博碩士論文 973206025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.227.161.132
姓名 許博閔(Po-min Hsu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 鹿林山大氣背景站不同氣團氣膠光學特性
(The atmospheric aerosol optical property for different air masses arriving Lulin Atmosphere Background Station)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究
★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化
★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析
★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定
★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估
★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性★ 2011-2015年台灣都會區細懸浮微粒(PM2.5)成分濃度變化、污染來源推估及對能見度影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 大氣氣膠光學效應會影響地球接收和反射太陽輻射,因此,觀測大氣氣膠光學特性是評估全球暖化的重要項目。台灣中部鹿林山(2,862 m a.s.l.)大氣背景站適合觀測東亞背景大氣氣膠的光學特性,雖然鹿林山屬於高山背景測站,但是仍會受到亞洲大陸污染傳送與春季中南半島生質燃燒的長程傳輸污染影響。本文分析2008年10月至2010年4月鹿林山受到不同氣團的氣膠光學特性,研究氣膠粒徑分布與氣膠化學成分變化對氣膠光學特性的影響,以及利用模式推估不同氣團乾氣膠直接輻射效應,並且與實際大氣氣膠直接輻射效應進行比較。
  鹿林山接收到的氣團主要為源區生質燃燒(BB)、源區非生質燃燒(SNBB)、自由大氣(FT)、人為污染(Anthropogenic)等四種類型。源區生質燃燒(BB)類型的氣團經過長程傳輸帶來高濃度的硫酸鹽氣膠與碳成分氣膠,PM10氣膠散光係數和吸光係數分別為127.2 Mm-1與24.6 Mm-1;源區非生質燃燒(SNBB)類型的氣團是長程傳輸的背景濃度,氣膠散光係數和吸光係數分別為23.2 Mm-1與3.1 Mm-1;自由大氣(FT)類型的氣團是代表東亞背景大氣的特性,氣膠散光係數和吸光係數分別為25.0 Mm-1與4.2 Mm-1;人為污染(Anthropogenic)類型的氣團包含中國東南方污染傳送與白天谷風帶來的本地污染,白天谷風造成PM10氣膠散光係數和氣膠吸光係數24小時平均影響量分別為15.1 Mm-1與1.6 Mm-1。源區生質燃燒、源區非生質燃燒、自由大氣、人為污染等四種類型氣團的氣膠直接輻射效應分別為-0.25、-0.22、-0.17、-0.60 W m-2,在生質燃燒期間氣膠單次散射反照率的低值與氣膠光學厚度的高值,會減低大氣氣膠對地球接收太陽直接輻射的冷卻效應。此外,考慮到氣膠化學成分會影響氣膠含水量,造成實際大氣氣膠散光效應會增加30.7%、2.5%、63.8%、37.7%,導致估算氣膠直接輻射效應需要修正。
摘要(英) The optical effects of atmospheric aerosol would influence solar radiation received and reflected by earth, therefore, the assessment of atmospheric aerosol optical properties on global warming is an important project. Lulin Atmosphere Background Station (LABS) at Mt. Lulin (2,862 m a.s.l.) in central Taiwan aims to observe the East Asian background atmospheric aerosol properties. Although Mt. Lulin is an elevated background station, it would still be affected by the Asian continental pollution and Indochina biomass burning through long-range transport. The purpose of this study is to analyze the impact of aerosol size distribution and aerosol chemical composition on the effects of changes in aerosol optical properties and use different models to estimate aerosol direct radiative effects for different air masses arriving at Mt. Lulin from October 2008 to April 2010.
