博碩士論文 973208018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:18.218.38.125
姓名 蔡佳霖(Chia-lin Tsai)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 以化學浴沉積法製備四元化合物光電極薄膜之研究
(The study of quaternary compound photoelectrode thin film by chemical bath deposition)
相關論文
★ 金屬粉末射出成型毛細吸附脫脂模擬★ 燃料電池複合式流道設計與膜電極組製程
★ 氣態鋅與水蒸氣混合之流場與反應爐參數分析★ 利用化學水浴沉積法製作Ni-ZnO光電極之研究
★ 電解水產氫之電解液流場效應分析★ 以化學水浴法製備AgInS2可見光光電極及其摻雜銅之研究
★ 高溫高壓之電解水產氫效率分析★ 超音波場下電解水產氫之效應分析
★ 以化學水浴法製備氧化鋅光電極薄膜之研究★ 利用化學水浴法鍍製二氧化鈦光電極薄膜之研究
★ 以化學浴沉積法製備Cu-In-S化合物光電極薄膜之研究★ 以化學浴沉積法製備β-In2S3化合物光電極薄膜之研究
★ 以化學浴沉積法製備不同結構氧化鋅光電極薄膜之研究★ 電解水產氫中極化作用之分析與研究
★ 磁場對水電解產氫效率增益之機制研究★ 二氧化銥/氧化還原石墨烯複合觸媒之水電解效能研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文利用化學浴沉積法於ITO導電玻璃上沉積Ag-In-S-Se四元化合物光電極薄膜,並將之應用於光電化學產氫系統;就製程而言,化學浴沉積法具備便宜、簡單以及可大面積製備的優點,就材料而言,Ag-In-S-Se四元化合物可吸收紫外光與可見光波段的能量,因此極具有發展潛力。本研究將改變前驅物比例、水浴溫度、ph值、鍍層層數、磁石轉速、熱處理溫度以及硒的摻雜比例,用以探討薄膜的晶體結構、表面型態、光學以及光電化學性質。由XRD與EDS分析得知[Ag+]/[In3+] =1/5時可製備出AgIn5S8的結構,接著透過硒元素的摻雜後,使其轉變成AgIn5S8-xSex四元化合物,其直接能隙值由1.79 eV降至約1.75~ 1.786 eV之間,經由Mott-schottky量測得知其皆為n型半導體,其平帶電壓由-0.78 V增加至-0.93 V(vs. Ag/AgCl),而其載子濃度分別為2.58×10^10 cm-3以及2.83×10^12 cm-3,在光電流量測當中,使用0.25M K2SO3和0.35M Na2S當作犧牲試劑,於100 mW/cm2(AM 1.5G)的模擬太陽光照射下,其所量測到之光電流值分別為0.8 mA/cm2以及1.15 mA/cm2。另外於穩定性測試當中,將TiO2光電極薄膜覆蓋於AgIn5S8-xSex光電極薄膜層上,其可有效地減緩光腐蝕的現象,使光電流值減少3.57%的衰退。
摘要(英) Chemical bath deposition (CBD) is applied to deposit Ag-In-S-Se quaternary compound photoelectrode thin film on indium tin oxide coated glass (ITO), which can then be used as the photoelectrode in photoelectrochemical production of hydrogen. The advantages of chemical bath deposition are simple, inexpensive and large area deposition. Besides, Ag-In-S-Se quaternary compound can absorb ultraviolet and visible light so that it has potential to develope. In our experiment, we investigate the crystal structure, morphology, optic property, and PEC performance as precursor ratio, bath temperature, ph value, number of thin film, stirring rate, thermal treatment temperature and atomic percentage of selenium are changed. The results of XRD and EDS show that AgIn5S8 is obtained when [Ag+]/[In3+] =1/5 and transformed to AgIn5S8-xSex quaternary compound by doping selenium with the direct band gap decreasing from 1.79 eV to the range of 1.75~1.786 eV. Both are identified as n-type semiconductor according to Mott-Schottky measurement with decreasing flat band potential from -0.78 V to -0.93 V(vs. Ag/AgCl) and increasing carrier density from 2.58×10^10 cm-3 to 2.83×10^12 cm-3. In PEC measurement, we use 0.25M K2SO3 and 0.35M Na2S as sacrificial reagent and 100 mW/cm2(AM 1.5G) simulation sunlight as light source. The photocurrent density of AgIn5S8 and AgIn5S7.992Se0.008 is 0.8 mA/cm2 and 1.15 mA/cm2 with an external voltage of 0V(vs. Ag/AgCl) respectively. Moreover, the result of stability test shows that photocorrosion phenomenon is inhibited by covering TiO2 on AgIn5S8-xSex photoelectrode thin film, and reduces 3.57% decay of photocurrent density.
