博碩士論文 973209012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:133 、訪客IP:18.223.171.12
姓名 林政勳(Jheng-syun Lin)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 應用於太陽光電之自潔性及低反射率之矽與矽鍺奈米孔洞陣列
(Self-cleaning and Low-refractive Si/SiGe Nanohole Arrays for Photovoltaic Applications)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 表面粗糙化可以有效降低光反射以提高太陽電池之效率。本研究中,利用聚苯乙烯奈米球自組裝性質與反應性離子蝕刻(RIE)製程製備出有序排列的矽與矽鍺奈米孔洞陣列。金屬鎳沉積在經反應性離子蝕刻縮小的聚苯乙烯奈米球之基板上,而後將聚苯乙烯奈米球掀離而形成金屬鎳的奈米網狀陣列,其可提供反應性離子蝕刻矽與矽鍺的遮罩而製備出矽與矽鍺奈米結構。通入六氟化硫和氧的混合氣體之乾式蝕刻,藉由不同的蝕刻時間而產生不同形貌的矽與矽鍺奈米結構。
利用奈米球微影技術結合反應性離子蝕刻成功地製備出矽與矽鍺奈米孔洞陣列,再利用掃描式電子顯微鏡(SEM)觀察結構形貌之變化,並量測光反射與接觸角性質。
矽與矽鍺奈米結構有著低反射率以及光極化不敏感的抗反射性質,並且其結構可以增進材料表面疏水性(自潔效應)。接觸角遲滯現象證實接觸角持續 (CA-retention) 性質,其與表面粗糙度有關。
製作不同形貌的奈米結構應用於太陽電池的表面粗糙化,本研究的製程方法是低成本且有效率。
摘要(英) Dry etching plasma was optimized for surface textures. The surface roughness reduces the reflection of sunlight and enhances the efficiency of solar cells. The fabrication of well-ordered Si and SiGe nanohole arrays (NHAs) were obtained by self-assembly properties of polystyrene (PS) nanospheres and reactive ion etching (RIE) processes. The diameter of ordered hexagonal close-packed nanospheres in monolayer is 800nm. By controlling the size of PS nanospheres in RIE process, subsequently the metal was evaporated on the substrates. The PS nanospheres were lifted off and they provided masks suitable for a further RIE step to fabricate Si and SiGe nanostructures. The morphology of the Si and SiGe NHAs were controlled by duration of the dry etching with SF6/O2 plasma.
The morphology evolution, size and height of fabricated NHAs have been investigated by SEM. We also measured reflectance properties and contact angle (CA) behaviors of Si and SiGe nanostructures.
The Si and SiGe NHAs exhibit low-reflective, broadband and polarization-insensitive antireflection (AR) properties, and enhance the hydrophobicity. The CA hysteresis demonstrates the CA-retention property, as a function of surface roughness.
The fabricating methods reported here are low-cost and efficient for producing different shapes of nanostructures which can be use for surface textures in solar cells.
關鍵字(中) ★ 極化不敏感
★ 疏水性
★ 奈米孔洞陣列
★ 奈米球
★ 反應性離子蝕刻
★ 反射率
★ 接觸角
關鍵字(英) ★ polarization-insensitive
★ hydrophobicity
★ NHAs
★ nanosphere
★ RIE
★ CA
★ reflectance
論文目次 Abstract ...................................................................................................... I
Acknowledgement .................................................................................. III
Contents .................................................................................................. IV
Chapter 1 Introduction
1-1 Overview of Solar Cell ....................................................................... 1
1-2 Principles of Photovoltaic Devices .................................................... 3
1-2-1 Basic Theory ............................................................................. 3
1-2-2 Photocurrent ............................................................................. 4
1-2-3 Dark Current ............................................................................ 5
1-2-4 Open Circuit Voltage and Short Circuit Current ................. 8
1-2-5 Equivalent Circuit .................................................................. 10
1-2-6 Effects of Series Resistance and Shunt Resistance.............. 11
1-2-7 Conversion Efficiency of Solar cells ..................................... 12
1-3 Methods for Improving High Efficiency ........................................ 13
1-3-1 Antireflection Coating ............................................................ 14
1-3-2 Surface Texturing ................................................................... 16
1-3-3 Back-surface Field (BSF) ....................................................... 16
1-3-4 Surface Passivation ................................................................ 16
1-3-5 Spectral Response ................................................................... 17
1-3-6 Electrode Structure ................................................................ 18
1-3-7 Temperature Effects ............................................................... 18
1-4 Texturing............................................................................................ 18
1-4-1 Wet Etching ............................................................................ 18
1-4-2 Dry Etching ............................................................................. 19
1-5 Nanotechnology ................................................................................. 20
1-5-1 Self-assembly ........................................................................... 22
1-5-2 Nanospheres ............................................................................ 23