  The air masses were classified into four types as air masses from source area of biomass burning (BB), source area of biomass burning during non-BB period (SNBB), free atmosphere (FT), and Anthropogenic sources (Anthropogenic). The BB type of air masses bring high concentrations of sulfate aerosol and carbon content of aerosol through the long-range transport. PM10 aerosol scattering coefficient and absorption coefficient could reach 127.2 Mm-1 and 24.6 Mm-1 respectively. For SNBB, aerosol scattering coefficient and absorption coefficient were 23.2 Mm-1 and 3.1 Mm-1 respectively. The FT type represented the East Asian clean background atmosphere properties. For FT, aerosol scattering coefficient and absorption coefficient were 25.0 Mm-1 and 4.2 Mm-1, respectively. For Anthropogenic type, air masses lower atmosphere of Asian continent and valley-breeze driven local pollution caused 15.1 Mm-1 and 1.6 Mm-1 for aerosol scattering coefficient and absorption coefficient, respectively. The direct radiative effects for BB, SNBB, FT, and Anthropogenic were -0.25, -0.22, -0.17, -0.60 W m-2, respectively. Lower single scattering albedo and higher aerosol optical depth would reduce the cooling effect of direct solar radiation during the biomass burning period. In addition, taking into account the aerosol water content affected by aerosol chemical compositions, the resulting aerosol scattering effect would increase by 30.7%, 2.5%, 63.8%, 37.7% for BB, SNBB, FT, and Anthropogenic, respectively.
關鍵字(中) ★ 氣膠直接輻射效應
★ 氣膠光學特性
★ 氣膠粒徑分布
★ 氣膠化學成分
★ 谷風
關鍵字(英) ★ aerosol direct radiative effects
★ aerosol optical properties
★ aerosol size distribution
★ aerosol chemical composition
★ valley-breeze
論文目次 摘 要 i
Abstract iii
致 謝 v
目 錄 vii
圖目錄 x
表目錄 xv
第一章 前言 1
  1.1 研究緣起 1
  1.2 研究目的 2
第二章 文獻回顧 3
  2.1 大氣氣膠分類、來源與組成特性 3
    2.1.1 大氣氣膠分類 3
    2.1.2 大氣氣膠來源 4
    2.1.3 大氣氣膠粒徑分布與形成作用 4
    2.1.4 高山氣膠粒徑分布特性 6
    2.1.5 谷風效應 8
  2.2 氣膠光學特性 9
    2.2.1 氣膠散光效應 10
    2.2.2 氣膠吸光效應 11
    2.2.3 氣膠消光效應 11
    2.2.4 氣膠質量光學效率 13
    2.2.5 氣膠輻射效應 14
  2.3 大氣氣膠含水特性 20
    2.3.1 無機氣膠含水特性 20
    2.3.2 有機氣膠含水特性 21
第三章 研究方法 23
  3.1 研究架構 23
  3.2 觀測地點介紹 25
  3.3 大氣氣膠連續監測系統 27
    3.3.1 NOAA氣膠觀測系統 27
    3.3.2 氣膠觀測系統光學量測儀器原理 29
    3.3.3 質量濃度監測系統 36
    3.3.4 粒徑分布監測系統 38
    3.3.5 其他連續監測儀器 41
  3.4 氣膠含水量 42
    3.4.1 手動採樣設備 42
    3.4.2 採樣濾紙前處理與設置 45
    3.4.3 氣膠含水量分析 47
    3.4.4 ISORROPIA模式 52
    3.4.5 氣膠質量濃度分析 53
    3.4.6 氣膠水溶性離子分析 54
    3.4.7 氣膠有機酸分析 55
    3.4.8 氣膠碳成分分析 56
    3.4.9 氣膠水可溶有機碳成分分析 58
    3.4.10 似腐植質氣膠碳成分分析 60
    3.4.11 腐植質氣膠含量分析 61
  3.5 不同氣團來源判定方法 63
第四章 結果與討論 65
  4.1 本地污染影響評估 66
    4.1.1 本地污染判斷指標 66
    4.1.2 污染影響日篩選標準與討論 68