關鍵字(中) ★ 化學浴沉積法
★ 氫
★ 四元化合物
★ 光電極
★ 光電化學
關鍵字(英) ★ Photoelectrochemical
★ Photoelectrode
★ Quaternary compound
★ Hydrogen
★ Chemical bath deposition
論文目次 第一章 緒論 1
1.1 前言 1
1.2 光電極 3
1.3 太陽能光譜 3
1.4 光電化學產氫機制 5
1.5 化學浴沉積法 7
1.6 AgIn5S8可見光光電極薄膜 9
1.7 TiO2光電極薄膜 9
1.8 文獻回顧 10
1.8.1 化學浴沉積法文獻回顧 10
1.8.2 光觸媒文獻回顧 12
1.8.3 TiO2光電極薄膜文獻回顧 13
1.8.4 Ag-In-S三元化合物光電極薄膜文獻回顧 13
1.8.5 摻雜金屬元素文獻回顧 16
1.8.6 複合光電極薄膜文獻回顧 16
1.9 研究目的 17
第二章 化學浴沉積法原理 18
2.1 溶解度積和離子濃度積之概念 18
2.2 成長機制 21
2.3 薄膜的成長過程 22
第三章 實驗步驟與方法 25
3.1 實驗參數設定 25
3.2 實驗藥品與實驗裝置 25
3.2.1 實驗藥品 25
3.2.1.1 AgIn5S8-xSex反應鍍液(Ag+、In3+、S2-、Se4+)使用之藥品 25
3.2.1.2 TiO2反應鍍液(Ti4+、O2-)使用之藥品 27
3.2.1.3 薄膜電性分析時配製電解質溶液之使用藥品 27
3.2.2 實驗基材 28
3.2.3 實驗設備 28
3.3 實驗步驟 28
3.3.1 清洗基材 28
3.3.2 鍍液調配 29
3.3.2.1 AgIn5S8-xSex光電極薄膜鍍液調配 29
3.3.2.2 TiO2光電極薄膜鍍液調配 30
3.3.3 反應鍍液配製與鍍膜 31
3.3.3.1 AgIn5S8-xSex光電極薄膜反應鍍液配製與鍍膜 31
3.3.3.2 TiO2光電極薄膜反應鍍液配製與鍍膜 32
3.3.3.3 TiO2-AgIn5S8-xSex複合光電極薄膜反應鍍液配製與鍍膜 32
3.3.4 薄膜之後處理 33
3.3.4.1 AgIn5S8-xSex光電極薄膜之後處理 33
3.3.4.2 TiO2光電極薄膜之後處理 33
3.4 薄膜物性量測分析 34
3.4.1 XRD(X-ray Diffraction, X光粉末繞射儀) 34
3.4.2 SEM(Scanning electron microscope, 掃描式電子顯微鏡) 35
3.4.3 EDS(Energy Dispersive Spectrometer, 能量散射光譜儀) 35
3.4.4 UV-visible(紫外/可見光光譜儀) 36
3.4.5 光電化學性質量測分析 36
3.4.5.1 光電流值 36
3.4.5.2 平帶電壓 38
3.4.5.3 穩定性測試 39
3.4.6 Alpha step(薄膜厚度輪廓測度儀) 40
第四章 結果與討論 41
4.1 AgIn5S8光電極薄膜製備 42
4.1.1 反應物濃度比例 42
4.1.2 水浴溫度對薄膜的影響 43
4.1.3 pH值(硝酸量)對薄膜的影響 47
4.1.4 鍍層層數對薄膜的影響 50
4.1.5 磁石轉速對薄膜的影響 53
4.1.6 熱處理溫度對薄膜的影響 55
4.2 AgIn5S8-xSex光電極薄膜製備 58
4.3 TiO2光電極薄膜製備 61
4.4 TiO2-AgIn5S7.992Se0.008複合光電極薄膜製備 62
4.5 穩定性測試 64
第五章 結論與未來展望 66
5.1 結論 66
5.2 未來規劃 67
參考文獻 68
表目錄
表1-1 熱值比較表 76
表1-2 銳鈦礦與金紅石之物理性質比較 76
表1-3 氧化物光觸媒於犧牲試劑下之產氫與產氧活性 77
表1-4 可見光的硫化物光觸媒於犧牲試劑下之產氫活性 77
