博碩士論文 973206017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.85.214.0
姓名 張佑嘉(Yu-Chia Chang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性
(Near-source characterization of biomass burning aerosols and transport evolution from Indochina peninsula and aerosol properties at Dongsha island.)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 鹿林山大氣背景站不同氣團氣膠光學特性★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究
★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化
★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析
★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定
★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估
★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性★ 2011-2015年台灣都會區細懸浮微粒(PM2.5)成分濃度變化、污染來源推估及對能見度影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 每年春季中南半島北部生質燃燒旺盛,生質燃燒煙團經盛行西風傳送,分布廣泛遍及中南半島及東亞,影響這個區域對太陽輻射的收支。本文在泰國清邁(海拔1,396 m)、台灣鹿林山(海拔2,862 m)、台灣東沙島進行氣膠觀測,發現傳送至東沙島的氣流屬於地面傳輸,傳送至泰國清邁及鹿林山則屬於高層大氣傳送,在這三個地點觀測氣膠能分別瞭解受到高層大氣及地面傳送不同氣流來源影響的氣膠特性差異。
清邁位於泰國與緬甸交界,是一個相當靠近中南半島生質燃燒源區的地方,本研究以手動方式採集PM10及PM2.5氣膠進行化學成分分析,發現清邁氣膠質量濃度以PM2.5氣膠為主。PM2.5水溶性離子中硫酸根離子及鉀離子為優勢物種,氣膠碳成分以OC3及EC1-OP為主,水可溶有機碳(WSOC)佔有機碳比例為62%,二元酸以Oxalic acid濃度最高,至於氣膠單醣無水化合物則明顯以左旋葡萄糖為主。從樣本的分析可清楚瞭解生質燃燒源區氣膠特性,透過適當氣膠成分比值的計算,可推測PM2.5氣膠來自森林曠野燃燒,燃燒樹種多以軟木為主。
鹿林山春季受到盛行西風影響,是一個適合觀察中南半島生質燃燒氣團長程傳輸的地點。本文比較鹿林山與清邁源氣膠特性,發現生質燃燒氣膠經過傳輸以後,氣膠鉀離子增加4.4倍、硝酸根離子增加2.3倍、OC3 增加2.7倍、EC1-OP增加4.7倍、左旋葡萄糖增加3.4倍。本文也利用一些氣膠氧化特性指標來探討生質燃燒氣膠傳輸老化的現象,其中以WSOC/WIOC (水不可溶有機碳)最能突顯老化特性,WSOC在傳輸前後會由易揮發的有機碳物種組成轉變至不易揮發的有機碳物種,nss-SO42-/nss-K+及SOR (sulfur oxidation ratio)則會受到氣團經過中國南方的影響,使氣團nss-SO42-平衡狀態改變,在評估老化現象需特別注意。
本研究共進行四次雲霧事件的前、中、後氣膠採樣觀測,有三次雲霧事件會挾帶氣膠至鹿林山;雲霧事件後可能受到濃度較高的氣流影響使PM1氣膠濃度增加。在雲霧活化氣膠成分效率方面,硝酸根離子最容易受到雲霧活化,其次為硫酸根離子,銨根離子的活化效率最低。
東沙島座落於南海東北端,當它受到亞洲大陸傳輸氣流影響會明顯帶來氣體污染物,即使是受到海洋來源影響也是有少量人為污染物。
在氣膠中和程度與化合物結合形態方面,三個採樣地點PM2.5氣膠都有氨氣不足的現象,東沙島PM10氣膠也有氨氣不足的現象。清邁PM2.5氣膠NH4+及nss-SO42-結合形態為(NH4)3(H)(SO4)2,鹿林山生質燃燒事件與非生質燃燒期間結合形態都是(NH4)2SO4,東沙島氣膠受到海鹽與酸鹼氣反應的影響有氯損失現象,利用“氯損失原理”可獲得東沙島PM10氣膠結合形態為NH4HSO4,PM2.5氣膠為(NH4)3(H)(SO4)2。
摘要(英) Biomass burning (BB) is active in the northern part of Indochina Peninsula every spring. The BB plume transported by the prevailing westerly wind affects solar radiation budget in the Indochina Peninsula and East Asia. This study observed atmospheric aerosols at Chiangmai (1,396 m a.s.l., Thailand), Mt. Lulin (2,862 m a.s.l.), and the Dongsha Island. Trajectory analysis showed that the airmasses were transported near the surface at the Dongsha Island in contrast to the upper atmospheric transport at the Chiangmai and Mt. Lulin sites. The distinction of transported aerosol properties between surface and upper atmosphere can be appreciated at these three sites.
The Chiangmai site locates in the borderline of Thailand and Myanmar and is very close to BB source area in the Indochina Peninsula. Filter-based PM10 and PM2.5 samples were manually collected and analyzed for their chemical compositions. The result showed that Chiangmai aerosol mass was dominated by PM2.5 and sulfate and potassium ions were the major species in the water-soluble ions. OC3 and EC1-OP were predominant in aerosol carbonaceous fractions and 62% of organic carbon (OC) was in water-soluble organic carbon (WSOC). Oxalic acid was dominated in diacides and levoglucosan is undoubtedly the paramount fraction of anhydrous monosaccharide. The analyzed samples clearly reveal aerosol characteristics in the BB source area. The collected PM2.5 could be attributed to forest open-burning and most burnt tree species was softwood through the calculations of appropriate aerosol composition ratios.