    4.1.3 本地污染個案分析 82
  4.2 氣膠光學特性分析 89
    4.2.1 不同氣團氣膠光學特性 95
  4.3 氣膠粒徑分布分析 122
    4.3.1 氣膠數目濃度與體積濃度粒徑分布 122
    4.3.2 個案分析 125
  4.4 氣膠質量光學效應分析 141
  4.5 氣膠直接輻射效應推估 145
  4.6 氣膠含水特性 154
    4.6.1 氣膠水溶性離子濃度 155
    4.6.2 氣膠碳成分濃度 157
    4.6.3 實際大氣氣膠含水量與ISORROPIA II模式推估比較 159
    4.6.4 多元迴歸分析氣膠含水量 167
    4.6.5 氣膠含水量對氣膠光學特性影響討論 170
第五章 結論與建議 173
  5.1 結論 173
  5.2 建議 175
第六章 參考文獻 176
附錄一 口試委員意見與回覆 186
附錄二: 氣膠粒徑分布的氣流軌跡來源個案探討 193
  2010/3/23 8:00 am ~ 6:00 pm 氣流軌跡線 194
  2010/3/24 8:00 am ~ 6:00 pm 氣流軌跡線 195
  2010/4/19 8:00 am ~ 6:00 pm 氣流軌跡線 196
  2010/4/20 8:00 am ~ 6:00 pm 氣流軌跡線 197
  2010/4/21 8:00 am ~ 6:00 pm 氣流軌跡線 198
附錄三: 氣膠直接輻射效應相關參數 199
參考文獻 Ångström, A., 1929. On the atmospheric transmission of sun radiation and on dust in the air. Geografiska Annaler 11, 156-166, doi:10.2307/519399.
Ansari, A. S., Pandis, S. N., 1999. Prediction of multicomponent inorganic atmospheric aerosol behavior. Atmospheric Environment 33, 745-757.
Appel, B. R., Tokiwa, Y., Hsu, J., Kothny, E. L., Hahn, E., 1985. Visibility as rel ated to atmospheric aerosol constituents. Atmospheric Environment 9, 1525-1534.
Baik, N. J., Kim, Y. P., Moon, K. C., 1996. Visibility study in Seoul, 1993. Atmospheric Enviroment 30, 2319-2328.
Betts, A. K., Ball, J. H., 1997. Albedo over the boreal forest. Journal of Geophysical Research 102, 28901-28909.
Bond, T. C., Anderson, T. L., Campbell, D., 1999. Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols. Aerosol Science and Technology 30, 582-600.
Boucher, O., Anderson, T. L., 1996. GCM assessment of the sensitivity of direct climate forcing by Anthropogenic sulfate aerosols to aerosol size and chemistry. Journal of Geophysical Research 100, 26117-26134.
Cass, G. R., 1979. On the Relationship Between Sulfate air Quality and Visibility with examples in Los Angeles. Atmospheric Enviroment 13, 1069-1084.
Chan, Y. C., Simpson, R. W., Vowles, P. D., Cohen, D. D., Bailey, G. M., 1997. Characterisation of chemical species in PM2.5 and PM10 aerosols in Brisbane, Australia, Atmospheric Environment 31,3773-3785.
Chan, Y. C., Simpson, R. W., Mctainsh, G. H., Vowles, P. D., Cohen, D. D., Bailey, G. M., 1999. Source apportionment of visibility degradation problems in Brisbane (Australia) using the multiple linear regression techniques. Atmospheric Enviroment 33, 3237-3250.
Chang, S. Y., Lee, C. T., 2002. Applying GC-TCD to investigate the hygroscopic characteristics of mixed aerosols. Atmospheric Environment 36, 1521-1530.
Charlock, T. P. and Sellers, W. D., 1980. Aerosol effects on climate: Calculations with time-dependent and steady-state radiative-convective models. Journal of the Atmospheric Sciences 37, 1327-1341.