1-5-3 Nanosphere Lithography ....................................................... 25
1-6 Motivation ......................................................................................... 26
References ................................................................................................ 27
Chapter 2 Experimental Procedures and Measurements
2-1 Nanosphere Lithography ................................................................. 31
2-1-1 Preparation of Polystyrene Nanosphere Solution ............... 31
2-1-2 Self-assembled Polystyrene Nanosphere Arrays ................. 32
2-1-3 Shrinkage of Nanosphere ...................................................... 33
2-2 Metal Mask ........................................................................................ 35
2-3 Reactive Ion Etching ........................................................................ 37
2-4 Scanning Electron Microscope (SEM) Observation ..................... 38
2-5 Reflectivity ......................................................................................... 39
2-6 Contact Angle (CA) Measurements ................................................ 39
References ................................................................................................ 41
Chapter 3 Results and Discussion
3-1 Si Nanohole Arrays ........................................................................... 42
3-1-1 Reflectance Measurement ..................................................... 47
3-1-2 Angle of Incidence (AOI) Insensitive Reflection ................. 52
3-1-3 Contact Angles for Hydrophobicity ...................................... 55
3-1-3-1 Contact Angle Hysteresis ............................................. 59
3-2 SiGe Nanohole Arrays ...................................................................... 61
3-2-1 Reflectance Measurement ..................................................... 64
3-2-2 Angle of Incidence (AOI) Insensitive Reflection ................. 65
3-2-3 Contact Angles for Hydrophobicity ...................................... 67
3-2-3-1 Contact Angle Hysteresis ............................................. 69
References ................................................................................................ 72
Chapter 4 Conclusions
................................................................................................................... 74
Chapter 5 Future Prospects
................................................................................................................... 75
References ................................................................................................ 76
參考文獻 [1] W. Hoagland, ―Solar energy,‖ Sci. Amer. 273, 170 (1995).
[2] G. R. Davis, ―Energy for planet earth,‖ Sci. Amer. 263, 21 (1990).
[3] K. N. Amulya and J. Goldemberg, ―Energy for the developing world,‖ Sci. Amer. 263, 63 (1990).
[4] A. Freundlich, F. Newman, M.F. Vilela, C. Monier, L. Aguilar and S. Street, ―Development of GaAs space solar cells by high growth rate MOMBE/CBE,‖ Journal of Crystal Growth 209, 481 (2000).
[5] J. A. Carlin, S.A. Ringel, A. Fitzgerald and M. Bulsara, ―High-lifetime GaAs on Si using GeSi bulers and its potential for space photovoltaics,‖ Solar Energy Materials & Solar Cells 66, 621 (2001).
[6] K. L. Lin, ―Process development and spectral response characterization of the single-crystalline silicon solar cells,‖ A master thesis submitted to Institute of Electronics Engineering, National Yulin University of Science and Technology (2004).
[7] S. O. Kasap, ―Optoelectronics and Photonics, principles and practices,‖ Pearson International Edition (2001).
[8] J. Nelson, ―The physics of solar cells,‖ Imperial College Press (2003).
[9] A. Luque and S. Hegedus, ―Handbook of photovoltaic science and engineering,‖ John Wiley & Sons Ltd. (2003).
[10] A. R. Jha, ―Solar Cell Technology and Applications,‖ Taylor & Francis Group (2010).
28
[11] S. Kwon, J. Yi, S. Yoon, J. S. Lee and D. Kim, ―Effects of textured morphology on the short circuit current of single crystalline silicon solar cells: Evaluation of alkaline wet-texture processes,‖ Current Applied Physics 9, 1310 (2009).
[12] Léon A Woldering, R Willem Tjerkstra, Henri V Jansen, Irwan D Setija and Willem L Vos, ―Periodic arrays of deep nanopores made in silicon with reactive ion etching and deep UV lithography,‖ Nanotechnology 19, 145304 (2008).
[13] W. Li, L. Xu, W. M. Zhao, P. Sun, X. F. Huang and K. J. Chen, ―Fabrication of large-scale periodic silicon nanopillar arrays for 2D nanomold using modified nanosphere lithography,‖ Applied Surface Science 253, 9035 (2007).
[14] H. Y. Hsieh, S. H. Huang, K. F. Liao, S. K. Su, C. H. Lai and L. J. Chen, ―High-density ordered triangular Si nanopillars with sharp tips and varied slopes: one-step fabrication and excellent field emission properties,‖ Nanotechnology 18, 505305 (2007).