Mt. Lulin is an appropriate site for observing BB plume transported from Indochina peninsula as it is located downstream of the prevailing westerly wind. This study compared aerosol characteristics between Mt. Lulin and Chiangmai and found that aerosol potassium ion increased 440%, nitrate ion increased 230%, OC3 increased 270%, EC1-OP increased 470%, and levoglucosan increased 340% in the BB plume during transport.
A few aerosol oxidation indices were employed to assess aging effect of biomass burning plume after transport. Among the selected indices, WSOC/WIOC (the ratio of WSOC over water-insoluble organic carbon) is the most significant index in showing transported aging aerosol. A conversion of more volatile to less volatile organics is noticed for WSOC. Note that the change of the equilibrium state of nss-SO42- influenced by the passage of airmasses through southern China makes nss-SO42-/nss-K+ and SOR (sulfur oxidation ratio) less effective in studying aerosol aging effect.
There are four cloud events observed in the state of before, during, and after periods in this study. Aerosol was brought by the airflow to the Mt. Lulin site for three events. PM1 concentration was likely to increase by the introduction of higher aerosol mass airflow after cloud event. In the activation efficiency of aerosol component in cloud, nitrate ion is activated easiest in the cloud followed by sulfate ion and ammonium ion is the least activated one.
The Dongsha Island is located in the northern tip in South China Sea. Its location makes it either affected by gaseous pollutants brought by Asian continental airmasses or minor anthropogenic pollutants when the airmasses are with oceanic origin.
In studying aerosol neutralization and compound form, ammonia deficiency is found for all at the three sites. The compound form of NH4+ and nss-SO42- at the Chiangmai site is (NH4)3(H)(SO4)2, while (NH4)2SO4 is inferred at the Mt. Lulin site. By adopting the “Chlorine Loss” mechanism to account for the reaction of sea-spray aerosol between acidic and basic gases, the inferred compound forms of NH4+ and nss-SO42- at the Dongsha Island are NH4HSO4 for PM10 and (NH4)3(H)(SO4)2 for PM2.5, respectively.
關鍵字(中) ★ 南海氣膠
★ 氣膠中和
★ 氣膠老化指標
★ 燃燒區氣膠特性
★ 東南亞氣膠
★ 生質燃燒
關鍵字(英) ★ Aerosol in South China Sea
★ Aerosol neutralization
★ aerosol aging indices
★ Southeast Asian aerosol
★ Biomass burning aerosol
★ Source characteristics of aerosol
論文目次 摘要 I
Abstract III
致謝 V
圖目錄 X
表目錄 XIV
一、前言 1
1.1 研究緣起 1
1.2 研究目的 2
二、文獻回顧 3
2.1亞洲與東南亞生質燃燒 3
2.2生質燃燒燃料燃燒方式與特性 5
2.3 氣膠傳輸氧化物特性 9
2.3.1 二元酸與硫酸鹽關係 9
2.3.2硫酸氣與硫酸鹽轉換作用 10
2.3.3 水可溶有機碳 10
2.3.4 OC/EC碳成分比值 11
2.3.5 C3/C4二元酸物種比值 11
2.4 生質燃燒氣膠指標物 12
2.5 南海氣膠特性 14
2.6 氣膠中和與結合形態 15
三、研究方法 17
3.1 研究架構 17
3.2 採樣地點與採樣週期 18
3.2.1 泰國清邁山區 19
3.2.2 鹿林山空氣背景監測站 22
3.2.3 東沙島 27
3.3 採樣方法與採樣器 29
3.3.1 採樣儀器 29
1. 手動採樣器 29
2. 自動監測儀器 32
3.3.2 採樣濾紙選擇與前處理程序 33
1. 儀器與濾紙配置 33
2. 濾紙的前處理 35
3. 樣本的運送與保存 36
3.4 樣本分析方法 37
3.4.1 氣膠質量濃度分析 37
3.4.2 氣膠水溶性離子分析 38
3.4.3 氣膠碳成分分析 41
3.4.4 氣膠有機成分分析-單醣無水化合物 43
3.4.5 氣膠有機成分分析-二元酸 46
3.4.6 氣膠水可溶有機碳分析 47
3.4.7氣膠中和探討-【NH4+】meas/【NH4+】calc計算方式 49
3.5 氯離子損失法與海鹽貢獻量推估 49