Charlson, R. J., Langner, J., Rodhe, H., Leovy, C. B., Warren, S. G., 1991. Perturbation of the northern-hemisphere radiative balance by backscattering from Anthropogenic sulfate aerosols. Tellus Series A-Dynamic Meteorology and Oceanography 43, 152-163.
Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Hansen, J. E., Hofmann, D. J., 1992. Climate forcing by Anthropogenic aerosols. Science 255, 423-430.
Chylek, P., Coakley, Jr., J. A., 1974. Aerosols and climate. Science 183, 75-77.
Chylek, P., Wong, J., 1995. Effect of absorbing aerosols on global radiation budget. Geophysical Research Letters 22, 929-931.
Colbeck, I., Lazaridis, M., 2010. Aerosols and environmental pollution. NaturwissenschaFTen 97, 117-131.
Colberg, C. A., Luo, B. P., Wernli, H., Koop, T., Peter, T., 2003. A novel model to predict the physical state of atmospheric H2SO4/NH3/H2O aerosol particles. Atmospheric Chemistry and Physics 3, 909-924.
Dzubay, T. G., Stevens, R. K., Lewis, C. W., 1982. Visibility and aerosol composition in Huston, Texas. Environmental Science and Technology 16, 514-524.
Evans, W. F. J., Puckrin, E., 2001. The surface radiative of nitric acid for northern mid-latitudes. Atmospheric Environment 35, 71-77.
Fierz-Schmidhauser, R., Zieger, P., Gysel, M., Kammermann, L., DeCarlo, P. F., Baltensperger, U., Weingartner, E., 2010. Measured and predicted aerosol light scattering enhancement factors at the high alpine site Jungfraujoch. Atmospheric Chemistry and Physics 10, 2319-2333.
Fountoukis, C., Nenes, A., 2007. ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+ - Ca2+ - Mg2+ - NH4+ - Na+ - SO42- - NO3- - Cl- - H2O aerosols. Atmospheric Chemistry and Physics 7, 4639-4659.
Gebhart, K. A., Malm, W. C., Day, D., 1994. Examination of the effects of sulfate acidity and relative humidity on light scattering at Shenandoah National Park. Atmospheric Enviroment 28, 841-849.
Groblicki, P. J., Wolff, G. T., Countess, R. J., 1981. Visibility reduction species in the Denver “Brown Cloud”—I. Relationships between extinction and chemical composition. Atmospheric Environment 12, 2437-2484.
Haywood, J. M., Shine, K. P., 1995. The effect of Anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget. Geophysical Research Letters 22, 603-606.
Heintzenberg, R., Berner, A., Dusek, U., Alabashi, R., 1997. Humidity-dependent growth of size-segregated aerosol samples. Aerosol Science and Technology 27, 116-130.
Hitzenberg, R., Berner, A., Dusek, U., Alabashi, R., 1997. Humidity-dependent growth of size-segregated aerosol samples. Aerosol Science and Technology 27, 116-130.
Harvath, H., Trier, A., 1993. A study of the aerosol of Santiago De Chile-I. Light extinction coefficient. Atmospheric Environment 27, 371-384.
Horvath, H., 1996. Spectral extinction coefficients of rural aerosol in southern Italy- A case study of cause and effect of variability of atmospheric aerosol. Journal of Aerosol Science 27, 437-453.
Horvath, H., 1997. Experimental calibration for aerosol light absorption measurements using integrating plate method-summary of the data. Journal of Aerosol Science 28, 1149-1161.
Horvath, H., 1997. Systematic deviations of light absorption measurements by filter transmission methods. Journal of Aerosol Science 28, 55-56.
HouldcroFT, C. J., Grey, W. M. F., Barnsley, M., Taylor, C. M., Los, S. O., North, P. R., 2009. New vegetation albedo parameters and global fields of soil background albedo derived from MODIS for use in a climate model. Journal of Hydrometeorology 10, 183-198.