表2-1 溶解度常數表 78
表3-1 AgIn5S8反應溶液參數表 79
表3-2 硒離子摻雜溶液參數表 79
表3-3 TiO2反應溶液參數表 79
表3-4 量測電性分析所需配製之溶液參數表 80
表3-5 實驗分析種類與所使用之檢測儀器 80
表4-1 AgIn5S8所探討之實驗參數 81
表4-2 TiO2所探討之實驗參數 81
表4-3 各參數之薄膜厚度 82
圖目錄
圖1-1 為各種產氫方式之分類 83
圖1-2 光觸媒反應與應用示意圖 83
圖1-3 太陽能光譜 84
圖1-4 空氣質量 84
圖1-5 光電化學電解水之示意圖 85
圖1-6 兩電極還沒進行迦凡尼接觸之能量圖 85
圖1-7 兩電極進行迦凡尼接觸後之能量圖(無光照射) 86
圖1-8 兩電極進行迦凡尼接觸後之能量圖(有光照射) 86
圖1-9 在陽極施加偏壓之後之能量圖(有光照射) 87
圖1-10 化學水浴法沉積過程示意圖 87
圖1-11 銳鈦礦與金紅石之晶體結構 88
圖1-12 (CuAg)xIn2x Zn2(1-2x)S2 (X=0.01 - 0.3) 88
圖1-13 價帶中不同軌域之分佈圖 89
圖1-14 於犧牲試劑中電解水之半反應示意圖 89
圖1-15 改變能帶結構之方法示意圖 90
圖2-1 化學水浴法成長機制 90
圖2-2 化學水浴法薄膜成長階段示意圖 91
圖3-1 光觸媒薄膜製作流程與性質分析 91
圖3-2 ITO基材清洗流程圖 92
圖3-3 ITO基材封裝後之試片組 92
圖3-4 金屬陽離子溶液調配流程圖 93
圖3-5 用於摻雜之硒離子溶液調配流程圖 93
圖3-6 未摻雜之反應溶液配置與鍍膜流程圖 94
圖3-7 試片於鍍液瓶中之示意圖 94
圖3-8 鍍膜過程示意圖 95
圖3-9 摻雜硒之反應溶液配置與鍍膜流程圖 95
圖3-10 熱處理之升溫速率 96
圖3-11 布拉格繞射示意圖 96
圖3-12 光電化學量測試片之製作示意圖 97
圖4-1 陽離子溶液中不同[Ag]/[In]比例之XRD分析圖譜 97
圖4-2 不同水浴溫度之反應時間與示意圖 98
圖4-3 水浴溫度之XRD分析圖譜 98
圖4-4 水浴溫度之穿透率 99
圖4-5 水浴溫度之反射率 99
圖4-6 水浴溫度之吸收係數 100
圖4-7 水浴溫度之直接能隙 100
圖4-8 水浴溫度50℃之SEM圖(×50k) 101
圖4-9 水浴溫度65℃之SEM圖(×50k) 101
圖4-10 水浴溫度80℃之SEM圖(×50k) 102
圖4-11 硝酸量之XRD分析圖譜 102
圖4-12 不同反應時間相對於薄膜厚度之關係圖[55] 103
圖4-13 pH值相對於薄膜膜厚之關係圖[56] 103
圖4-14 硝酸量之穿透率 104
圖4-15 硝酸量之反射率 104
圖4-16 硝酸量之吸收係數 105
圖4-17 硝酸量之直接能隙 105
圖4-18 3毫升硝酸量之光電流 106
圖4-19 3.5毫升硝酸量之光電流 106
圖4-20 4.0毫升硝酸量之光電流 107
圖4-21 5.5毫升硝酸量之光電流 107
圖4-22 3毫升硝酸量之SEM圖(×50k) 108
圖4-23 3.5毫升硝酸量之SEM圖(×50k) 108
圖4-24 4.0毫升硝酸量之SEM圖(×50k) 109
圖4-25 5.5毫升硝酸量之SEM圖(×50k) 109
圖4-26 鍍層層數之XRD分析圖譜 110
圖4-27 鍍層層數=1之的SEM圖(×10k) 110
圖4-28 鍍層層數=2之SEM圖(×10k) 111
圖4-29 鍍層層數=3之SEM圖(×10k) 111
圖4-30 鍍層層數=4之SEM圖(×10k) 112
圖4-31 鍍層層數之穿透率 112
圖4-32 鍍層層數之反射率 113
圖4-33 鍍層層數之吸收隙數 113
圖4-34 鍍層層數之直接能隙 114
圖4-35 鍍層層數=1之光電流 114