3.6 雲霧氣膠的收集 54
3.6.1 氣膠受雲霧事件去除效率計算方式 55
3.7 判別生質燃燒發生的方法 55
3.7.1 美國太空總署(NASA)自然災害網 55
3.7.2 全球火災監測中心(GFMC) 56
3.7.3 氣流軌跡模式(NOAA HYSPLIT) 56
3.8 逆推軌跡分類 57
四、結果與討論 61
4.1 泰國清邁生質燃燒源區氣膠特性 61
4.1.1 PM10-2.5及PM2.5 氣膠質量濃度 61
4.1.2 PM10-2.5及PM2.5氣膠水溶性離子與前驅氣體濃度 64
4.1.3 PM10-2.5及PM2.5氣膠碳成分濃度 67
1. PM10-2.5及PM2.5氣膠有機碳及元素碳 67
2. PM2.5氣膠水可溶有機碳 69
3. PM2.5氣膠二元酸 70
4. PM2.5氣膠單醣無水化合物 72
4.2 鹿林山觀測期間氣膠各成分變化 73
4.2.1 PM10-2.5及PM2.5 氣膠質量濃度 73
4.2.2 PM2.5氣膠水溶性離子與前驅氣體濃度 75
4.2.3 PM2.5氣膠碳成分濃度 77
1. PM2.5氣膠有機碳及元素碳 77
2. PM2.5氣膠水可溶有機碳 79
3. PM2.5氣膠二元酸 81
4. PM2.5氣膠單醣無水化合物 82
4.3 海洋氣膠密集觀測 83
4.3.1 東沙島氣膠特性 83
4.3.2 海水飛沫對氣膠的貢獻程度 91
4.4 生質燃燒源區PM2.5氣膠來源判斷 94
4.5 生質燃燒氣膠傳輸化學特徵物種 96
4.6 雲霧事件 99
4.6.1 雲霧事件發生前後鹿林山氣膠變化 99
1. 第一次雲霧事件 101
2. 第二次雲霧事件 105
3. 第三次雲霧事件 109
4. 第四次雲霧事件 113
4.7中南半島生質燃燒期間高層大氣傳輸與地面觀測 123
4.7.1各觀測地點PM2.5氣膠組成比例 123
4.7.2氣流來源類型與氣膠特性的差異 127
1. 鹿林山高層大氣傳輸氣膠特性 127
2. 東沙島地面觀測氣膠特性 133
4.7.3氣膠中和與結合形態 136
1. 泰國清邁山區及鹿林山生質燃燒與非生質燃燒期間 136
2. 東沙島 140
4.7.4氣膠傳輸老化特性 147
1. 泰國清邁與鹿林山高層傳輸老化 147
五、結論與建議 161
5.1 結論 161
5.1.1 泰國清邁生質燃燒源區氣膠化學特性與來源推估 161
5.1.2 東沙島海域春季氣膠化學特性與氯損失現象 162
5.1.3 生質燃燒氣膠傳輸老化特性及氣膠特徵物種 163
5.1.4 鹿林山雲霧事件發生過程 164
5.1.5高層大氣及地面傳輸來源氣膠化學特性 164
5.1.6高層大氣及地面傳輸氣膠中和特性與結合形態 165
5.2 建議 166
六、參考文獻 167
附錄一 口試委員意見回覆 177
附錄二 2010年3月至2010年4月泰國清邁山區觀測期間逆推軌跡圖 184
附錄三 2009年12月至2010年4月鹿林山觀測期間逆推軌跡圖 186
附錄四 2010年3月至2010年4月東沙島觀測期間逆推軌跡圖 192
參考文獻 Aggarwal, S., Kawamura, K., 2008. Molecular distributions and stable carbon isotopic compositions of dicarboxylic acids and related compounds in aerosols from Sapporo, Japan: implications for photochemical aging during long-range atmospheric transport. Journal of Geophysical Research-Atmospheres 113, D14301, doi:10.1029/ 2007JD009365.
Aggarwal, S., Kawamura, K., 2009. Carbonaceous and inorganic composition in long-range transported aerosols over northern Japan: Implication for aging of water-soluble organic fraction. Atmospheric Environment 43, 2532-2540.
Arimoto, R., Zeng, T., Davis, D., Wang, Y., Khaing, H., Nesbit, C., Huey, G., 2008. Concentrations and sources of aerosol ions and trace elements during ANTCI- 2003. Atmospheric Environment 42, 2864-2876.
Beig, G., Brasseur, G. P., 2000. Model of tropospheric ion composition: A first attempt. Journal of Geophysical Research, 105, 22671–22684.
Benner Jr., B.A., Wise, S.A., Currie, L.A., Klouda, G.A., Klinedinst, D.B., Zweidinger, R.B., Stevens, R.K., Lewis, C.W., 1995. Distinguishing the contributions of residential wood combustion and mobile source emissions using relative concentrations of dimethylphenanthrene isomers. Environmental Science & Technology 29, 2382-2389.
Berresheim, H., Plass-Dulmer, C., Elste, T., Mihalopoulos, N., and Rohrer, F.: OH in the coastal boundary layer of Crete during MINOS: Measurements and relationship with ozone photolysis, Atmospheric Chemistry and Physics 3, 639-649.
Bond, T.C., Streets, D.G., Yarber, K.F., Nelson, S.M., Woo, J.-H., Klimont, Z., 2004. A technology based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research 109, D14203, doi:10.1029/ 2003JD003697.
Brosset, C., 1978. Water-soluble sulphur compounds in aerosols. Atmospheric Environment 12, 25-38.
