博碩士論文 973207009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.80.4.76
姓名 林廷輝(Ting-huei Lin)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 應用於聚光型太陽光電系統之二次光學元件設計與分析
(Design and analysis of second optical component for concentrated photovoltaic system)
相關論文
★ 直下式背光模組最佳化之設計★ 反射式發光二極體光源之近燈頭燈設計
★ 指紋辨識之光學成像系統設計★ 微型投影機之LED光源設計
★ 具積體型稜鏡體之指紋辨識光學模組的光學特性分析研究★ 應用田口穩健設計法於特殊函數調變變化規範下的絕熱式光方向完全耦合器波導結構設計優化
★ 雙反射面鏡型太陽能集光模組設計★ 使用光線追跡法設計軸對稱太陽能集光器
★ 應用於直下式背光模組之邊射型發光二極體設計與其模組研究★ 高功率LED二次光學透鏡模組設計
★ 微型雷射投影機光學設計★ LED陣列用於室內照明之設計與驗證
★ 一種色溫及色彩可控制的多光源燈具設計★ 運用光場程式化技巧快速設計LED直下式背光模組之研究
★ 應用於彩色共焦顯微術之繞射元件設計★ 發光二極體智慧照明系統之研究與開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文探討應用於聚光型太陽能光電系統之二次光學元件的搭配設計;聚光型太陽能光電系統的工作原理係將大面積的太陽光,利用聚光系統(穿透式:利用透鏡;反射式:利用反射鏡)匯聚到以三–五族半導體材料製成的太陽能電池上。由於三–五族太陽能電池價格昂貴,如何縮小其面積並同時提高使用效率便成聚光型太陽能光電系統的重要課題。另外,聚光型太陽能光電系統需搭配高精度的追蹤器,才能獲得良好的聚光效果,如何降低聚光型太陽能光電系統對偏差角度的敏感度也是一大問題。
為了達到上述目的,針對聚光系統去做搭配的二次光學元件設計,主要目的有3:1.降低太陽光偏差角度造成的光斑位置誤差,2.減少太陽能電池的無工作區,使光斑能量均勻。3.減低色差對聚焦位置的影響,上述目的達成後,便可有效提升模組效率,使發電成本下降。
首先,針對已有的聚光型太陽能光電系統架構參數進行探討,先對聚光鏡的光學特性部份做模擬分析,接著探討太陽光源有偏差角度時,搭配上二次光學元件後對整體效率的影響,並對反射型和穿透型的二次光學元件模擬結果做分析討論。接著改變聚光模組參數,搭配新設計的二次光學元件進行模擬,能使得整體模組獲得較佳效率,最後利用此新的聚光模組進行其他參數的模擬,例如加入溫度、組裝公差條件等,使模擬結果能更貼近真實情況。
摘要(英) This paper is applied to design concentrated photovoltaic (CPV) system with the second optical component; the fundamental work of CPV is using concentrated systems (transmission: the lens; reflection: the mirrors) to focus the large area of the sunlight on III-V semiconductor materials for solar cells. Because III-V solar cells are very expensive, how to reduce its size while increasing efficiency CPV systems will become an important issue. In addition, the CPV system will require a high-precision tracking devices in order to gain a better spotlight effect. How to reduce the sensitivity of CPV system for the angle deviation is also a great problem.
To achieve this purpose, there are three methods for concentrated system with the second optical component design: 1.Reduce the error of spot position caused by the angle deviation of sunlight. 2. To reduce non-working area of solar cells in order to increase the uniformity of the spot energy. 3. To reduce the chromatic aberration effect for the focus position. If we achieve this purpose, then the efficiency of the CPV modules will be improved effectively and make the cost of electric power generation down.
