博碩士論文 973209006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.144.116.159
姓名 賴志忠(Chih-chung Lai)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 利用奈米球微影術與金輔助化學蝕刻法形成矽鍺奈米柱陣列之研究
(Study on formation of SiGe Nanorod arrays by Nanosphere Lithography & Au-assisted chemical etching)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在過去十幾年間,由於其特別的物理性質,合成矽相關奈米結構引起廣泛研究興趣。自組裝法(self-assembly)提供了一個特殊的方法去製作奈米結構而不產生製程引起的破壞。因此,製備自組裝矽相關奈米結構得到重視。鍺/矽之間具有適當的晶格常數差異(4.2%),為製作及探究奈米尺度異質磊晶的良好系統。最近,利用矽基底奈米線做為高效能元件或是感應偵測器被廣泛的研究。製作奈米線結構有幾個方法,如電子束微影術、氣液固成長法,以及金屬輔助化學蝕刻法。稍早的研究已經顯示出奈米球微影術提供了一個有效的方式去之奈米之製作自組裝、有序之奈米球陣列。然而,關注於利用金屬輔助化學蝕刻法製作矽鍺奈米柱陣列卻很少。本研究提出利用奈米球微影術與金屬輔助化學蝕刻法製作矽鍺奈米柱陣列。
利用掃描式電子顯微鏡觀察,矽鍺奈米柱之柱體形成細長的緊縮狀(necking body),而非矽奈米柱直徑完全由奈米球定義的情形。藉由改變蝕刻的溫度自5℃ 至25℃,矽鍺奈米柱形貌顯示出其半徑及長度均對溫度有依存性:較高的溫度有較高的蝕刻率。推測此現象是由於溫度上升使得蝕刻反應活化能(reaction activation energy)減少之故。利用穿透式電子顯微鏡(TEM)分析矽鍺奈米柱陣列之橫截面,此奈米柱具有均勻之鍺含量15 at%;然而,在奈米柱中鍺含量減少的原因還需要更深入的研究。
經由在矽與矽鍺基板上部分區域鍍金的試片操作同樣化學蝕刻法去研究金增進基板蝕刻的效應,證明了基板蝕刻率確實會在有鍍金的區域內上升。然而,在矽與矽鍺試片上鍍金與未鍍金的接面,化學蝕刻行為卻完全不同:矽鍺試片上非陡峭(non-sharply)接面的產生是來自於試片鍍金與未鍍金區域皆均勻性蝕刻所導致。
總結以上,吾人成功利用奈米球微影術與金輔助化學蝕刻法製作矽鍺奈米柱陣列。藉由最佳化蝕刻條件,可製作筆直與均勻定義之奈米柱陣列。這對於未來應用於製作紅外線光偵測器有莫大助益。
摘要(英) Over the past few decades, the synthesis and characterization of Si-based nanostructures got much attention in research interests due to their intrinsic physical properties. There is a particular method called self-assembly which provides a possible a way to fabricate nanostructures without process induced damages. As a result, self-assembled Si-based nanostructures are of particular interests. Ge/Si has emerged as a model system for the fabrication and investigation of nanometer-scale heteroepitaxy with a moderate lattice mismatch (4.2%). The fabrication of one-dimensional SiGe nanostructure arrays is one of the most interesting topics. Recently, using Si-based nanowires as high performance devices or sensors has been extensively studied. There are several methods to fabricate nanowire structures, such as e-beam lithography and vapor-liquid-solid (VLS) growth, and metal-assisted chemical etching. Previous works have demonstrated that nanosphere lithography (NSL) provides an efficient way to fabricate self-organized, order and close-packed sphere arrays. However, there is few attention about fabrication of bulk SiGe alloy nanorod (NR) arrays by metal-assisted chemical etching. In this study, we demonstrated the fabrication of SiGe nanorods arrays by combing NSL and metal-assisted chemical etching.
The morphology of SiGe NRs shows a necking body compared to that of Si NR which is well-defined by the diameter of PS mask. One tries to understand the mechanism of formation of SiGe NR arrays. The morphologies of SiGe NR show a temperature dependence on NRs’ diameter and length by changing the etching temperatures from 5℃ to 25℃. The etching rate was found to increase with the increase of temperature. This result may result from the decrease of reaction activation energy as the increase of etching temperature. TEM analysis on cross-sectional SiGe NR arrays indicated the NRs have homogenous Ge content of 15 atom%. However, the reason for the Ge content decreasing in NR is still requied to be further study.