Cachier, H., Jacob, J., Bremond, M., Lacaux, J., Gaudichet, A., Baudet, J., 1991. Bimoass burning in a savanna region of the Ivory Coast. Atmospheric Climatic and Biospheric Implication, 174-180.
Cao, J., Xu, B., He, J., Liu, X., Han, Y., Wang, G., Zhu, C., 2009. Concentrations, seasonal variations, and transport of carbonaceous aerosols at a remote Mountainous region in western China. Atmospheric Environment 43, 4444-4452.
Carlton, A., Turpin, B., Lim, H., Altieri, K., Seitzinger, S., 2006. Link between isoprene and secondary organic aerosol (SOA): Pyruvic acid oxidation yields low volatility organic acids in clouds.Geophysical Research Letters 33, L06822, doi:10.1029/2005GL025374.
Chow, J.C., Watson, J.G., Chen, L.-W.A., Rice, J., Frank, N.H., 2010. Quantification of organic carbon sampling artifacts in U.S. non-urban and urban networks. Atmospheric Chemistry and Physics 10, 5223-5239.
Chow, J. C., Watson, J. G., Pritchett, L. C., Pierson, W. R., Frazier, C. A., Purcell, R. G., 1993. The DRI Thermal/Optical Reflectance carbon analysis system: Description, evaluation and applications in U.S. air quality studies. Atmospheric Environment 27, 1185-1201.
Covert, D.S., Gras, J.L., Wiedensohler, A., Stratmann, F., 1998. Comparison of directly measured CCN with CCN modeled from the number-size distribution in the marine boundary layer during ACE 1 at Cape Grim, Tasmania. Journal of Geophysical Research 103, 16597-16608.
Cozic, J., Verheggen, B., Weingartner, E., Crosier, J., Bower, K. N., Flynn, M., Coe, H., Henning, S., Steinbacher, M., Henne, S., Collaud Coen, M.,Petzold, A., and Baltensperger, U., 2008. Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch. Atmospheric Chemistry and Physics 8, 407-423.
Chi, K. H., Lin, C. Y., Yang, C. F. O., Wang, J. L., Lin, N. H., Sheu, G. R., and Lee, C. T.: PCDD/F measurement at a high-altitude station in Central Taiwan: Evaluation of long-range transport of PCDD/Fs during the Southeast Asia biomass burning event. Environmental Science & Technology 44, 2954-2960.
Chuang, M.T., Lee, C.T., Lin, N.H., Wang, J.L., Chou, C.C.K., Sheu, G.R., Chang, S.C., Wang, S.H., Huang, H., Chen, H.W., Weng, G.H., Lai, S.Y., Hsu, S.P., Chang, Y.J., 2010. The properties of carbonaceous aerosols in the Asian Brown Clouds: downstream observations of Southeast Asia biomass burning. Atmospheric Environment, in preparation.
Dhammapala, R., Claiborn, C., Simpson, C., Jimenez, J., 2007. Emission factors from wheat and Kentucky bluegrass stubble burning: omparison of field and simulated burn experiments. Atmospheric Environment 41, 1512-1520.
Draxler, R.R., Rolph, G.D., 2010. (http://ready.arl.noaa.gov/HYSPLIT.php). NOAA Air Resources Laboratory, Silver Spring, MD.
Duan, F., Liu, X., Yu, T., Cachier, H., 2004. Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing. Atmospheric Environment 38, 1275-1282.
Facchini, M.C., Fuzzi, S., Zappoli, S., Andracchio, A., Gelencser, A., Kiss, G., Krivacsy, Z., Meszaros, E., Hnansson, H.C., Alsberg, T., Zebuhr, Y., 1999. Partitioning of the organic aerosol component between fog droplets and interstitial air. Journal of Geophysical Research-Atmospheres 104, D21, 26821-26832.
Fairley, D., 1990. The relationship of daily mortality to suspended particulates in Santa Clara County, 1980-1986. Environmental Health Perspectives 89, 159-168.
Fine, P.M., Cass, G.R., Simoneit, B.R.T., 2004. Chemical characterization of fine particle emissions from the wood stove combustion of prevalent United States tree species. Environmental Engineering Science 21, 705-721.
Frey, A.K., Tissari, J., Saarnio, K.M., Timonen, H.J., Tolonen-Kivimaki, O., Aurela, M.A., Saarikoski, S.K., Makkonen, U., Hytonen, K., Jokiniemi, J., Salonen, R.O., Hillamo, R.E. J., 2009. Chemical composition andmass size distribution of fine particulate matter emitted by a small masonry heater. Boreal Environment Research 14, 255-271.
Gao, S., Hegg, D.A., Hobbs, P.V., Kirchstetter, T.W., Magi, B.I., Sadilek, M., 2003.Water-soluble organic components in aerosols associated with savanna fires in southern Africa: Identification, evolution, and distribution, Journal of Geophysical Research-Atmospheres 108, D13, 8491, doi:10.1029/2002JD002324.
Gaudichet, A., Echalar, F., Chatenet, B., Quisefit, J.P., Malingre, G., Cachier, H., Buat, P., Artaxo, P., Maenhaut, W., 1995. Trace elements in tropical African savanna biomass burning aerosols. Journal of Atmospheric chemistry 22, 19-39.
