博碩士論文 973208014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:34.204.191.31
姓名 張智詠(Chih-Yung Chang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫
(The study of nanostructured iron oxide photocatalyst electorde using anodization method)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究
★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究
★ 中溫固態氧化物燃料電池複合系統分析★ 中文質子傳輸型固態氧化物燃料電池陽極之研究
★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究★ 直接甲醇燃料電池氣體擴散層之研究
★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響
★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究★ 多孔材應用於質子交換膜燃料電池散熱之研究
★ 質子交換膜燃料電池發泡材流道與傳統流道之模擬分析★ 金屬發泡材應用於質子交換膜燃料電池內流道之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究利用射頻磁控濺鍍,沉積純鐵薄膜於FTO導電玻璃上,再利用陽極處理法,將鐵薄膜放置在含有0.1M氟化銨及不同水含量之乙二醇溶液中,進行氧化及蝕刻反應以製備奈米棒陣列的氧化鐵薄膜。探討鐵薄膜製備陽極氧化鐵機制以及蝕刻液中水含量的改變對陽極氧化鐵薄膜物理特性及光電化學性質的影響及分析。
由X光繞射分析儀、X射線光電子能譜儀及元素分布圖等方式檢測,鐵薄膜經陽極處理可得氧化鐵結構,由掃描式電子顯微鏡及原子力顯微鏡觀察其多孔性陣列的表面形態及側面的柱狀結構。蝕刻液中水含量2、6、10、14vol%的溶液電導度分別為596、705、816及957μS/cm,對應的蝕刻孔洞大小分別為48.6、62.3、93及140nm。不同水含量製備陽極氧化鐵的能隙落在1.95到2.2 eV;以霍爾量測得知載子濃度範圍從4.695×1020到2.038×1021 cm-3;載子移動率從0.2854到1.217 cm2/V-sec。在光電化學量測,以1M的KOH水溶液為電解液,由Mott-Schottky分析得知薄膜平帶電位介於-0.7到-0.75V;以300W氙氣燈原,施加偏壓為0.5V時,最佳的光電流值為0.72mA/cm2。
摘要(英) In this study, iron films were deposited on fluorine-tin-oxide coated glass substrate. Using RF sputtering system, a self-oriented iron oxide nanorods array was obtained by anodization of iron thin films. Anodization was carried out in an ethylene glycol solution containing 0.1M NH4F and various water content. We investigated the mechanism of anodic iron oxide making by anodization of iron thin films, and the properties of anodic iron oxide samples anodized with different water content in the electrolyte.
The results of X-ray diffraction、X-ray photoelectron spectroscopy and mapping image show that iron oxide can be obtained by anodization of iron thin films. SEM images show the porous morphology on the surface of samples. Nanorod like structure can be observed using cross-sectional SEM images. Surface roughness and nanorods array measurements were carried out using AFM. The conductivity of electrolyte vary from 596 to 957μS/cm by adjusting water content from 2 to 14vol%. The pore sizes of samples are 48-140nm respectively. The direct band gap of samples vary from 1.95 to 2.2 eV. Carrier concentrations of samples are in range of 4.695×1020 to 2.038×1021cm-3 using Hall measurement. The flat band potentials of samples are in the range of -0.7V to -0.75V by using Mott-Schottky measurement in 1M KOH solution. The maximum photocurrent density is 0.72mA/cm2 with a bias voltage of 0.5V (V vs. Ag/AgCl), under a 300W Xe lamp system.