To investigate Au-enhanced etching behavior on Si and SiGe substrate, a chemical etching experiment on both substrate with partial Au coverage was performed. It is proved that the Au coating truly enhances the Si and SiGe etching in modified solution. The chemical etching at the interface between the Au region and non-Au region shows a different etching behavior on both substrate, the non-sharply edge on SiGe substrate is resulted from homogenously etching on the non-Au region of SiGe substrate which is not found in that of Si substrate.
In summary, the fabrication of SiGe NR arrays was achieved by combining NSL and Au-assisted chemical etching. Through optimal the etching condition, a straight and well-defined NRs’ bodies could be produced, which may useful for further application on IR-range optical sensors.
關鍵字(中) ★ 矽鍺
★ 奈米柱陣列
★ 奈米球微影術
★ 金輔助化學蝕刻法
關鍵字(英) ★ SiGe
★ Nanorod arrays
★ Nanosphere lithography
★ Au-assisted chemical etching
論文目次 摘要 i
Abstract iii
Acknowledgment (致謝) v
Chapter 1 Prefaces 1
1.1 Motivation. 1
1.2 Study outlines. 1
Chapter 2 Nanomaterials: an Introduction 3
2.1 What is “nano” material? 3
2.2 1D Semiconductor and semiconductor oxide nanostructures 4
2.2.1 Silicon/Germanium nanowires 4
2.2.2 Silicon Germanium alloy nanowires 6
2.2.3 Semiconductor compound nanowires 7
2.2.4 Oxide nanowires 13
2.2.5 Other nanowires 15
2.3 Self-assembly 15
2.4 Lithography for ordered nanofabrication 16
2.5 Self-Assemble Nanosphere Technology 19
2.6 One dimensional nanostructure Fabrication 21
2.6.6 Top-down approaches 21
2.6.6.1 E-beam lithography 21
2.6.6.2 Metal-assisted chemical etching 22
2.6.7 Bottom-up approaches 23
2.6.7.1 Vapor-liquid-solid (VLS) growth 23
2.6.7.2 Laser-assisted catalytic (LCG) growth 24
2.6.7.3 Template-based methods (TBMs) 25
Chapter 3 SiGe/Si Heterostructures 27
3.1 Introduction to SiGe/Si Lattice Structures 27
3.1.1 Material properties 27
3.1.2 Critical thickness of Si1-xGex on Si 30
3.2 Band structures of SiGe/Si heterostructures 31
3.2.1 Bandgap and band extrema in relaxed layers 31
3.2.2 Electronic properties 33
3.3 The energy band variation under lattice strain 34
3.4 Band alignments 38
3.5 Summary 40
Chapter 4 Experimental Procedures 41
4.1 Wafer preparation and cleaning 41
4.2 Self-assemble nanoshpere arrays 42
4.2.1 Formation of close-packed poly-styrene sphere arrays 42
4.2.2 Formation of colloidal particle arrays 43
4.3 Metal-assisted electro-less chemical etching 44
4.3.1 Deposition of Au catalyst 44
4.3.2 Chemical etching 45
4.4 Material characteristic analysis 47
4.4.1 Observation by Scanning Electron Microscopy 47
4.4.2 Observation by Transmission Electron Microscopy 47
4.4.3 Contact angle analysis 48
4.4.4 Specular Reflectance measurement 49
Chapter 5 Fabrication of SiGe nanorod arrays by Au-assisted chemical etching 51
5.1 Motivation 51
5.2 Results & Discussion 52
5.2.1 Observation by Scanning Electron Microscopy 52
5.2.2 Close-packed & colloidal nanosphere arrays 52
5.2.3 Influence of operating temperature on fabricating SiGe nanorod arrays 53
5.2.4 Surface morphology of SiGe nanorod arrays 56
5.2.5 Characteristics of Ge content in SiGe nanorod arrays 59
5.2.6 Investigation of Au-enhanced etching behavior on Si and SiGe substrates. 60
5.2.7 Contact angle analysis 66
5.2.8 Total reflectance 68
5.3 Summary 68
References 70
參考文獻 . M. A. Kastner, Phys. Today, 46, 24 (1993)
. L. N. Lewis, Chem. Rev., 93, 2693 (1993)
. D. D. Awschalom, and D. P. DiVincenzo, Phys. Today, 48, 43 (1995).