Graham, B., Mayol-Bracero, O.L., Guyon, P., Roberts, G.C., Decesari, S., Facchini, M.C., Artaxo, P., Maenhaut, W., Koll, P., Andreae, M.O., 2002. Water-soluble organic compounds in biomass burning aerosols over Amazonia 1. Characterization by NMR and GC-MS. Journal of Geophysical Research-Atmospheres 107. doi:10.1029/ 2001JD000336.
Griffin, R. J., Cocker, D.R., Seinfeld, J.H., Dabdub, D., 1999.Estimate of global atmospheric organic aerosol from oxidation of biogenic hydrocarbons, Geophysical Research Letters 26, 2721-2724.
Han, Y.M., Han, Z.W., Cao, J.J., Chow, J.C., Watson, J.G., An, Z.S., Liu, S.X., 2008. Distribution and origin of carbonaceous aerosol over a rural high-mountain lake area, Northern China and its transport significance. Atmospheric Environment 42, 2405-2414.
Hays, M.D., Fine, P.M., Geron, C.D., Kleeman, M.J., Gullett, B.K., 2005. Open burning of agricultural biomass: physical and chemical properties of particle-phase emissions. Atmospheric Environment 39, 6747-6764.
Hays, M.D., Geron, C.D., Linna, K.J., Smith, N.D., Schauer, J.J., 2002.Speciation of gas-phase and fine particle emissions from burning of foliar fuels. Environmental Science & Technology 36, 2281-2295.
Holland, H.D., 1978. The Chemistry of the Atmosphere and Oceans, p. 154, John Wiley, New York.
Hsu, S.C., Liu, S.C., Kao, S.J., Jeng, W.L., Huang, Y.T., Tseng, C.M., Tsai, F., Tu, J.Y., Yang, Y., 2007. Water soluble pecies in the marine aerosol from the northern South China Sea: High chloride depletion related to air pollution, Journal of Geophysical Research-Atmospheres 112, D19304, doi:10.1029/2007JD008844.
Jalava, P., Salonen, R., Nuutinen, K., Pennanen A., Happo, M., Tissari, J., Frey, A., Hillamo, R., Jokiniemi, J., Hirvonen, M., 2010. Effect of combustion condition on cytotoxic and inflammatory activity of residential wood combustion particles. Atmospheric Environment 44, 1691-1698.
Jimenez, J.L., Canagaratna, M.R., Donahue, N.M., Prevot, A.S.H., Zhang, Q., Kroll, J.H., DeCarlo, P.F., Allan, J.D., Coe, H., Ng, N.L., Aiken, A.C., Docherty, K.S., Ulbrich, I.M., Grieshop, A.P., Robinson, A.L., Duplissy, J., Smith, J.D., Wilson, K.R., Lanz, V.A., Hueglin, C., Sun, Y.L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn, M., Kulmala, M., Tomlinson, J.M., Collins, D.R., Cubison, M.J.E., Dunlea, J., Huffman, J.A., Onasch, T.B., Alfarra, M.R., Williams, P.I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J.Y., Zhang, Y.M., Dzepina, K., Kimmel, J.R., Sueper, D., Jayne, J.T., Herndon, S.C., Trimborn, A.M., Williams, L.R., Wood, E.C., Middlebrook, A.M., Kolb, C.E., Baltensperger, U.,Worsnop, D.R., 2009. Evolution of organic aerosols in the atmosphere. Science 326, 1525-1529.
Jordan, T.B., Seen, A.J., Jacobsen, G.E., 2006. Levoglucosan as an atmospheric tracer for woodsmoke. Atmospheric Environment 40, 5316-5321.
Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski,Y., Fuzzi, S., Horth, J., Moortgat, G. K.,Winterhalter, R.,Myhre, C. E. L., Tsigaridis, K., Vignati, E., Stephanou, E. G., andWilson, J., 2005. Organic Aerosol and Global Climate Modelling: A Review, Atmospheric Chemistry and Physics 5:1053–1123.
Kawamura, K., 1993. Identification of C2-C10 ?-oxocarboxylic acids, pyruvic acid, and C2–C3 a-dicarbonyls in wet precipitation and aerosol samples by capillary GC and GC/MS, Analytical. Chemistry 65, 3505-3511.
Kawamura, K., Yasui, O., 2005. Diurnal changes in the distribution of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban atmosphere. Atmospheric Environment 39, 1945-1960.
Keene, W.C., Alexander A.P.P., James, N.G., Mark, E.H., 1986. Sea-salt corrections and interpretation of constituent ratios in marine precipitation. Journal of Geophysical Research 91, 6647-6658.
Kim, Y.J., Woo, J.H., Ma, Y.I., Kim, S, Nam, J.S., Sung, H., Choi, K.C., Seo, J., Kim, J., Kang, C.H., Lee, G., Ro, C., Chang, D., Sunwoo, Y., 2009. Chemical characteristics of longrange transport aerosol at background sites in Korea. Atmospheric Environment 43, 5556-5566.