關鍵字(中) ★ 光電化學產氫
★ 奈米結構氧化鐵
★ 光觸媒
★ 陽極處理
關鍵字(英) ★ photoelectrochemical
★ nanostructured Fe2O3
★ anodization
★ photocatalyst
論文目次 中文摘要 i
Abstract ii
誌謝 iii
目錄 v
圖目錄 ix
表目錄 xiii
第一章、緒論 1
1.1. 前言 1
1.2. 研究動機 2
第二章、文獻回顧 4
2.1. 水分解 4
2.2. 半導體光觸媒 5
2.2.1. 半導體能帶理論 6
2.2.2. 半導體水溶液介面性質 7
2.2.3. 常見的半導體光觸媒 8
2.3. 氧化鐵光觸媒 10
2.4. 奈米材料 12
2.4.1. 奈米材料及維度 12
2.4.2. 奈米材料之特性 14
2.4.3. 奈米材料之應用 15
2.5. 真空濺鍍系統與原理 16
2.6. 陽極處理 17
2.7. 研究目的 19
第三章、實驗方法 20
3.1. 濺鍍靶材、氣體及實驗藥品 20
3.2. 實驗儀器設備 20
3.2.1. 薄膜及奈米結構製備 20
3.2.2. 分析儀器 21
3.3. 實驗流程 23
3.3.1. 基材準備 23
3.3.2. 預成純鐵薄膜 23
3.3.3. 陽極處理製備奈米結構 24
3.3.4. 退火處理 24
3.3.5. 奈米結構薄膜之特性分析 25
第四章、結果與討論 26
4.1. 陽極處理鐵薄膜初期參數研究 26
4.2. 陽極氧化鐵成長過程探究與分析 30
4.2.1. 陽極處理機制描述 30
4.2.2. 晶型結構與元素分析 33
4.2.2.1. X光繞射分析 33
4.2.2.2. XPS與Mapping分析 34
4.2.3. AFM分析 35
4.3. 不同水含量之陽極處理蝕刻液對於陽極氧化鐵的影響 36
4.3.1. 表面型態分析 37
4.3.1.1. SEM 37
4.3.2. 光學性質分析 38
4.3.2.1. 薄膜穿透及反射率 38
4.3.2.2. 直接能隙計算 39
4.3.3. 光電化學分析 40
4.3.3.1. 交流阻抗分析 40
4.3.3.2. Mott-Schottky量測分析 42
4.3.3.3. 光電流密度量測 44
4.3.4. 薄膜物理性質分析 45
第五章、結論與建議 78
5.1. 結論 78
5.2. 未來工作建議 79
參考文獻 80
參考文獻 [1] A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode", Nature, Vol. 238, pp. 37-38, 1972.
[2] A. B. Murphy, P. R. F. Barnes, L. K. Randeniya, I. C. Plumb, I. E. Grey, M. D. Horne and J. A. Glasscock, "Efficiency of solar water-splitting using semiconductor electrodes", International Journal of Hydrogen Energy, Vol. 31, pp. 1999-2017, 2006.
[3] J. A. Glasscock, "Nanostructured materials for photoelectrochemical hydrogen production using sunlight," PhD thesis, School of Chemical Sciences and Engineering, University of New South Wales, 2008.
[4] A. Kudo, "Photocatalysis and solar hydrogen production", Pure and Applied Chemistry, Vol. 79, pp. 1917-1927, 2007.
[5] M. R. Hoffmann, S. T. Martin and W. Choi, "Environmental applications of semiconductor photocatalysis ", Chemical Reviews, Vol. 95, pp. 69-96, 1995.
[6] 吳錦貞,「I-III-VI/II-VI族可見光應答光觸媒材料之光電化學分析與水分解產氫應用」,國立中正大學化學工程研究所博士論文,嘉義,2009。
[7] T. Bak, J. Nowotny, M. Rekas and C. C. Sorrell, "Photoelectrochemical hydrogen generation from water using solar energy", International Journal of Hydrogen Energy, Vol. 27(10), pp. 991–1022, 2002.
[8] R. V. D. Krol, Y. Liang and J. Schoonman, "Solar hydrogen production with nanostructured metal oxides", Journal of Materials Chemistry, Vol. 18, pp. 2311-2320, 2008.
[9] E. L. Miller, D. Paluselli, B. Marsen and R. E. Rocheleau, "Low-temperature reactively sputtered iron oxide for thin film devices", Thin Solid Films, Vol. 466, pp. 307-313, 2004.
[10] S. Zhan, D. Chen, X. Jiao and S. Liu, "Facile fabrication of long α-Fe2O3, α-Fe and γ-Fe2O3 hollow fibers using sol-gel combined co-electrospinning technology", Journal of Colloid and Interface Science, Vol. 308, pp. 265-270, 2007.
[11] S. S. Kulkarni and C. D. Lokhande, "Structural, optical, electrical and dielectrical properties of electrosynthesized nanocrystalline iron oxide thin films", Materials Chemistry and Physics, Vol. 82, pp. 151-156, 2003.
[12] A. A. Akl, "Optical properties of crystalline and non-crystalline iron oxide thin films deposited by spray pyrolysis", Applied Surface Science, Vol. 233, pp. 307-319, 2004.
[13] M. Momirlan and T. N. Veziroglu, "Current status of hydrogen energy ", Renewable Sustainable Energy, Vol. 6, pp. 141-179, 2002.
[14] J. H. Kennedy and K. W. J. Frese, "Photooxidation of water at α-Fe2O3 electrodes", Journal of the Electrochemical Society, Vol. 125, pp. 709-714, 1978.
[15] C. J. Sartoretti, B. D. Alexer, R. Solarska and I. A. Rutkowska, "Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes", The Journal of Chemical Physics, Vol. 109, pp. 13685-13692, 2005.
[16] K. Itoh and J. O. Bockris, "Stacked thin-film photoelectrode using iron oxide", Journal of Applied Physics, Vol. 128, pp. 874-876, 1984.