. S. Lijima, Nature, 354, 56 (1991)
. K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, and H. Kakibayashi, J. Appl. Phys., 77, 477 (1995)
. L. T. Canham, Appl. Phys. Lett., 57, 1046 (1990)
. A. M. Morales, and C. M. Lieber, Science, 279, 208 (1998).
. C. R. Martin, Science, 266, 1961 (1996).
. E. W. Wang, P. E. Sheehan, and C. M. Lieber, Science, 277, 1971 (1997).
. J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, Science, 287, 1471 (2000).
. L. D. Hicks, and M. S. Dresselhaus, Phys. Rev. B, 47, 16631(1993).
. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science, 292, 1897 (2001).
. Y. Cui, X. Duan, J. Wang, and C. M. Lieber, J. Phys. Chem. B, 104, 5213 (2000).
. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature, 409, 66 (2001).
. Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, Nano Lett., 3, 149 (2003).
. G. F. Zheng, W. Lu, S. Jin, and C. M. Lieber, Adv. Mater., 16, 1890 (2004).
. H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, and T. Nakagiri, Appl. Phys. Lett., 56, 2379 (1990).
. A. I. Hochbaum, R. Fan, R. He, and P. Yang, Nano Lett., 5, 457 (2005).
. W. K. Choi, T. H. Liew, and M. K. Dawood, Nano Lett., 8, 3799 (2008).
. J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, and H. Ruda, J. Vac. Sci. Technol. B , 15, 554 (1997).
. K. Peng, M. Zhang, A. Lu, N. B. Wong, R. Zhang, and S. T. Lee, Appl. Phys. Lett., 90, 163123 (2007).
. E. I. Givargizov, J. Cryst. Growth, 20, 217 (1973)
. J. R. Heath, and F. K. LeGoues, Chem. Phys. Lett., 208, 263 (1993).
. K.-K. Lew, L. Pan, E.C. Dickey, and J.M. Redwing, Adv. Mater. 15, 2073 (2003).
. Y. Wu, R. Fan, and P. Yang, Nano Lett., 2, 83 (2002)
. S. Nakamura, M. Senoh, and T. Mukai, Appl. Phys. Lett., 62, 2390 (1993)
. W.Q. Han, S. S. Fan, Q. Q. Li, and Y. D. Hu, Science, 277, 1287 (1997).
. S. Tsukamoto, Y. Nagamune, M. Nishioka, in Extended Abstrates of the 1991 International Conference on Solid State Devices and Materials. Yokohama, Japan, 15 (1991)
. S. Ando, and T. Fukui, J. Cryst. Growth, 98, 646 (1989).
. N. K. Karam, A. Mastrovito, V. Haven, K. Ismail, S. Pennycook, and H. I. Smith. J. Cryst. Growth, 107, 591 (1991).
. K. Hiruma, T. Katsuyama, K. Ogawa, G. P. Morgan, M. Koguchi, and H. Kakibayashi, Appl. Phys. Lett., 59, 431 (1991).
. M. Yazawa, M. Koguchi, and K. Hiruma, Appl. Phys. Lett., 58, 1080 (1991).
. M. Yazawa, M. Koguchi, M Muto, M. Ogawa, and K. Hiruma, Appl. Phys. Lett., 61, 2051 (1992).
. Y. C. Kong, D. P. Yu, B. Zhang, W. Fan, and S. Q. Feng, Appl. Phys. Lett., 78, 407 (2001).
. X. Jiang, Y. Xie, J. Lu, L. Zhu, W. He, and Y. Qian, Chem. Mater., 13, 1213 (2001)
. D. S. Xu, X. S. Si, G. L. Guo, L. L. Gui, and Y. Q. Tang, J. Phys. Chem. B, 104, 5061 (2000).
. D. S. Xu, Y. j. Xu, D. P. Chen, G. L. Guo , L. L. Gui, and Y. Q. Tang, Chem. Phys. Lett., 325, 340 (2000).
. D. Routkevitch, and T. Bigioni, J. Chem. Phys., 111, 14037 (1996)
. B. Xiang, H. Z. Zhang, G. H. Li, F. H. Yang, F. H. Su, R. M. Wang, J. Xu, G. W. Lu, X. C. Sun, Q. Zhao, and D. P. Yu, Appl. Phys. Lett., 82, 3330 (2003).
. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature, 409, p.66 (2001).