[15] Y. H. Pai, F. S. Meng, C. J. Lin, H. C. Kuo, S. H. Hsu, Y. C. Chang and G. R. Lin, ―Aspect-ratio-dependent ultra-low reflection and luminescence of dry-etched Si nanopillars on Si substrate‖ Nanotechnology 20, 035303 (2009).
[16] T. F. Krauss and Richard M. De La Rue, ―Photonic crystals in the optical regime — past, present and future,‖ Progress in Quantum Electronics 23, 51 (1999).
[17] J. B. K. Law and J. T. L. Thong, ―Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time,‖ Appl. Phys. Lett. 88, 133114 (2006).
[18] C. L. Hsu, S. J. Chang, Y. R. Lin, P. C. Li, T. S. Lin, S. Y. Tsai, T. H. Lu and I. C. Chen, ―Ultraviolet photodetectors with low temperature synthesized vertical ZnO nanowires,‖ Chemical Physics Letters 416, 75 (2005).
29
[19] J. Fu, B. Park, G. Siragusa, L. Jones, R. Tripp, Y. Zhao and Y. J. Cho ―An Au/Si hetero-nanorod-based biosensor for Salmonella detection,‖ Nanotechnology 19, 155502 (2008).
[20] M. Guo, P. Diao, X. Wang and S. Cai, ―The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films,‖ Journal of Solid State Chemistry 178, 3210 (2005).
[21] I. C. Yao, P Lin and T. Y. Tseng, ―Nanotip fabrication of zinc oxide nanorods and their enhanced field emission properties,‖ Nanotechnology 20, 125202 (2009).
[22] S. W. Lee, Y. L. Chueh, L. J. Chen, L. J. Chou, P. S. Chen, M.-J. Tsai and C. W. Liu, ―Formation of SiCH6-mediated Ge quantum dots with strong field emission properties by ultrahigh vacuum chemical vapor deposition,‖ Journal of Applied Physics 98, 073506 (2005).
[23] S. G. Jang, H. K. Yu, D. G. Choi, and S. M. Yang, ―Controlled fabrication of hollow metal pillar arrays using colloidal masks,‖ Chem. Mater. 18, 6103 (2006).
[24] I. N. Stranski, L. Krastanow, Akad.Wiss., Lit. Mainz and Math. Naturwiss., K1. Abt. IIb 146, 797. (1939).
[25] J. D. Meindl, Q. Chen, and J. A. Davis, ―Limits on Silicon Nanoelectronics for Terascale Integration,‖ Science 293, 2044 (2001).
[26] C. M. Lieber, ―The Incredible Shrinking Circuit,‖ Sci. Am. 285, 58 (2001)
[27] V. Balzani, A. Credi, and M. Venturi, ―The Bottom-Up Approach to Molecular-Level Devices and Machines,‖ Chem. Eur. J. 8, 5524 (2002).
30
[28] T. F. Chiang, ―Growth of zero- and one-dimensional Si-based nanostructures on self-assembled hexagonal Au particle networks,‖ A doctoral thesis submitted to Department of Materials Science and Engineering , National Tsing Hua University (2004).
[29] G. M. Whitesides and B. Grzybowski, ―Self-Assembly at all scales,‖ Science 295, 2418 (2002).
[30] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H.Yoshimura and K. Nagayama, ―Mechanism of formation of two-dimensional crystals from latex particles on substrates,‖ Langmuir 8, 3183 (1992).
[31] R. Micheletto, H. Fukuda, and M. Ohtsu, ―A simple method for the production of a two-dimensional, ordered array of small latex particles,‖ Langmuir 11, 3333 (1995).
[32] J. Rybczynski and U. Ebels, ―Large-scale, 2D arrays of magnetic nanoparticles,‖ Colloids and Surfaces A: Physicochem. Eng. Aspects 219, 1 (2003).
[33] S. Krishnamoorthy, R. Pugin, J. Brugger, H. Heinzelmann and C. Hinderling, ―Nanopatterned self-assembled monolayers by using diblock copolymer micelles as nanometer-scale adsorption and etch masks,‖ Adv. Mater. 9999, 1 (2008).
[34] H. W. Deckman and J. H. Dunsmuir, ―Natural lithography,‖ Appl. Phys. Lett. 41, 377 (1982).
[35] J. Taniguchi, E. Yamauchi, and Y. Nemoto, ―Fabrication of antireflection structures on glassy carbon surfaces using electron beam lithography and oxygen dry etching,‖ J. Phys. 106, 012011 (2008).
[36] A. LAFUMA and D. QUÉRÉ, ―Superhydrophobic states,‖ Nature materials 2, 457 (2003).