[17] 劉如熹,辛嘉芬,陳浩銘,「奈米材料的製作與應用-陽極氧化鋁膜及奈米線製作技術」,全華圖書股份有限公司,台北縣,2008。
[18] 馬遠榮,「低微奈米材料」,科學發展,382期,73-75頁,2004。
[19] 曾柏豪,「鍛燒溫度對對反應性濺鍍銅-鋁-氧化物薄膜性質之探討」,長庚大學化工與材料工程研究所碩士論文,桃園,2009。
[20] 李正中,「薄膜光學與鍍膜技術」,藝軒圖書,2006。
[21] S. Z. Chu, K. Wada, S. Inoue and S. Todoroki, "Fabrication and characteristics of nanostructures on glass by Al anodization and electrodeposition", Electrochimica Acta, Vol. 48, pp. 3147-3153, 2003.
[22] S. H. Su, C. S. Li, F. B. Zhang and M. Yokoyama, "Characterization of anodic aluminium oxide pores fabricated on aluminium templates", Superlattices and Microstructures, Vol. 44, pp. 514-519, 2008.
[23] G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar and C. A. Grimes, "A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications", Solar Energy Materials and Solar Cells, Vol. 90, pp. 2011-2075, 2006.
[24] Z. Zhang, M. F. Hossain and T. Takahashi, "Fabrication of shape-controlled α-Fe2O3 nanostructures by sonoelectrochemical anodization for visible light photocatalytic application", Materials Letters, Vol. 64, pp. 435-438, 2010.
[25] Z. Zhang, M. F. Hossain and T. Takahashi, "Self-assembled hematite (α-Fe2O3) nanotube arrays for photoelectrocatalytic degradation of azo dye under simulated solar light irradiation", Applied Catalysis B: Environmental, Vol. 95, pp. 423-429, 2010.
[26] R. R. Rangaraju, K. S. Raja, A. Panday and M. Misra, "An investigation on room temperature synthesis of vertically oriented arrays of iron oxide nanotubes by anodization of iron", Electrochimica Acta, Vol. 55, pp. 785-793, 2010.
[27] D. Li, C. Jiang, J. Jiang and X. Ren, "Investigation on highly ordered porous anodic alumina membranes formed by high electric field anodization", Materials Chemistry and Physics, Vol. 111, pp. 168-171, 2008.
[28] J. F. Moulder, W. F. Stickle and P. E. Sobol, Handbook of X-ray Photoelectron Spectroscopy. Minnesota 55344: Physical Electronics, Inc.
[29] M. Sacchi, C. F. Hague, S. Gota, E. Guiot, M. Gautier-Soyer, L. Pasquali, S. Mrowka, E. M. Gullikson and J. H. Underwood, "Resonant scattering of polarized soft X-rays for the study of magnetic oxide layers", Journal of Electron Spectroscopy and Related Phenomena, Vol. 101-103, pp. 407-412, 1999.
[30] H. Yin, H. Liu and W. Z. Shen, "The large diameter and fast growth of self-organized TiO2 nanotube arrays achieved via electrochemical anodization", Nanotechnology, Vol. 21, 035601, 2010.
[31] J. C. Manifacier, M. D. Murcia, J. P. Fillard and E. Vicario, "Optical and electrical properties of SnO2 thin films in relation to their stoichiometric deviation and their crystalline structure", Thin Solid Films, Vol. 41, pp. 127-135, 1977.
[32] J. Akikusa and S. U. M. Khan, "Photoresponse and AC impedance characterization of n-TiO2 films during hydrogen and oxygen evolution reactions in an electrochemical cell", International Journal of Hydrogen Energy, Vol. 22, pp. 875-882, 1997.
[33] M. Radecka, K. Zakrzewska, M. Wierzbicka, A. Gorzkowska and S. Komornicki, "Study of the TiO2-Cr2O3 system for photoelectrolytic decomposition of water", Solid State Ionics, Vol. 157, pp. 379-386, 2003.
[34] R. Brahimi, B. Bellal, Y. Bessekhouad, A. Bouguelia and M. Trari, "Physical properties of CuAlO2 single crystal", Journal of Crystal Growth, Vol. 310, pp. 4325-4329, 2008.
[35] W. J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J. N. Kondo, M. Hara, M. Kawai, Y. Matsumoto and K. Domen, "Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods", Journal of Physical Chemistry B, Vol. 107, pp. 1798-1803, 2003.
[36] Y. Matsumoto, K. Funaki, J. Hombo and Y. Ogawa, "Electronic and silver ionic conductions in perovskite and related oxides", Journal of Solid State Chemistry, Vol. 99, pp. 336-342, 1992.
[37] G. A. Acket and J. Volger, "Electric transport in N-type Fe2O3", Physica, Vol. 32, pp. 1543-1550, 1966.
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2010-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明