First of all, we discuss the parameters of the CPV structure, the first step is to simulate and analyze the optical properties of the concentrated lens, then discuss if the system has the angle deviation of the sunlight, what the influence with the second optical component on the overall efficiency is. The second step is to analyze and discuss the results of simulation for the reflective and transmissive type of the second optical component. The third step is that we change the parameters of concentrated module to simulate with the new design of the second optical component. It can make the whole module for better efficiency. Finally, we simulate by this new design of concentrator module for other parameters, such as adding temperature, assembly tolerance conditions, so that simulation results are closer to the actual situation.
關鍵字(中) ★ 太陽能光電系統
★ 溫度
★ 均勻
★ 穿透型
★ 反射型
★ 二次光學元件
關鍵字(英) ★ concentrated photovoltaic(CPV)
★ second optical component
★ reflection type
★ transmission type
★ uniformity
★ temperature
論文目次 目錄.........................................................................................................................VI
表目錄.................................................................................................................. VIII
圖目錄.....................................................................................................................IX
第 1 章 緒論...........................................................................................................1
1.1 研究動機..............................................................................................1
1.2 研究流程及目的..................................................................................2
1.3 文獻回顧及目前聚光技術...................................................................3
1.4 論文架構..............................................................................................8
第 2 章 基礎理論與原理及背景資料.....................................................................9
2.1 光的反射與折射..................................................................................9
2.2 非成像光學 (Nonimaging Optics) .....................................................10
2.3 太陽光源擴散角................................................................................ 11
2.4 穿透式聚光模組的f-number 與NA 值............................................. 11
2.5 聚光比( CTR )....................................................................................12
2.6 Sellmeier equation ...............................................................................13
2.7 太陽光譜............................................................................................13
2.8 空氣質量(Air Mass) ......................................................................14
2.9 聚光型模組檢測規範.........................................................................15
2.10 聚光型模組散熱技術.......................................................................16
第 3 章 聚光模組之初階技術模擬分析...............................................................17
3.1 設計方法與模擬設定.........................................................................17
3.1.1 菲涅爾透鏡快速設計方法................................................................. 17
3.1.2 模擬光源............................................................................................ 21
3.1.3 光斑定義............................................................................................ 22
3.1.4 接收面................................................................................................ 23
3.1.5 聚光鏡材料的選擇............................................................................. 24
3.2 初階的聚光模組設計流程與模擬.....................................................25
3.2.1 聚光鏡的光學特性............................................................................. 25
3.2.2 初階聚光模組設計............................................................................. 28
3.2.3 反射型二次光學元件......................................................................... 32
3.2.4 穿透型二次光學元件......................................................................... 37
3.2.5 二次光學元件對色差的影響.............................................................. 41
3.3 綜合討論............................................................................................42
第 4 章 聚光模組搭配穿透式二次光學元件設計...............................................44
4.1 改變模組聚光比參數.........................................................................45
4.2 太陽光譜模擬....................................................................................46
4.3 材料折射率的設定.............................................................................48
4.4 穿透型二次光學元件設計.................................................................51
4.5 其他參數對聚光型模組之分析.........................................................52
4.5.1 二次光學元件組裝誤差..................................................................... 53
4.5.2 溫度的影響......................................................................................... 54
第 5 章 結論與未來展望......................................................................................57
參考文獻 [1]. 網路新聞報導:15家業者成立「SEMI CPV發展推動小組(http://www.wa-people.com/2009/08/15semi-CPV.html)(2009)
[2]. J.L.Richter,“Optics Of A Two-trough Solar Concentrator,”Solar Energy 56(2) (1996)191-198.
[3]. J.M.Gordon,“A 100-sun Linear Photovoltaic Solar Concentrator Design From Inexpensive Commercial Components,”Solar Energy 57(4)(1996)301-305.
[4]. J.M.Cariou,J.Dugas and L.Martin,“Transport Of Solar Energy With optical Fibers,”Solar Energy 29(5)(1982)397-406.