圖4-36 鍍層層數=2之光電流 115
圖4-37 鍍層層數=1之SEM圖(×50k) 115
圖4-38 鍍層層數=2之SEM圖(×50k) 116
圖4-39 鍍層層數=3之SEM圖(×50k) 116
圖4-40 鍍層層數=4之SEM圖(×50k) 117
圖4-41 磁石轉速之XRD分析圖譜 117
圖4-42 磁石轉速之穿透率 118
圖4-43 磁石轉速之反射率 118
圖4-44 磁石轉速之吸收係數 119
圖4-45 磁石轉速之直接能隙 119
圖4-46 磁石轉速300rpm之光電流值 120
圖4-47 磁石轉速500rpm之光電流值 120
圖4-48 磁石轉速750rpm之光電流值 121
圖4-49 磁石轉速1000rpm之光電流值 121
圖4-50 磁石轉速300rpm之SEM圖(×1k) 122
圖4-51 磁石轉速500rpm之SEM圖(×1k) 122
圖4-52 磁石轉速750rpm之SEM圖(×1k) 123
圖4-53 磁石轉速1000rpm之SEM圖(×1k) 123
圖4-54 熱處理溫度之XRD分析圖譜 124
圖4-55 熱處理300℃之XRD分析圖譜( ) 124
圖4-56 熱處理溫度之穿透率 125
圖4-57 熱處理溫度之反射率 125
圖4-58 熱處理溫度之吸收係數 126
圖4-59 熱處理溫度之直接能隙 126
圖4-60 熱處理400℃之光電流值 127
圖4-61 熱處理500℃之光電流值 127
圖4-62 熱處理300℃之SEM圖(×50k) 128
圖4-63 熱處理400℃之SEM圖(×50k) 128
圖4-64 熱處理500℃之SEM圖(×50k) 129
圖4-65 熱處理300℃之SEM圖(×5k) 129
圖4-66 熱處理400℃之SEM圖(×5k) 130
圖4-67 熱處理500℃之SEM圖(×5k) 130
圖4-68 AgIn5S8掺雜硒之XRD分析圖譜 131
圖4-69 硫化鎘(CdS)掺雜硒之XRD圖譜與EDS分析[38] 131
圖4-70 AgIn5S8未掺雜硒之EDS分析 132
圖4-71 AgIn5S8掺雜硒0.05at%之EDS分析 132
圖4-72 AgIn5S8掺雜硒0.1at%之EDS分析 133
圖4-73 AgIn5S8掺雜硒0.5at%之EDS分析 133
圖4-74 AgIn5S8掺雜硒1.0at%之EDS分析 134
圖4-75 AgIn5S8掺雜硒之穿透率 134
圖4-76 AgIn5S8掺雜硒之反射率 135
圖4-77 AgIn5S8掺雜硒之吸收係數 135
圖4-78 AgIn5S8掺雜硒於紅外光波段之吸收係數 136
圖4-79 AgIn5S8掺雜硒之直接能隙 136
圖4-80 AgIn5S7.996Se0.004之光電流值 137
圖4-81 AgIn5S7.992Se0.008之光電流值 137
圖4-82 AgIn5S7.96Se0.04之光電流值 138
圖4-83 AgIn5S7.92Se0.08之光電流值 138
圖4-84 AgIn5S8之Mott-Schottky量測 139
圖4-85 AgIn5S7.992Se0.008之Mott-Schottky量測 139
圖4-86 AgIn5S7.996Se0.004之SEM圖(×50k) 140
圖4-87 AgIn5S7.992Se0.008之SEM圖(×50k) 140
圖4-88 AgIn5S7.96Se0.04之SEM圖(×50k) 141
圖4-89 AgIn5S7.92Se0.08之SEM圖(×50k) 141
圖4-90 TiO2之XRD分析圖譜 142
圖4-91 TiO2(7M)之XRD分析圖譜( ) 142
圖4-92 TiO2之穿透率 143
圖4-93 TiO2之反射率 143
圖4-94 TiO2之吸收隙數 144
圖4-95 TiO2之直接能隙 144