IMPROVE, 2006. Spatial and Seasonal Patterns and Temporal Variability of Haze and Its Constituents in the United States. Report IV Available from:. http://vista.cira.colostate.edu/improve/Publications/Reports/2006/2006.htm.
Intergovernmental Panel on Climate Change (IPCC), 2001, Climate Change 2001: The Scientific Basis.
Intergovernmental Panel on Climate Change (IPCC), 2007, Climate Change 2007: Technical Summary.
Iorga, G., Hitzenberger, R., Kasper-Giebl, A., Puxbaum, H., 2007. Direct radiative effect modeled for regional aerosols in central Europe including the effect of relative humidity. Journal of Geophysical Research 112, D01204, doi:10.1029/2005JD006828.
Jung, J., Lee, H., Kim Y. J., Liu, X., Zhang, Y., Gu, J., Fan, S., 2009. Aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing in Guangzhou during the 2006 Pearl River Delta campaign. Journal of Environmental Management 90 3231–3244.
Khan, A. J., Li, J., Dutkiewicz, V. A., Husain, L., 2010. Elemental carbon and sulfate aerosols over a rural mountain site in the northeastern United States: Regional emissions and implications for climate change. Atmospheric Environment 44, 2364-2371.
Kiehl, J. T., Briegleb, B. P., 1993. The radiative roles of sulfate aerosols and greenhouse gases in climate forcing. Science 260, 311-314.
Kivekäs, N., Sun, J., Zhan, M., Kerminen, V. M., Hyvärinen, A., Komppula, M., Viisanen, Y., Hong, N., Zhang, Y., Kulmala, M., Zhang, X. C., Deli-Geer, Lihavainen, H., 2009. Long term particle size distribution measurements at Mount Waliguan, a high-altitude site in inland China. Atmospheric Chemistry and Physics 9, 5461-5474.
Koloutsou-Vakakis, S., Carrico, C. M., Li, Z., Rood, M. J., Ogren, J. A., 1999. Characterisation of aerosol properties and radiative forcing at an Anthropogenically perturbed continental site. Physics and Chemistry of the Earth Part C-Solar-Terrestial and Planetary Science 24, 541-546.
Komppula, M., Lihavainen, H., Hyvärinen, A. P., Kerminen, V. M., Panwar, T. S., Sharma, V. P., Viisanen, Y., 2009. Physical properties of aerosol particles at a Himalayan background site in India. Journal of Geophysical Research 114, D 12202, doi:10.1029/2008JD011007.
Koutrakis, P., Sioutas, C., Ferguson, S. T., Wolfson, J. M., Mulk, J. D. Burton, R. M., 1993. Development and evaluation of a glass honeycomb denuder/filter pack system to collect atmospheric gases and particles. Environmental Science and Technology 27, 2497-2501.
Lee, C. T., Chang, S. Y., 2002. A GC-TCD method for measuring the liquid water mass of collected aerosols. Atmospheric Environment 36, 1883-1894.
Lee, C. T., Chuang, M. T., Lin, N. H., Wang, J. L., Sheu, G. R., Chang, S. C., Wang, S. H., Huang, H., Chen, H. W., Weng, G. H., Hsu, S. P., 2010, in review. The enhancement of PM2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Submitted to Atmospheric Environment.
Lee, C. T., Hsu, W. C., 1998. A novel method to measure aerosol water mass. Journal of Aerosol Science 29, 827-837.
Lee, C. T., Hsu, W. C., 2000. The measurement of liquid water mass associated with collected hygroscopic particles. Journal of Aerosol Science 31, 189–197.
Levin, E. J. T., Kreidenweis, S. M., McMeeking, G. R., Carrico, C. M., Collett, J. L., Jr., Malm, W. C., 2009. Aerosol physical, chemical and optical properties during the Rocky Mountain Airborne Nitrogen and Sulfur study. Atmospheric Environment 43, 1932-1939.
Liu, Y., Daum, P. H., 2000. The effect of refractive index on size distributions and light scattering coefficients derived from optical particle counters. Journal of Aerosol Science 31, 945-957.
