譜法」。
96. 環境檢驗所公告NIEA A402.11A「空氣粒狀污染物中硫酸鹽檢驗法—濁度法」。
97. 環境檢驗所公告NIEA A403.10A「空氣粒狀污染物中氯鹽檢驗法—硝酸汞滴定法」。
98. 環境檢驗所公告NIEA R118.02B「事業廢棄物採樣方法」。
99. 環境檢驗所公告NIEA R203.02C之「事業廢棄物水分測定方法-間接測定法」。
100. 環境檢驗所公告NIEA R208.04C「廢棄物之氫離子濃度指數(pH值)測定方法-電極法」。
101. 環境檢驗所公告NIEA R309.12C「事業廢棄物萃出液中六價鉻檢測方法-比色法」。
102. 環境檢驗所公告NIEA R314.12C「公告事業廢棄物萃出液中總汞檢測方法-冷蒸氣原子吸收光譜法」。
103. 環境檢驗所公告NIEA R409.21C「廢棄物中碳、氫、硫、氧、氮元素含量檢測方法-元素分析儀法」。
104. 環境檢驗所公告NIEAR119.00C「廢棄物焚化灰渣採樣方法」。
105. 環境檢驗所公告R201.13C「事業廢棄物毒性特性溶出程序」。
106. 謝函潔,「焚化飛灰吸附有機物及重金屬鉛、鎘之探討」,國立台灣大學環境工程工程研究所,碩士論文,2001。
107. 鍾昀泰「一般廢棄物焚化灰分中戴奧辛含量及相關物化因子之初步研究」,國立中央大學環境工程研究所,碩士論文,1997。
108. 羅瑞士,「焚化集塵灰螯合劑之合成與效能評估」,國立屏東科技大學環境工程與科學研究所,碩士論文,2003。
109. 顧順榮、鍾汮泰、張木彬 「台灣地區都市垃圾焚化分灰灰分中重金屬濃度及TCLP溶出之評估」,第十屆廢棄物處理技術研討會論文集,第271-279頁,台南市(1995)。
指導教授 張木彬(Moo-been Chang) 審核日期 2010-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明