圖4-96 TiO2(3M)之SEM圖 145
圖4-97 TiO2(5M)之SEM圖 145
圖4-98 TiO2(7M)之SEM圖 146
圖4-99 TiO2覆蓋過程示意圖(a)起始反應(b)終止反應 146
圖4-100 TiO2(3M)-AgIn5S7.992Se0.008之SEM圖 147
圖4-101 TiO2(5M)-AgIn5S7.992Se0.008之SEM圖 147
圖4-102 TiO2(7M)-AgIn5S7.992Se0.008之SEM圖 148
圖4-103 AgIn5S7.992Se0.008之SEM剖面圖 148
圖4-104 TiO2(3M)-AgIn5S7.992Se0.008之SEM剖面圖 149
圖4-105 TiO2(5M)-AgIn5S7.992Se0.008之SEM剖面圖 149
圖4-106 TiO2(7M)-AgIn5S7.992Se0.008之SEM剖面圖 150
圖4-107 TiO2(3M)-AgIn5S7.992Se0.008之光電流 150
圖4-108 TiO2(5M)-AgIn5S7.992Se0.008之光電流 151
圖4-109 TiO2(7M)-AgIn5S7.992Se0.008之光電流 151
圖4-110 AgIn5S7.992Se0.008與TiO2-AgIn5S7.992Se0.008之穩定性量测 152
圖4-111 AgIn5S7.992Se0.008與TiO2-AgIn5S7.992Se0.008之穩定性量测 (400 s~1800 s) 152
參考文獻 [1] 台灣電力公司,http://www.taipower.com.tw/。
[2] 聯合國政府間氣候變遷問題小組(IPCC),http://www.ipcc.ch/。
[3] 曲新生,陳發林,氫能技術:二十一世紀是氫能世紀,五南,臺北市,(2006)。
[4] A. Kudo, “Development of photocatalyst materials for water splitting
”, International Journal of Hydrogen Energy, Vol. 31, pp.197-202 (2006).
[5] 國際能源總署(IEA),http://www.iea.org/。
[6] 呂宗昕,圖解奈米科技與光觸媒,商周出版,臺北市,(2003)。
[7] ENB Korea,http://enbkorea88.en.ec21.com/What_is_Photocatalyst --712104_712221.html。
[8] S.O. Kasap, Optoelectronics and photonics: principles and practices, Prentice Hall, pp.255-273, (2001).
[9] T. Bak, J. Nowotny, M. Rekas, and C.C. Sorrell, “Photoelectrochemi- cal hydrogen generation from water using solar energy. Materials- related aspects”, International Journal of Hydrogen Energy, Vol. 27, pp.991-1022, (2002).
[10] V. Rakovics , Zs. J. Horváth, Zs. E. Horváth, I. Bársony, C. Frigeri ,
and T. Besagni, “Investigation of CdS/InP heterojunction prepared
bychemical bath deposition”, Physica Status Solidi C, Vol. 4, pp. 1490-1493, (2007).