. Z. G. Bai, D. P. Yu, J. J. Wang, Y. H. Zou, W. Qian, J. S. Fu, S. Q. Feng, J. Xu, and L. P. You, Mater. Sci. Eng. B, 72, 117 (1999)
. H. Peng, S. Meister, C. K. Chan, X. F. Zhang, and Y. Cui, Nano Lett., 7, 199 (2007). .
. D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, Appl. Phys. Lett., 73, 3076 (1998).
. Z.G. Bai, D.P. Yu, H.Z. Zhang, Y. Ding, Y.P. Wang, X.Z. Gai, Q.L. Hang, G.C. Xiong, and S.Q. Feng, Chem. Phys. Lett., 303, 311 (1999)
. H. Dai, E. W. Wong, Y. Z. Lu, S. Fan, C. M. Lieber, Nature, 375, 769 (1995)
. W. Q. Han, S. Fan, Q. Q. Li, B. L. Gu, X. B. Zhang, and D. P. Yu, Appl. Phys. Lett., 71, 2271 (1997).
. W. Q. Han, S. Fan, Q. Q. Li, W. J. Liang, B. L. Gu, and D. P. Yu, Chem. Phys. Lett., 265, 374 (1997).
. G. M. Whitesides, and B. Grzybowski, Science, 295, 2418 (2002).
. M. Boncheva, and G. M. Whitesides, MRS Bulletin, 30, 736 (2005)
. M. Walsh, PhD Thesis, Massachusetts Institute of Technology (2004).
. J. C. Hulteen, and R. P.Van Duyne, J. Vac. Sci. Technol. A, 13, 1553 (1995)
. R. Micheletto, H. Fukuda, and M. Ohtsu, Langmuir, 11, 3333 (1995).
. D. Rugar, H. J. Mamin, S. E. Lambert, J. E. Stern, I. McFadyen, and T. Yogi, J. Appl. Phys., 68, 1169 (1990).
. A. J. Haes, and R. P. Van Duyne, Proceedings of the SPIE, 5221, 47 (2003)
. C. Graf, D. L. J. Vossen, A. Imhof, and A. V. Blaaderen, Langmuir, 19, 6693 (2003)
. C. L. Cheung, R. J. Nikolic, C. E. Reinhardt, and T. F. Wang, Nanotechnology, 17, 1339 (2006)
. J. Y. Shiu, C. W. Kuo, P. L. Chen, and C. Y. Mou, Chem. Mater., 16, 561 (2004)
. J. G. C. Veinot, H. Yan, S. M. Smith, J. Cui, Q. L. Huang, and T. J. Marks, Nano Lett., 2, 333 (2002)
. K. H. Park, S. Lee, K. H. Koh, R. Lacerda, K. B. K. Teo, and W. I. Milne, J. App. Phys. 97, 024311 (2005)
. A. G. Cullis, L. T. Canham, and P. D. J. Calcott, J. Appl. Phys., 82, p.909 (1997)
. M. K. Dawood, T. H. Liew, P. Lianto, M. H. Hong, S. Tripathy, J. T. L. Thong, and W. K. Choi, Nanotechnology, 21, p.205305 (2010)
. C. C. Lai, J. S. Lin, S. L. Cheng, and S. W. Lee, ECS Transactions, 25, p.87 (2010)
. K. Peng, M. Zhang, A. Lu, N. B. Wong, R. Zhang, and S. T. Lee, Appl. Phys. Lett., 90, 163123 (2007).
. Z. Huang, X. Zhang, M. Reiche, L. Liu, W. Lee, T. Shimizu, S. Senz, and U. Gsele, Nano Lett., 8, 3046 (2008).
. E. Braun, Y. Eichen, U. Siven, and G. B. Yoseph, Nature, 391, 775 (1998).
. R. S. Wagner, and W. C. Ellis, Appl. Phys. Lett., 4, 89 (1964)
. Y. Wu, and P. Yang, J. Am. Chem. Soc., 123, 3165 (2001).
. X. Duan, and C. M. Lieber, J. Am. Chem. Soc., 122, 188 (2000)
. X. Duan, and C. M. Lieber, Adv. Mat., 12, 298 (1998).
. C. J. Brumlik, and C. R. Martin, J. Am. Chem. Soc., 113, 3174 (1991).
. C. R. Martin, Acc. Chem. Res., 28, 61 (1995).
. J. Zhang, L. D. Zhang, X. F. Wang, C. H. Liang, X. S. Peng, and Y. W. Wang, J. Chem. Phys. 115, 5714 (2001)
. Z. Huang, X. Zhang, M. Reiche, L. Liu, W. Lee, T. Shimizu, S. Senz, and U. Gsele, Nano Lett., 8, 3046 (2008).