Kumagai, K., Iijima, A., Shimoda, M., Saitoh, Y., Kozawa, K., Hagino, H., Sakamoto, K., 2010. Determination of Dicarboxylic Acids and Levoglucosan in Fine Particles in the Kanto Plain, Japan, for Source Apportionment of Organic Aerosols. Aerosol and Air Quality Research 10, 282-291.
Larson, T.V., Koenig, J.Q., 1994. Wood smoke: Emissions and noncancer respiratory effects. Annual Review of Public Health 15, 133-156.
Lee, C.T., Chuang, M.T., Lin, N.H., Wang, J.L., Sheu, G.R., Wang, S.H., Huang, H., Chen, H.W., Weng, G.H., Hsu, S.P., 2010. The enhancement of biosmoke from Southeast Asia on PM2.5 water-soluble ions during the transport over the Mountain Lulin site in Taiwan. Atmospheric Environment, in review.
Leskinen, A.P., Jokiniemi, J.K., Lehtinen, K.E.J., 2007. Characterization of aging wood chip combustion aerosol in an environmental chamber. Atmospheric Environment 41, 3713-3721.
Li, J., Posfai, M., Hobbs, P.V., Buseck, P.R., 2003. Individual aerosol particles from biomass burning in southern Africa:2.Compositions and aging of inorganic particles. Journal of Geophysical Research-Atmospheres 108, 8484, doi: 10.1029/2002JD002310.
Lim, H. J., Carlton, A.G., Turpin, B.J., 2005. Isoprene forms secondary organic aerosol through cloud processing: Model simulations. Environmental Science & Technology 39, 4441-4446.
Lin, C.Y., Liu, S.C., Chou, C.K., Huang, S.J., Liu, C.M., Kuo, C.H., Young, C.Y., 2005. Longrange transport of aerosols and their impact on the air quality of Taiwan. Atmospheric Environment 39, 6066-6076.
Liousse, C., Penner, J. E., Chuang, C., Walton, J.J., Eddleman, H., Cachier,H., 1996. A global three-dimensional model study of carbonaceous aerosols. Journal of Geophysical Research-Atmospheres 101,D14, 19411-19432.
Liu, H., Jacob, D.J., Bey, I., Yantosca, R.M., Duncan, B.N., 2000. Transport pathways for Asian pollution outflow over the Pacific: Interannual and season variations. Journal of Geophysical Research-Atmospheres 108, doi: 10.1029/2002JD003102.
McGowan, J.A., Hider, R.N., Chacko, E., Town, G.I., 2002. Particulate air pollution and hospital admissions in Christchurch, New Zealand. Australian and New Zealand Journal of Public Health 26, 23-29.
Miyazaki, Y., Aggarwal, S., Singh, K., Gupta, P., Kawamura, K., 2009. Dicarboxylic acids and water-soluble organic carbon in aerosols in New Delhi, India, in winter: Characteristics and formation processes. Journal of Geophysical Research-Atmospheres 114, D19206, doi:10.1029/2009JD011790.
Miyazaki, Y., Kondo, Y., Takegawa, N., Komazaki, Y., Kawamura, K., Mochida, M., Okuzawa, K., Weber, R.J., 2006. Time-resolved measurements of water-soluble organic carbon in Tokyo. Journal of Geophysical Research-Atmospheres 111, D23206, doi:10.1029/2006JD007125.
Murray, G., Kimball, K., Hill, L., Allen, G., Wolfson, J., Pszenny, A., Seidel, T., Doddridge, B., Boris, A., 2009. A comparison of fine particle and aerosol strong acidity at the interface zone (1540 m) and within (452 m) the planetary boundary layer of the Great Gulf and Presidential-Dry River Class I Wildernesses on the Presidential Range, New Hampshire USA. Atmospheric Environment 43, 3605-3613.
Niemi, J.V., Saarikoski, S., Aurela, M., Tervahattu, H., Hillamo, R., Westphal, D.L., Aarnio, P., Koskentalo, T., Makkonen, U., Vehkamaki, H., Kulmala, M., 2009. Long-range transport episodes of fine particles in southern Finland during 1999–2007. Atmospheric Environment 43, 1255-1264.
Ohta, S., Okita, T., 1990. A chemical characterization of atmospheric aerosol in Sapporo. Atmospheric Environment 24A, 815-822.
Olanders, B., Steenari, B.M., 1995. Charcterization of Ashes Form Wood and Straw. Biomass and Bioenergy , vol 8, No 2, 105-115.
Ou Yang, C.F., Lin, Y.C., Lin N.H., Lee, C.T., Sheu, G.R., Kama, S.H., Wang, J.L, 2009. Inter-comparison of three instruments for measuring regional background carbon monoxide. Atmospheric Environment 43, 6449-6453.
Pio, C.A., Legrand, M., Alves, C.A., Oliveira, T., Afonso, J., Caseiro, A., Puxbaum, H., Sanchez-Ochoa, A., Gelencser, A., 2008. Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period. Atmospheric Environment 42, 7530-7543.
Prospero, J.M., Savoie, D.L., 2003. Long-term record of nss-sulfate and nitrate in aerosols on Midway Island, 1981-2000: evidence of increased (now decreasing) anthropogenic emissions from Asia. Journal of Geophysical Research-Atmospheres 108, 4019, doi:10.1029/2001JD001524.