[11] B. Pejova, M. Najdoski, I. Grozdanov, and S. K. Dey, ” Chemical
bath deposition of nanocrystalline (111) textured Ag2Se thin films”,
Materials Letters, Vol. 43, pp.269-273, (2000).
[12] D. Hariskos, M. Powalla, N. Chevaldonnet, D. Lincot, A. Schindler
, and B. Dimmler, “Chemical bath deposition of CdS buffer layer:
prospects of increasing materials yield and reducing waste”, Thin
Solid Films, Vol. 387, pp.179-181, (2001).
[13] U. Gangopadhyay, K. Kim, D. Mangalaraj, and J. Yi, “Chemical and
structural modifications of laser treated iron surfaces: investigation
of laser processing parameters”, Applied Surface Science, Vol. 230
, pp.364-370, (2004).
[14] S. Biswas, M. F. Hossain, T. Takahashi, Y. Kubota, and A.
Fujishima, “Photocatalytic activity of high-vacuum annealed
CdS-TiO2 thin film”, Thin Solid Films, Vol. 516, pp.7313-7317
, (2008).
[15] T. Ishiyama, T. Arai, Y. Sato, K. Shinoda, B. Jeyadevan, and K.
Tohji,“Photocatalytic efficiency of CdS film synthesized by CBD
method”, American Institute of Physics Conference Proceedings,
Vol. 833, pp.23-26, (2006).
[16] H. Liu, and L. Gao, “Synthesis and properties of CdSe-sensitized
rutile TiO2 nanocrystals as a visible light-responsive photocatalyst”,
Journal of the American Ceramic Society, Vol. 88, pp.1020-1022,
(2005).
[17] D. Chen and J. Ye, “Photocatalytic H2 evolution under visible light
irradiation on AgIn5S8 photocatalyst”, Journal of Physics and
Chemistry of Solids, Vol. 68, pp.2317-2320, (2007).
[18] I.V. Bodnar and V. F. Gremenok, “Structure and optical properties of AgIn5S8 films prepared by pulsed laser deposition”, Thin Solid Films, Vol. 487, pp.31-34, (2005).
[19] L. H. Lin, C. C. Wu, and T. C. Lee, “Growth of crystalline AgIn5S8 thin films on glass substrates from aqueous solutions”, Crystal Growth & Design, Vol. 7, pp.2725-2732, (2007).
[20] W. S. Chang, C. C. Wu, M. S. Jeng, K. W. Cheng, C. M. Huang, and T. C. Lee, “Ternary Ag-In-S polycrystalline films deposited using chemical bath deposition for photoelectrochemical applications”, Materials Chemistry and Physics, Vol. 120, pp.307-312, (2010).
[21] A. F. Qasrawi, “Annealing effects on the structure and optical properties of AgIn5S8 thin films”, Journal of Alloys and Compounds, Vol. 455, pp.295-297, (2008).
[22] K. K. Banger, M. H. C. Jin, J. D. Harris, P. E. Fanwick, and A. F. Hepp, “A new facile route for preparation of single-source precursors for bulk, thin film, and nanocrystallite I-III-VI semiconductors”, Inorganic Chemistry, Vol. 42, pp.7713-7715, (2003).
[23] G. Delgado, A. J. Mora, C. Pineda, and T. Tinoco, “Simultaneous rietveld refinement of three phases in the Ag-In-S semiconductor system from x-ray powder diffraction”, Materials Research Bulletin, Vol. 36, pp.2507-2517, (2001).
[24] M.A. Fox and M.T. Dulay, “Hetergeneous Photocatalysis” Chemistry Reviews, Vol. 93, pp.341-357, (1993).
[25] R. S. Mane, and C. D. Lokhande, “Chemical deposition method for metal chalcogenide thin films”, Materials Chemistry and Physics,
Vol. 65, pp.1-31, (2000).
[26] P.K. Nair, M.T.S. Nair, V.M. Garcoa, O.L. Arenas, Y. Pena, A.
Castillo, I.T. Ayala, O. Gomezdaza, A. Sanchez, J. Campos, H. Hu, R. Suarez, and M.E. Rincon, “Semiconductor thin films by chemical bath deposition for solar energy related applications”, Solar Energy Materials and Solar Cells, Vol. 52, pp.313-344, (1998).