Lowenthal, D. H., Watson, J. G., Saxena, P., 2000. Contributions to light extinction during project MOHAVE. Atmospheric Environment 34, 2351-2359.
Lundgren, D. A., Burton, 1995. Effect of particle size distribution on the cut point between fine and coarse ambient mass fractions. Inhalation Toxicology 7, 131-148.
Marcq, S., Laj, P., Roger, J. C., Villani, P., Sellegri, K., Bonasoni, P., Marinoni, A., Cristofanelli, P., Verza, G. P., Bergin, M., 2010. Aerosol optical properties and radiative forcing in the high Himalaya based on measurements at the Nepal Climate Observatory – pyramid site (5100 m a.s.l.). Atmospheric Chemistry and Physics Discussions 10, 5627-5663.
Marinoni, A., Cristofanelli, P., Calzolari, F., Roccato, F., Bonafè, U., Bonasoni, P., 2008. Continuous measurements of aerosol physical parameters at the Mt. Cimone GAW Station (2165 m asl, Italy). Science of the Total Environment 391, 241-251.
Molnar, A., Meszaros, E., 2001. On the relation between the size and chemical compositions of aerosol particles and their optical properties. Atmospheric Environment 35, 5053-5058.
Nemesure, S., Wagener, R., Schwartz, S. E., 1995. Direct shortwave forcing of climate by Anthropogenic sulfate aerosol: Sensitivity to particle size, composition, and relative humidity. Journal of Geophysical Research 100, 26105-26116.
Nenes, A., Pandis, S. N., Pilinis, C., 1998. ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquatic Geochemistry 4, 123-152.
Nishita, C., Osada, K., Matsunaga, K., Iwasaka, Y., 2007. Number-size distributions of free tropospheric aerosol particles at Mt. Norikura, Japan: Effects of precipitation and air mass transportation pathways. Journal of Geophysical Research 112, D 10213, doi:10.1029/2006JD007969.
Pryor, S. C., Simpson, R., Sakiyama, S.,1997. Visibility and Aerosol Composition in the Fraser Vallry during REVEAL, Journal of the Air and Waste Management Association 47, 147-156.
Quinn, P. K., Marshall, S. F., Bates, T. S., Covert, D. S., Kapustin, V. N., 1995. Comparsion of measured and calculated aerosol properties relevant to the direct radiative forcing of tropospheric sulfate aerosol on climate. Journal of Geophysical Research 100, 8977-8991.
Saxena, V. K., 1990. Parameters involved in visibility perception during Haze episodes. In: visibility and fine particles. Transactions of an AWMA/US-EPA International Specialty Conference. Pittsburgh, PA.
Schwartz, S. E., 1996. The whitehouse effect-shortwave radiative forcing of climate by Anthropogenic aerosols: an overview. Journal of Aerosol Science 27, 359-382.
Seinfeld, J. H., Pandis, S. N., 1998. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley, New York.
Sellegri, K., Laj, P., Venzac, H., Boulon, J., Picard, D., Villani, P., Bonasoni, P., Marinoni, A., Cristofanelli, P., Vuillermoz, E., 2010. Seasonal variations of aerosol size distributions based on long-term measurements at the high altitude Himalayan site of Nepal Climate Observatory-Pyramid (5079 m), Nepal. Atmospheric Chemistry and Physics 10, 10679-10690.
Shaw, G. E., 2007. Aerosols at a mountaintop observatory in Arizona. Journal of Geophysical Research 112, D 07206, doi:10.1029/2005JD006893.
Shendrikar, A. D., Steinmetz, W. K., 2003. Integrating nephelometer measurements for the airborne fine particulate matter (PM2.5) mass concentrations. Atmospheric Environment 37, 1383-1392.