Puxbaum, H., Caseiro, A., Sanchez-Ochoa, A., Kasper-Giebl, A., Claeys, M., Gelencser, A., Legrand, M., Preunkert, S., Pio, C., 2007. Levoglucosan levels at background sites in Europe for assessing the impact of biomass combustion on the European aerosol background. Journal of Geophysical Research-Atmospheres 112. doi:10.1029/2006JD008114.
Olszyna, K. J., Bairai, S. T., Tanner, R. L., 2005. Effect of ambient NH3 levels on PM2.5 composition in the Great Smoky Mountains National Park. Atmospheric Environment 39, 4593–4606.
Qu, W. J., Zhang, X. Y., Arimoto, R., Wang, Y. Q., Wang, D., Sheng, L. F., 2009. Aerosol background at two remote CAWNET sites in western China. Science of the Total Environment 407, 3518-3529.
Quinn, P.K., Bates, T.S., Johnson, J.E., Covert, D.S., Charlson, R.J., 1990. Interactions between the sulfur and reduced nitrogen cycles over the central Pacific Ocean. Journal of Geophysical Research 95, 16405-16416.
Quinn, P.K., Bates, T.S., Coffman, D., Onasch, T.B.,Worsnop, D., Baynard, T., de Gouw, J.A., Goldan, P.D., Custer, W.C., Williams, E., Roberts, J.M., Lerner, B., Stohl, A., Pettersson, A., Lovejoy, E.R., 2006. Impacts of sources and aging on submicrometer aerosol properties in the marine boundary layer across the Gulf of Maine. Journal of Geophysical Research-Atmospheres 111, D23S36, doi:10.1029/2006JD007582.
Ramanathan, V., Chung, C., Kim, D., Bettge, T., Buja, L., Kiehl, JT., Washington, WM., Fu, Q., Sikka, DR., Wild, M., 2005. Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. Proceedings of the National Academy of Sciences of the United States of America 102, 5326-5333, doi: 10.1073/pnas.0500656102.
Reid, J.S., Koppmann, R., Eck, T.F., Eleuterio, D.P., 2005. A review of biomass burning emissions part II: intensive physical properties of biomass burning particles. Atmospheric Chemistry and Physics 5, 799-825.
Rodhe, H., 1978. Budgets and turn-over times of atmospheric sulfur compounds. Atmospheric Environment 12, 671-680.
Saxena, P., Hildemann, L. M., Mcmurry, P. H., Seinfeld, J. H., 1995. Organics Alter Hygroscopic Behavior of Atmospheric Particles. Journal of Geophysical Research-Atmospheres 100, 18755-18770.
Schauer, J.J., Cass, G.R., 2000. Source apportionment of wintertime gasphase and particle-phase air pollutants using organic compounds as tracers. Environmental Science & Technology 34, 1821-1832.
Schauer, J.J., Kleeman, M.J., Cass, G.R., Simoneit, B.R.T., 2001. Measurement of emissions from air pollution sources. 3. C1-C29 organic compounds from fireplace combustion of wood. Environmental Science & Technology 35, 1716-1728.
Schmidl, C., Marr, I.L., Caseiro, A., Kotianova, P., Berner, A., Bauer, H., Kasper-Giebl, A., Puxbaum, H., 2008. Chemical characterisation of fine particle emissions from wood stove combustion of common woods growing in mid-European Alpine regions. Atmospheric Environment 42, 126-141.
See, S.W., Balasubramanian, R., Wang, W., 2006. A study of the physical, chemical, and optical properties of ambient aerosol particles in Southeast Asia during hazy and nonhazy days. Journal of Geophysical Research 111, D10S08, doi:10.1029/2005JD006180.
Sheesley, R.J., Schauer, J.J., Chowdhury, Z., Cass, G.R., Simoneit, B.R.T., 2003. Characterization of organic aerosols emitted from the combustion of biomass indigenous to South Asia. Journal of Geophysical Research 108, 4285, doi:10.1029/2002JD002981.
Sheu, G.R., Lin, N.H., Wang, J.L., Lee, C.T., Yang, C.F.O., Wang, S.H., 2010. Temporal distribution and potential sources of atmosphetic mercury measured at a high-elevation background station in Taiwan. Atmospheric Environment 44, 2393-2400,.
Simoneit, B.R.T., 2002. Biomass burning: a review of organic tracers for smoke from incomplete combustion. Applied Geochemistry 17, 129-162.
Simpson, C.D., Paulsen, M., Dills, R.L., Liu, L.J.S., Kalman, D.A., 2005. Determination of methoxyphenols in ambient atmospheric particulate matter: tracers for wood combustion. Environmental Science & Technology 39, 631-637.
Sioutas, C., Wang, P. Y., Ferguson, S. T., Koutrakis, P., Mulik, J. D., 1996. Laboratory and field evaluation of an improved glass honeycomb denuder/filter pack sampler. Atmospheric Environment 30, 885-895.
Sorooshian, A., 2006. Oxalic acid in clear and cloudy atmospheres: Analysis of data from International Consortium for Atmospheric Research on Transport and Transformation 2004, Journal of Geophysical Research 111, D23S45, doi:10.1029/2005JD006880.