. H. He, and N. J. Tao, in Encyclopedia of Nanoscience and Nanotechnology edited H. S. Nalwa, American Scientific Publushers, Stevenson, California, 5, 1 (2003).
. L. Vegard, Z. Phys., 5, 17 (1921); M.F. Thorpe and E.J. Garboczi, Phys. Rev. B, 42, 8405 (1990).
. N. Usami, Y. Azuma, T. Ujihara, G. Sazaki, K. Fujiwara, Y. Murakami, and K. Nakajima, Materials Science and Engineering B – Solid State Materials for Advanced Technology, 89, 364 (2002).
. M. E. Levinshteĭn, S. L. Rumyantsev, and M. Shur, Properties of Advanced Semiconductor Materials, Wiley-IEEE (2001).
. C. W. Liu, J. C. Sturm, P. V. Schwartz, and E. A. Fitzgerald, Proc. Mater. Res. Soc. Symp., 238, 85 (1992).
. F. K. LeGoues, B. S. Meyerson, and J. F. Morar, Phys. Rev. Lett., 66, 2903 (1991).
. J. Mattews, and A. Blakeslee, J. Cryst. Growth, 27, 118 (1974).
. R. Braunstein, A. Moore, and F. Herman, Physics Review, 109, 695 (1958).
. R. People and J.C. Bean, Applied Physics Letter, 48, 538 (1986).
. J. Welser, Ph.D. Thesis, Stanford University (1994).
. T. Manku and A. Nathan, IEEE Transactions on Electron Devices, 39, 2082 (1992).
. C. G. Van de Walle and R. M. Martin, Phys. Rev. B, 34, 5621 (1986).
. J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B, 14, 556 (1976).
. R. People, and J. C. Bean, Sppl. Phys. Lett. 48, 538 (1986).
. C. A. Chueh, M. D. thesis, National Central Unversity (2009)
. R. C. Rossi, M. X. Tan, and N. S. Lewis, App. Phys. Lett., 77, p.2698 (2000)
. N. Cerniglia,and P. Wang, J. Electrochem. Soc., 109(6), p.508 (1962)
.. S. L. Cheng, C. H. Chung, and H. C. Lee, J. Electrochem. Soc., 155, D117 (2008).
. R. Forch, H. Schonherr, and A. T. A. Jenkins, “Surface design: applications in bioscience and nanotechnology”, Wiley-VCH, 471 (2009).
. J. A. R. Samson, and D. L. Ederer, Vacuum ultraviolet spectroscopy, 1, 184 (1998).
. P. J. Pauzauskie, and P. Yang, Materials Today, 9, 36 (2006).
. M. Ribeiro, A. M. Brathovski, T. I. Kamins, D. A. A. Ohlberg, and R. S. Williams, Science, 279, 353 (1998).
. C. Kammerer, G. Cassabois, C. Voisin, C. Delalande, P. Roussignol, and J. M. Gerard, Phys. Rev. Lett., 87, 207401-1 (2001).
. G. M. Ribeiro, and R. S. Williams, Nano Lett., 7, 223 (2007).
. X. Wang, K. L. Pey, W. K. Choi, C. K. F. Ho, E. Fitzgerald, and D. Antoniadisa, Electrochem. Solid-State Lett., 12, K37 (2009).
. N. Geyer, Z. Huang, B. Fuhrmann, S. Grimm, M. Reiche, T. K. N. Duc, J. de Boor, H. S. Leipner, P. Werner, and U. Gosele, Nano Lett., 9, 3106 (2009).
. M. Law, L. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nat. Mater., 4, 455 (2005).
. S. J. Whang, S. J. Lee, W. F. Yang, B. J. Cho, and D. L. Kwong, Appl. Phys. Lett., 91, 072105 (2007).
. L. Gangloff, E. Minoux, K. B. K. Teo, P. Vincent, V. T. Semet, V. T. Binh, M. H. Yang, I. Y. Y. Bu, R. G. Lacerda, G. Pirio, J. P. Schnell, D. Pribat, D. G. Hasko, G. A. J. Amaratunga, W. I. Milne, and P. Legagneux, Nano Lett., 4, 1575 (2004).
. A. B. D. Cassie, and S. Baxter, Trans. Faraday Soc., 40, 546 (1944).
指導教授 李勝偉(Sheng-wei Lee) 審核日期 2010-8-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明