Sheu, G. R., Lin, N. H., Wang, J. L., Lee, C. T., Ou Yang, C. F., Wang, S. H., 2010. Temporal distribution and potential sources of atmospheric mercury measured at a high-elevation background station in Taiwan. Atmospheric Environment 44, 2393-2400.
Sioutas, C., Wang, P. Y., Ferguson, S. T., Koutrakis, P., Mulik, J. D., 1996. Laboratory and field evaluation of an improved glass honeycomb denuder/filter pack sampler. Atmospheric Environment 30, 885-895.
Slater, J. F., DiBB, J. E., 2004. Relationships between surface and column aerosol radiative properties and air mass transport at a rural New England site. Journal of Geophysical Research 109, D01303, doi: 10.1029/2003JD003406.
Sloane, C. S., 1986. Effect of composition on aerosol light scattering efficiencies. Atmospheric Environment 20, 1025– 1037.
Stiller, B., Beyrich, F., Hollaz, G., Leps, J. P., Richter, S., Weisensee, U., 2005. Continuous measurements of the energy budget components at a pine forest and at a grassland site. Meteorologische ZeitschriFT 14, 1-6.
Swartzendruber, P. C., Jaffe, D. A., Prestbo, E. M., Weiss-Penzias, P., Selin, N. E., Park, R., Jacob, D. J., Strode, S., Jaeglé, L., 2006. Observations of reactive gaseous mercury in the free troposphere at the Mount Bachelor Observatory. Journal of Geophysical Research 111, D24301, doi:10.1029/2006JD007415.
Venzac, H., Sellegri, K., Villani, P., Picard, D., Laj, P., 2009. Seasonal variation of aerosol size distributions in the free troposphere and residual layer at the puy de Dôme station, France. Atmospheric Chemistry and Physics 9, 1465-1478.
Wang, J., Hoffmann, A. A., Park, R. J., Jacob, D. J., Martin, S. T., 2008. Global distribution of solid and aqueous sulfate aerosols: Effect of the hysteresis of particle phase transitions. Journal of Geophysical Research 113, D11206, doi: 10.1029/2007JD009367.
Wang, S. H., Lin, N. H., Chou, M. D., Woo, J. H., 2007. Estimate of radiative forcing of Asian biomass-burning aerosols during the period of TRACE-P. Journal of Geophysical Research 112, D10222, doi: 10.1029/2006JD007564.
Wendisch, M., Von Hoyningen-Huene W., 1994. Possibility of refractive index determination of atmospheric aerosol particles by ground-based solar extinction and scattering measurements, Atmospheric Environment 28, 785-792.
Whitby, K. T., Cantrell, B. K., 1976. Fine particles, in international connferene on environmental sensing and assessment. Las Vegas, NY, Institute of Electrical and Electronic Engineer.
Wiscombe, W. J., Grams, G. W., 1976. The backscattered fraction in two-stream approximations. Journal of the Atmospheric Sciences 33, 2440-2451.
呂理德,2003。台北都會區外圍城市大氣氣膠光學效應。國立中央大學環境工程研究所碩士論文。
廖偉翔,2003。北台灣長程傳輸氣膠光學特性。國立中央大學環境工程研究所碩士論文。
翁國豪,2007。生質燃燒氣膠長程傳輸及高山雲霧間隙氣膠特性之研究。國立中央大學環境工程研究所碩士論文。
徐睿宏,2007。 鹿林山與中壢氣膠光學垂直特性之監測與比較。國立中央大學環境工程研究所碩士論文。
侯雅馨,2008。大氣氣膠腐植質含量分析及氣膠成分對氣膠含水量影響的研究。 國立中央大學環境工程研究所碩士論文。
余政哲,2010。鹿林山大氣氣膠含水量探討及乾氣膠光學特性。國立中央大學環境工程研究所碩士論文。
張佑嘉,2011。中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性。國立中央大學環境工程研究所碩士論文。
指導教授 李崇德(Chung-te Lee) 審核日期 2011-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明