博碩士論文 973208020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.133.115.53
姓名 謝仲韋(Chung-wei Hsieh)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 鍍金發泡鎳質子交換膜燃料電池之電池操作溫度、陰極加濕溫度、陰極計量比對其性能影響之研究
(Effect of Operating Temperature, Cathode Humidification Temperature, and Cathode Stoichiometry on the Performance of PEMFC assembled with Au-coated Ni-foam)
相關論文
★ 鋁鈧濺鍍薄膜中鈧含量對其微結構、光反射性與腐蝕性質之影響★ 1kW質子交換膜商用電堆中四個特徵區段單電池之電化學交流阻抗圖譜診斷
★ 碳酸鹽沉澱製備Ba0.5Sr0.5Co0.8Fe0.2O3 及其在滲透銀前後之陰極特性比較★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究
★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究
★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響
★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作
★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究
★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討★ n-型(100)矽單晶巨孔洞之電化學研究
★ 鋁在酸性溶液中孔蝕行為研究★ 微陽極引導電鍍與監測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究將改變電池操作溫度、陰極進氣加濕溫度及陰極進氣計量比等環境參數,再利用直流電化學法所獲得之I-V曲線與電化學交流阻抗法所獲得之等效電路阻抗數值,探討改變電池操作條件對鍍金發泡鎳燃料電池性能之影響。
實驗結果所得之等效電路,將電池阻抗區分為歐姆阻抗、電荷轉移阻抗與質傳阻抗,可分別對膜電極組的濕潤度及導質子的能力、電池內部氧還原反應與質傳效應進行探討;由改變電池操作溫度的實驗結果發現,電荷轉移阻抗與質傳阻抗會隨電池操作溫度的上升皆呈現下降的趨勢,原因在於操作溫度上升,會使得電池內部觸媒活性變高,加快電池內部化學反應。另外,在改變陰極進氣加濕溫度的實驗結果發現,隨電池進氣加濕溫度提高,進入電池內部的反應氣體帶入更多的水分,造成水溢滿(flooding)的現象,降低反應氣體在電池內部的擴散速度,造成質傳阻抗呈現上升的趨勢,且質傳阻抗的上升也導致電荷轉移阻抗也隨之上升,原因為電池內部過多的水分會阻礙氧還原反應的進行。而改變陰極計量比的實驗結果發現,因反應氣體量增加,有助於內部氧還原反應的進行;電荷轉移阻抗會隨著陰極計量比的提高而呈現下降的趨勢。
經直流電化學法與交流電化學阻抗法分析結果,得知本系統之較佳環境操作參數為,電池操作溫度為60℃、陰極進氣加濕溫度為50℃與陰極進氣計量比5時。
最後,當電池石墨流道板改用鍍金發泡鎳取代時,在相同的操作條件下,因為發泡材具有孔洞結構,當反應氣體進入發泡材後,使氣體在發泡材中均勻擴散分部在氣體擴散層,增加反應氣體與電極的接觸面積,使得供氣較普通碳板流道均勻且充足,進而使電荷轉移阻抗下降
摘要(英) The effect of operating parameters of fuel cells such as performance temperature, cathode humidification temperature and cathode stoichiometric feeding on the efficiency of energetic conversion were concerned in this study. The exploration was conducted by evaluation the I-V resulted from DC electrochemical measurement and Electrochemical Impedance Spectroscopy (EIS) measurement by means of numeric estimation of the equivalent circuit. This investigation was focused on a proton exchange membrane fuel cell by using gold-coated nickel foam instead of the traditional graphite flow field plate. .
Simulation of the EIS data by the commercial software Z-view, we obtained the equivalent circuit consisting of ohmic resistance (Rohm) , charge transfer resistance (Rct), constant phase element of the double electric layer (CPE1), mass transfer resistance (Rmt) and the constant phase element of the mass transport (CPE2). The magnitude of the elements was determined individually as follows: Rohm determined by the nature the membrane, Rct and CPE1 determined by the charge transfer on oxygen reduction reaction (ORR) process, Rmt and CPE2 determined by the mass transfer effect.
The resistance for both charge transfer (Rct) and mass transfer (Rohm) decreases with increasing the operating temperature of the fuel cells. This means that the reactivity increases with increasing the operation temperature. It is also found that the resistance for both charge transfer (Rct) and mass transfer (Rmt) increases with increasing the cathode humidification temperature. This implies that higher content of water was carried into membrane and even led to flooding of the membrane electrode assembly (MEA) at higher cathodic humidification temperatures thus causing blocking of oxygen transport. With increasing the cathode stoichiometry, the resistance of charge transfer decreases but that of mass transfer (Rohm) is almost unchanged. This result is ascribed to acceleration of oxygen reduction resulted from sufficient supply of oxygen on the cathode.