Stohl, A., Berg, T., Burkhart, J.F., Fjaraa, A.M., Forster, C., Herber, A., Hov, O., Lunder, C., McMillan, W.W., Oltmans, S., Shiobara, M., Simpson, D., Solberg, S., Stebel, K., Strom, J., Torseth, K., Treffeisen, R., Virkkunen, K., Yttri, K.E., 2007. Arctic smoke-record high air pollution levels in the European Arctic due to agricultural fires in eastern Europe in spring 2006. Atmospheric Chemistry and Physics 7, 511-534.
Streets, D. G., Yarber, K. F., Carmichael, G. R., 2003. Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles 17, 1099, doi:10.1029/2003GB002040.
Sullivan, A.P., Holden, A.S., Patterson, L.A., McMeeking, G.R., Kreidenweis, S.M., Malm, W.C., Hao, W.M., Wold, C.E., Collett Jr., J.L., 2008. A method for smoke marker measurements and its potential application for determining the contribution of biomass burning from wildfires and prescribed fires to ambient PM2.5 organic carbon. Journal of Geophysical Research 113, D22302, doi:10.1029/2008JD010216.
Tanner, R.L., Leaderer, B.P., Spengler, J.D., 1981. Acidity of atmospheric aerosols. Environmental Science & Technology 15, 150-1153.
Tissari, J., Lyyranen, J., Hytönen, K., Sippula, O., Tapper, U., Frey, A., Saarnio, K., Pennanen, A.S., Hillamo, R., Salonen, R.O., Hirvonen, M.R., Jokiniemi, J., 2008. Fine particulate emissions from normal and smouldering wood combustion in a conventional masonry heater. Atmospheric Environment 42, 7862-7873.
Volkamer, R., Jimenez, J.L., San, M.F., Dzepina, K., Zhang, Q., Salcedo, D., Molina, L.T., Worsnop, D.R., Molina, M.J., 2006. Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected. Geophysical Research Letters 33, L17811, doi:10.1029/2006GL026899.
Wang, H., Kawamura, K., Shooter, D., 2006. Wintertime organic aerosols in Christchurch and Auckland, New Zealand: contributions of residential wood and coal burning and petroleum utilization. Environmental Science & Technology 40, 5257-5262.
Ward, T.J., Hamilton, R.F., Dixon, R.W., Paulsen, M., Simpson, C.D., 2006. Characterization and evaluation of smoke tracers in PM: results from the 2003 Montana wildfire season. Atmospheric Environment 40, 7005-7017.
Warneck, P., 2003. In-cloud chemistry opens pathway to the formation of Oxalic acid in the marine atmosphere, Atmospheric Environment 37, 2423-2427.
Weimer, S., Alfarra, M.R., Schreiber, D., Mohr, M., Prevot, A.S.H., Baltensperger, U., 2008. Organic aerosol mass spectral signatures from wood-burning emissions: influence of burning conditions and wood type. Journal of Geophysical Research 113, D10304. doi:10.1029/2007JD009309.
Yamasoe,M.A., Artaxo, P.,Miguel, A.H., and Allen, A.G.,2000. Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: water-soluble species and trace elements, Atmospheric Environment 34, 1641-1653.
Yeatman, S.G., Spokes, L.J., Jickells, T.D., 2001. Comparisons of coarse-mode aerosol nitrate and ammonium at two polluted coastal sites. Atmospheric Environment 35, 1321-1335
Zdrahal, Z., Oliveira, J., Vermeylen, R., Claeys, M., Maenhaut, W., 2002. Improved method for quantifying levoglucosan and related monosaccharide anhydrides in atmospheric aerosols and application to samples from urban and tropical locations. Environment Science & Technology 36, 747-753.
Zhang, Q., Worsnop, D.R., Canagaratna, M.R., Jimenez, J.L., 2005. Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols. Atmospheric Chemistry and Physics 5, 3289-3311.
Zhang, T., Claeys, M., Cachier, H., Dong, S., Wang, W., Maenhaut, W., Liu, X., 2008. Identification and estimation of the biomass burning contribution to Beijing aerosol using levoglucosan as a molecular marker. Atmospheric Environment 42, 7013-7021.
Zhang, X., Zhuang, G., Guo, J., Yin, K., Zhang, P., 2007. Characterization of aerosol over the northern South China Sea during two cruises in 2003. Atmospheric Environment 41, 7821-7836.
Zhang, X.Y.,Wang, Y.Q., Zhang, X.C., Guo,W., Gong, S.L., 2008. Carbonaceous aerosol composition over various regions of China during 2006. Journal of Geophysical Research 113, D14111. doi:10.1029/2007JD009525.
秦若鈺,2004。大氣常見有機物分析及有機/無機混和氣膠含水特性之研究。 國立中央大學環境工程研究所碩士論文。
許紹鵬,2010。鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性。 國立中央大學環境工程研究所碩士論文。
泰國火災控制部門網站:http://www.dnp.go.th/forestfire/
指導教授 李崇德(Chung-Te Lee) 審核日期 2011-1-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明