[5]. O.A.Jaramillo,J.A.del Rio and G.Huelsz,“A Thermal Study Of Optical Fibers Transmitting Concentrated Solar Energy,”J.Phys.D:Appl. Physics 32(1999)1000-1005.
[6]. Jaramillo,G.Huelsz and J.A.del Rio,“A Theoretical and Experimental Thermal Study Of SiO2 Optical Fibers Transmitting Concentrated Radiative Energy,”J.Phys.D:Appl. Physics. 35(2002)95-102.
[7]. R.Y.Nuwayhid,F.Mard,R.Abu-Said,“The Realization Of A Simple Solar Tracking Concentrator For University Research Applications,”Renewable Energy 24(2001)207-222
[8]. 葉益男,“聚光式太陽光發電追控系統研製”,國立台灣大學機械研究所,民國92年。
[9]. R.Y.Nuwayhid,F.Mard,R.Abu-Said,“The Realization Of Simple Solar Tracking Concentrator For Unicersity Research Applications,”Renewable Energy 24(2001)207-222.
[10]. Concentrix Solar 公司(http://www.concentrix-solar.de/)
[11]. J.Jaus,P.Nitz,G.Peharz,G.Siefer,T.Schult,G.Siefer,O.Wolf,M.Passig,T.Gandy,A.W.Bett, “Second Stage Reflective And Refractive Optics For Concentrateor Photovoltaics”
[12]. Andreas W.Bett,Joachim Jaus,Gerhard Peharz,Gerald Siefer Alexander Hakenjos,Inka Heile,Hansjörg Lerchenmüller,Johannes Wüllner“Outdoor Evaluation Of FLATCON® Modules And Systems,”33rd IEEE Photovoltaic Specialist Conference,12-16May.(2008),San Diego,CA
[13]. Kenji Araki,Hisafumi Uozumi,Toshio Egami,Masao Hiramatsu,Yoshinori Miyazaki,Yoshishige Kemmoku,Atsushi Akisawa,N.J.Ekins-Daukes,H.S.Lee and Masafumi Yamaguchi“Development Of Concentrator Modules With Dome-shaped Fresnel Lenses and Triplejunction Concentrator Cells,”(2005)Prog.Photovolt:Res.Appl.; 13:513–527
[14]. Uozumi,Hisafumi,Araki,Kenji,Yano,Taizo,“Light Converging-type Solar Photovoltaic Apparatus,”US20070295384
[15]. Jason H.Karp and Joseph E.Ford“Planar Micro-optic Solar Concentration Using Multiple Imaging Lenses Into A Common Slab Waveguide,”( 2009)SPIE Proc.of SPIE Vol.7407 74070D-1
[16]. Morgan,John Paul,“Light-guide Solar Panel And Method Of Fabrication Thereof,”USPTO 20080271776
[17]. J.M.Gordin,and D.Feuermann,“Optical Performance At The Thermodynamic Limit With Tailored Imaging Designs,”(2005)Appl.Opt.44,2327-2331
[18]. I.Anto′n,D.Silva,G.Sala,A.W.Bett,G.Siefer,I.Luque-Heredia and T.Trebst,“The PV-FIBRE Concentrator A System For Indoor Operation Of 1000X MJ Solar Cells,”Progress In Photovoltaics:Research And Applications.