[27] A. Fujishima, and K. Honda, ”Electrochemical photolysis of water at
a semiconductor electrode”, Nature, Vol. 238, pp.37-38, (1972).
[28] A. Kudo, and Y. Miseki, “Heterogeneous photocatalyst materials for
water splitting”, Chemical Society Reviews, Vol. 38, pp.253-278,
(2009).
[29] A. Kudo, “Recent progress in the development of visible light-driven
powdered photocatalysts forwater splitting”, International Journal of
Hydrogen Energy, Vol. 32, pp.2673–2678, (2007).
[30] H. Kato, and A. Kudo, “Visible-light-response and photocatalytic
activities of TiO2 and SrTiO3 photocatalysts codoped with antimony
and chromium”, Journal of Physical Chemistry B, Vol. 106,
pp.5029, (2002).
[31] R. Niishiro, H. Kato, and A. Kudo, “Nickel and either tantalum or
niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light
response for H2 or O2 evolution from aqueous solutions”, Physical
Chemistry Chemical Physics, Vol. 7, pp.2241-2245, (2005).
[32] S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons,
New York, pp.790-838, (1981).
[33] A. O. Pudov, J. R. Sites, M. A. Contreras, T. Nakada, and H. W. Schock, “CIGS J–V distortion in the absence of blue photons”, Thin Solid Films, Vol. 480-481, pp.273-278, (2005).
[34] A. Aquilera, M. L. Aquilar Hernandez, J. Orteqa-Lopez, M.,
Sanchez, V. M., Gonzalez, and M. A. Trujillo, “Some physical properties of chalcopyrite and orthorhombic AgInS2 thin films
prepared by spray pyrolysis”, Materials Science and Engineering: B,
Vol. 102, pp.380-384, (2003).
[35] A. F. Qasrawi, T. S. Kayed, and I. Ercan, “Fabrication and some
physical properties of AgIn5S8 thin films”, Materials Science and
Engineering, Vol.113, pp.73-78, (2004).
[36] J. Q. Hu, B. Deng, K. B. Tang, C. R. Wang, and Y. T. Qian,
“Preparation and phase control of nanocrystalline silver indium
sulfides via a hydrothermal route”, Journal of materials research,
Vol. 16, pp.3411-3415, (2001).
[37] T. C. Deivaraj, J. H. Pard, M. Afzaal, P. O’Brien, and J. Vittal, “ Single-source precursors to ternary silver indium sulfide materials”, Chemical Communications, Vol. 22, pp.2304-2305, (2001).
[38] D. Yang, S. Xu, Q. Chen, and W. Wang, “A simple organic synthesis for CdS and Se-doped CdS nanocrystals”, Colloids and Surfaces A: Physicochem. Eng. Aspects, Vol. 299, pp.153–159, (2007).
[39] Y. Ueno, Y. Hattori, M. Ito, T. Sugiura, and H. Minoura, “Synthesis
and photoelectrochemical characterization of (Ag2S)x(In2S3)1-x and
AgInS2-ySey”, Solar Energy Materials and Solar Cells, Vol. 26,
pp.229-242, (1992).
[40] H. Shinguu, M.M.H. Bhuiyan, T. Ikegami, and K. Ebihara,
“Preparation of TiO2/WO3 multilayer thin film by PLD method
and its catalytic response to visible light”, Thin Solid Films, Vol.
506–507, pp.111 – 114, (2006).
[41] B. Liua, L. Wena, and X. Zhaoa, “Efficient degradation of aqueous
methyl orange over TiO2 and CdS electrodes using photoelectron-
catalysis under UV and visible light irradiation”, Progress in
Organic Coatings, Vol. 64, pp.120–123, (2009).
[42] K. W. Cheng, C. M. Huang, G. T. Pan, J. C. Huang, T. C. Lee, and
T. C. K. Yang, “The photoelectrochemical performances of Sb-doped AgIn5S8 film electrodes prepared by chemical bath deposition”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 202, pp.107–114, (2009).