According to the results, the optimal operation condition of this system could be summarized as follows: Performing of the fuel cells at 60℃, with cathode humidification temperature at 50℃ and the cathode stoichiometry at 5.
Compared the EIS data between those coming from the fuel cell with gold-coated nickel foam and from that with traditional graphite flow field plate in the performance of proton exchange membrane fuel cell under the same condition, we found that the Rct is much less (0.008Ω)for the gold-coated nickel foam than for the graphite (0.024Ω). It may be ascribed to much more sufficient supply of oxygen through nickel foam than the graphite..
關鍵字(中) ★ 質子交換膜燃料電池
★ 氧還原反應
★ 金屬發泡材
★ 電化學交流阻抗法
關鍵字(英) ★ Electrochemical impedance spectroscopy
★ Metal fo
論文目次 中文摘要 ................................................................................................... I
ABSTRACT ........................................................................................... III
誌謝 .......................................................................................................... V
表目錄 ..................................................................................................... XI
圖目錄 .................................................................................................. XIV
第一章 緒論 .............................................................................................. 1
1.1. 電化學交流阻抗之發展 .................................................................. 1
1.1.1. 直流電電化學理論 ....................................................................... 1
1.1.2. 交流電電化學理論 ....................................................................... 2
1.2. 燃料電池研究背景 .......................................................................... 2
1.3. 研究動機與目的 .............................................................................. 4
第二章 基礎原理與文獻回顧 .................................................................. 5
2.1 基礎原理 ......................................................................................... 5
2.1.1 燃料電池基本原理 ................................................................... 5
2.1.2 直流電極化(I-V)曲線基本原理 ................................................... 8
2.1.3 電化學交流(EIS)阻抗基本原理 .............................................. 11
2.2 文獻回顧 ....................................................................................... 15
2.2.1 電化學交流阻抗文獻回顧 ..................................................... 15
2.2.2 發泡材質子交換膜燃料電池文獻回顧 .................................. 21
第三章 實驗方法 .................................................................................... 23
3.1 實驗設備與實驗材料 ................................................................... 23
3.1.1 實驗設備................................................................................... 23
3.1.2 實驗材料................................................................................... 24
2.2 實驗流程與參數設定 .................................................................... 25
第四章 實驗結果 .................................................................................... 28
4.1 電池操作溫度與電池性能之關係 ................................................ 28
4.1.1 直流電極化(I-V)曲線之分析 ................................................. 28
4.1.2 電化學交流阻抗分析 ............................................................. 29
4.2 陰極加濕溫度與電池性能之關係 ................................................ 30
4.2.1 直流電極化(I-V)曲線之分析 ................................................. 30
4.2.2 電化學交流阻抗分析 ............................................................. 33
4.3 陰極進氣計量比與電池性能之關係 ............................................ 35
4.3.1 直流電極化(I-V)曲線之分析 ................................................. 35
4.3.2 電化學交流阻抗分析 ............................................................. 36
4.4 鍍金發泡鎳燃料電池與石墨流道板燃料電池性能之差異 ......... 37
4.4.1 直流電極化(I-V)曲線之分析 ................................................. 37
4.4.2 電化學交流阻抗分析 ............................................................. 38
第五章 實驗討論 .................................................................................... 39
5.1 電池操作溫度與電池性能之關係 ................................................ 39
5.2 陰極進氣加濕溫度與電池性能之關係 ........................................ 40
5.3 陰極進氣計量比與電池性能之關係 ............................................ 41
5.4 鍍金發泡鎳燃料電池與石墨流道板燃料電池性能之關係 ......... 42
第六章 結論與未來展望 ........................................................................ 43
6.1 結論 ............................................................................................... 43
6.2 未來展望 ....................................................................................... 44
第七章 參考文獻 .................................................................................... 45
參考文獻 [1] E.Warburg, Drud.Ann.der physik, 6(1901)125
[2] J.E.B.Randles, Disc Faraday Soc., 1(1974)11
[3] K.sopian, w.r.w.Daud,Renewable Energy., ”Challenges and future developments in proton exchange membrane fuel cells” Vol31,p719-p.722
[4] EG&G Technical Services, Inc.( 7th Eds), Fuel Cell Handbook, Nov.2004.