[19]. (http://www.wordpedia.eb.com/tbol/article?i=095195&db=big5)
[20]. 林志豪,“使用光線追跡法設計軸對稱太陽能聚光器”,國立中央大學光機電研究所,民國97年。
[21]. Home>Veröffentlichungen>Konferenzbeiträge>2005>20th European Photovoltaic Solar Energy Conference,June 6-10,Barcelona/Spain>FLATCON® Concentrator PV-Technology Ready For The Market (http://www.ise.fraunhofer.de/veroeffentlichungen/konferenzbeitraege/2005-1/20th-european-photovoltaic-solar-energy-conference-barcelona)
[22]. ASTMG173(http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html)
[23]. 葉上平,“用於III-V族太陽能電池之高效率且均勻化聚光鏡之研究”,國立中央大學光電研究所,民國96年。
[24]. Valery D.Rumyantsev,“Solar Concentrator Modules With Silicone On Glass Fresnel Lens Panels And Multijunction Cells”,(2010)Optical Society of America
[25]. Silicone材料(http://www.momentive.com/portal/site/Internet) Industry>Solar>Concentrator>Optical coupling materials
[26]. 郭孝武“菲涅爾透鏡統一設計方法”,太陽能學報Vol.12 No.4
[27]. 王君一,徐任學“太陽能利用技術”,金盾出版社
[28]. J.Jaus,P.Nitz,G.Peharz,G.Siefer,T.Schult,G.Siefer,O.Wolf,M.Passig,T.Gandy,A.W. Bett“Second Stage Reflective And Refractive Optics For Concentrator Photovoltaics,” Fraunhofer ISE,Heidenhofstrasse 2,79110 Freiburg,Germany
[29]. 太陽光譜示意圖(http://upload.wikimedia.org/wikipedia/commons/4/4c/Solar_Spectrum.png)
[30]. SolarFocus公司(http://www.solfocus.com/en/index.php)
[31]. IEC62108標準試驗流程圖(http://www.kson.com.tw/images/study_23/31-b.gif)
[32]. Kenji Araki, Hisafumi Uozumi , Masafumi Yamaguchi“A Simple Passive Cooling Structure And Its Heat Analyasis For 500 X Concentrator PV Moule,”(2002) IEEE
[33]. An-Yu Kuo,Brian Lin,C.C.Huang,Jeffrey ChenP.K. Chiang,Shown Shao,Rupert Wu and Ian Lin“A Modular Solar Engine With Solar Cell,Heat Pipe,And Heat Sink In An Integrated Package For High Concentrating Photovoltaic,”(2009)IEEE
[34]. Theodore van Kessel,Ayman Abduljabar,Hussam Khonkar,Naim Moumen,Robert Sandstrom,Yaseen Al-Saaedi,Yves Martin and Supratik Guha“Concentrator Photovoltaic Reliability Testing At Extreme Concentrators Up To 2000 Suns,”(2009)IEEE
[35]. M.Hernándeza,A.Cvetkovicb,P.Beníteza,b,J.C.Miñanoa,b,“High-performance Köhler Concentrators With Uniform Irradiance On Solar Cell”
[36]. M.Yamaguchi,T.Takamoto,T.Agui,M.Kaneiwa,K.Araki,M.Kondo,H.Uozumi, M.Hiramatsu,Y.Miyazaki,T.Egami,Yoshishige Kemmoku,N.J.Ekins-Daukes“Japanese Activities Of R&D On III-V Concentrator Solar Cells And Modules,”19thEUPVSEC
[37]. IBM發布新聞稿(http://www-03.ibm.com/press/us/en/pressrelease/24203.wss)
[38]. R.R.King,a D.C.Law,K.M.Edmondson,C.M.Fetzer,G.S.Kinsey,H.Yoon,Ekins-Daukes, T.Sakakibara“Modelling Of Module Temperature Of A Concentrator PV system,” 19thEUPVSEC
[39]. Y.Kemmoku,T.Egami,M.Hiramatsu,Y.Miyazaki,K.Araki,N.J.R.A.Sherif,and N.H. Karam“40% Efficient Metamorphic GaInP/GaInAs/Ge Multijunction Solar Cells,”APPLIED PHYSICS LETTERS 90,183516(2007)
[40]. 中央氣象局南區服務(http://south.cwb.gov.tw/index1.php?web=5011&web_title=%A8C%A4%EB%A5%AD%A7%A1%B7%C5%AB%D7#w05011)
指導教授 陳奇夆(Chi-feng Chen) 審核日期 2010-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明