[43] D. S. Dhawalea, D. P. Dubal, R. R. Salunkhea, T. P. Gujara, M. C. Rathb, and C. D. Lokhande, “Effect of electron irradiation on properties of chemically deposited TiO2 nanorods”, Journal of Alloys and Compounds, Vol. 499, pp.63–67, (2010).
[44] P. O’Brien and J. McAleese, “Developing an understanding of the processes controlling the chemical bath deposition of ZnS and CdS”, Journal of Material Chemistry, Vol. 8, pp.2309–2314, (1998).
[45] H. Y. Xu, H. Wang, T. N. Jin, and H. Yan, “Rapid fabrication of luminescent Eu:YVO4 films by microwave-assisted chemical
solution deposition”, Nanotechnology, Vol. 16, pp.65-69, (2005).
[46] B. D. Cullity, and S. R. Stock, Elements of X-ray diffraction (Inter-
national edition), Prentice-Hall, New Jersey, (2001).
[47] S. Kumari, C. Tripathi, A. P. Singh, D. Chauhan, R. Shrivastav, S. Dass, and V. R. Satsangi, “Characterization of Zn-doped hematite
thin films for photoelectrochemical splitting of water”, Current Science, Vol. 91, pp.1062-1064, (2006).
[48] 郭俊麟,利用CBD法製備銅摻雜之硫系列光觸媒材料研究,碩士論文,國立中央大學機械工程研究所,桃園縣中壢市,(2008)。
[49] 鄭 亨,以化學水浴法製備AgInS2可見光光電極及其摻雜銅之硏究,碩士論文,國立中央大學能源工程硏究所,桃園縣中壢市,(2009)。
[50] C.D. Lokhande, A. Ennaoui, P.S. Patil, M. Giersig, K. Diesner, M. Muller, and H. Tributsch, “Chemical bath deposition of indium sulphide thin films: preparation and characterization”, Thin Solid Films, Vol. 340, pp.18-23, (1999).
[51] R. Sahraei, G. M. Aval, A. Baghizadeh, M. Lamehi-Rachti, A. Goudarzi, and M. H. Majles Ara, “Investigation of the effect of temperature on growth mechanism of nanocrystalline ZnS thin films”, Materials Letters, Vol. 62, pp.4345–4347, (2008).
[52] J. I. Pankove, Optical Process in Semiconductor, Prentice Hall, New York, (1971).
[53] G. Delgado, A. J. Mora, C. Pineda, and T. Tinoco, “Simulation Rietveld refinement of three phases in the Ag-In-S semiconducting system from X-ray powder diffraction”, Material Research Bulletin, Vol. 36, pp.2507-2517, (2001).
[54] B. Asenjo, A. M. Chaparro, M. T. Gutiérrez, J. Herrero, and C. Maffiotte, “Quartz crystal microbalance study of the growth of indium(III) sulphide films from a chemical solution”, Electrochimica Acta, Vol. 49, pp.737-744 , (2004).
[55] R. Zhai, S. B. Wang, H. Y. Xu, H. Wang, and H. Yan, “Rapid formation of CdS, ZnS thin films by microwave-assisted
chemical bath deposition”, Materials Letters, Vol. 59, pp.1497-
1501, (2005).
[56] T. B. Nasr, N. Kamoun, M. Kanzari, and R. Bennaceur, “Effect of pH on the properties of ZnS thin films grown by chemical bath deposition”, Thin Solid Films, Vol. 500, pp.4-8, (2006).
[57] 黃惠良,曾百亨,蕭錫鍊,周明奇,林堅楊,江雨龍,李威儀,
李世昌,林唯芳,太陽電池,五南,台北市,(2008)。
[58] 施敏,黃調元,半導體元件物理與製作技術,交通大學出版社
,新竹市,(2006)。
[59] 吳怡萱,再生能源概論,五南,台北市,(2008)。
[60] 巫玉娟,活性碳纖維塗覆二氧化鈦光觸媒去除揮發性有機物之
可行性研究,碩士論文,國立中山大學環境工程研究所,高雄
市,(2004)。
指導教授 洪勵吾(Lih-wu Hourng) 審核日期 2010-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明