[5] J. Larminie, A. Dicks(2nd Eds), Fuel Cell Systems Explained, John Wiley&Sons,Inc., p.45-102(2003)
[6] 衣寶廉,燃料電池-應用與原理,初版,五南,台北市,民國九十四年。
[7] 黃鎮江,燃料電池,三版,滄海,台中市,民國九十七年。
[8] E.Barsoukov, J. R. Macdonald (2nd Eds), Impedance Spectroscopy:
Theory, Experiment, and Application ,John Wiley&Sons,Inc.,(2005)
[9] A.J.Bard,L.R.Faulkner(2nd Eds), Electrochemical Methods Fundamentals and Application , John Wiley&Sons,Inc.,(2000),
pp.368-391
[10] X. Yuan, H. Wang, J. C. Sun, J. Zhang, Int. J. Hydrogen Energy,
Vol. 32, p. 4365-4380(2007)
[11] J. H. Sluyters, M. Sluyter-Rehbach, Marcel Dekker, New York
, J. Electroanal. Chem., Vol.4 (1970).
[12] J. H. Sluyters, M. Sluyter-Rehbach, Comprehensive Treatise of Electrochemistry, Plenum, New York, Vol.9, p.177 (1984)
[13] S. Srinivasan, E. A. Ticianelli, C. R. Derouin, A. Redondo, J. Power Sources., Vol.22, p.359-375 (1988)
[14] S. Fletcher, J. Electroanal Chem., Vol.337, p.127-145 (1992)
[15]Z. Poltarzewski, P. Staiti, V. Alderucci, W. Wieczorek, N. Giordano,
J. Electrochem. Soc., Vol.139, p.761-765 (1992)
[16] M. S. Wilson, F. H. Garzon, K. E. Sickafus, S. Gottesfeld ,J. Electro- chem. Soc., Vol.140, p.2872-2877 (1993)
[17] D. Bevers, N. Wagner, M. V. Bradke, Int. J. Hydrogen Energy, Vol.23, p.57-63 (1998)
[18] M. Ciureanu, H. Wang, J. Electrochem. Soc., Vol.146(11),p.4031– 4040 (1999)
[19] T. J.P. Freire, E. R. Gonzalez, J. Electroanal. Chem. , Vol.503, p.57–68 (2001)
[20] J. M. Song, S.Y. Cha, W. M. Lee, J. Power Sources., Vol.94, p.78–84 (2001)
[21] J. D. Kim, Y. I. Park, K. Kobayashi, M. Nagai, M. Kunimatsu, Solid State Ionics., Vol.140, p.313-325 (2001)
[22] N. Wagner, J. Appl. Electrochem. ,Vol.32, p.859-863 (2002)
[23] M. Ciureanu, S.D. Mikhailenko, S. Kaliaguine, Catal. Today., Vol.82 p.195–206 (2003)
[24] E. B. Easton, P. G. Pickup, Electrochim. Acta., Vol.50, p.2469–2474 (2005)
[25] S. S. Hsieh, S. H. Yang, C. L. Feng, J. Power Source, Vol.162,
p.262-270 (2006)
[26] X. Yuan, J.C. Sun, M. Blanco, H. Wang, J. Zhang, D. P. Wilkinson, J. Power Source, Vol.161, p.920-928(2006)
[27] C. M. Lai, J. C. Lin, K. L. Hsueh, C. P. Hwang, K.C. Tsay, L. D. Tsai,Y.M. Peng, Int. J. Hydrogen Energy ,Vol.32, p.4381 –
p. 4388(2007)
[28] X. Yan, M. Hou, L. Sun, D. Liang, Q. Shen, H. Xu, P. Ming, B. Yi,
J. Power Source, Vol.32, p.4358-4364(2007)
[29] S. Wasterlain, D. Candusso, D. Hissel, F. Harel, P. Bergman,
P. Menard, M. Anwar, J. Power Sources, Vol. 195, p. 984-993(2010)
[30] A. Kumar, R.G. Reddy, J. Power Sources, Vol. 114, p. 54-62(2003)
[31] A. Kumar, R.G. Reddy, J. Power Sources, Vol. 129, p. 62-67(2004)
[32] 蔡秉蒼, 曾重仁, “金屬發泡材質子交換膜燃料電池之性能分析”第三屆全國氫能與燃料電池研討會, FC043, 國立台南大學, 台南
市, 2008年11月。
[33] 陳孟怡,”金屬發泡材質子交換膜燃料電池之研究”,國立中央大
學,碩士論文,民國98年。
[34] N. Wagner, J. Appl. Electrochem. Vol 32, pp. 859–863, (2002).
[35] J.-D. Kim, Y. Park, K. Kobayashi, M. Nagai and M. Kunimatsu, Solid
State Ionics, Diffusion React. Vol.140, p. 313–325, (2001)
[36] 楊昇晃,”微型燃料電池設計、製作與電化學阻抗量測分析”,國立
中山大學,碩士論文,民國94年
指導教授 林景崎(Jing-Chie Lin) 審核日期 2010-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明