[37] A. Marmur, ―The Lotus Effect: Superhydrophobicity and Metastability,‖ Langmuir 20, 3517 (2004).
[38] S. G. Park, S. Y. Lee, S. G. Jang, and S. M. Yang, ―Perfectly Hydrophobic Surfaces with Patterned Nanoneedles of Controllable Features,‖ Langmuir 26 (8), 5295 (2010).
[39] S. A. Rosli, A. A. Aziz and H. A. Hamid, ―Characteristic of RIE SF6/O2/Ar Plasma on n-Silicon Etching,‖ Semiconductor Electronics, 2006. IEEE International Conference 851 (2006).
[40] Y. H. Pai, F. S. Meng, C. J. Lin, H. C. Kuo, S. H. Hsu, Y. C. Chang and G. R. Lin, ―Aspect-ratio-dependent ultra-low reflection and luminescence of dry-etched Si nanopillars on Si substrate,‖ Nanotechnology 20, 035303 (2009).
[41] Y. R. Lin, H. P. Wang, C. A. Lin, and J. H. He, ―Surface profile-controlled close-packed Si nanorod arrays for self-cleaning antireflection coatings,‖ Journal of Applied Physics 106, 114310 (2009).
[42] W. Y. Chen and T. M. Hsu, ―Optical microcavity,‖ OLED column 95, Taiwan (2006).
[43] R. N. Wenzel, ―Resistance of solid surfaces to wetting by water,‖ Ind. Eng. Chem. 28, 988 (1936).
[44] A. Marmur, ―Wetting on Hydrophobic Rough Surfaces: To be heterogeneous or not to be?‖ Langmuir, 19, 8343 (2003).
[45] L. Ponsonnet, K. Reybier, N. Jaffrezic, V. Comte, C. Lagneau, M. Lissac and C. Martelet, ―Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour,‖ Materials Science and Engineering C 23, 551 (2003).
[46] Y. T. Cheng, D. E. Rodak, C. A. Wong and C. A. Hayden, ―Effects of micro- and nano-structures on the self-cleaning behaviour of lotus leaves,‖ Nanotechnology 17, 1359 (2006).
[47] G. S. Oehrlein, G. M. W. Kroesen, E. de Frésart, Y. Zhang and T. D. Bestwick, ―Studies of the reactive ion etching of SiGe alloys,‖ J. Vac.
73
Sci. Technol. A 9 (3), 768 (1991).
[48] M. C. Peignon, G. Turban, C. Charles and R. W. Boswell, ―Surface modelling of reactive ion etching of silicon-germanium alloys in a SF6 plasma,‖ Surface and Coatings Technology 97, 465 (1997).
[49] B. He, N. A. Patankar and J. Lee, ―Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces,‖ Langmuir 19, 4999 (2003).
[50] T. G. Cha, J. W. Yi, M. W. Moon, K. R. Lee and H. Y. Kim, ―Nanoscale patterning of microtextured surfaces to control superhydrophobic robustness,‖ Langmuir 26(11), 8319 (2010).
[51] G. Whyman, E. Bormashenko and T. Stein, ―The rigorous derivation of Young, Cassie–Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon,‖ Chemical Physics Letters 450, 355 (2008).
[52] J. Kijlstra, K. Reihs and A. Klamt, ―Roughness and topology of ultra-hydrophobic surfaces,‖ Colloids and Surfaces A: Physicochemical and Engineering Aspects 206, 521 (2002).
[53] A. B. D. Cassie and S. Baxter, ―Wettability of porous surface,‖ Trans. Faraday Soc. 40, 546 (1944).
[54] T. Koishi, K. Yasuoka, S. Fujikawa, T. Ebisuzaki and X. C. Zeng, ―Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface,‖ PNAS 106, 8435 (2009).
[55] R. J. Jaccodine, ―Surface Energy of germanium and silicon,‖ Journal of the electrochemical society 110, 524 (1963).
[56] Z. Di and P. K. Chu, ―Germanium movement mechanism in SiGe-on-insulator fabricated by modified Ge condensation,‖ Journal of Applied Physics 97, 064504 (2005).
[57] http://en.wikipedia.org/wiki/Brewster%27s_angle
[58] W. Li, J. Zhou, X. Zhang, J. Xu, L. Xu1,W. Zhao, P. Sun, F. Song, J.Wan and K. Chen, ―Field emission from a periodic amorphous silicon pillar array fabricated by modified nanosphere lithography,‖ Nanotechnology 19, 135308 (2008).
[59] Y. F. Tzeng, K. H. Liu, Y. C. Lee, S. J. Lin, I. N. Lin, C. Y. Lee and H. T. Chiu, ―Fabrication of an ultra-nanocrystalline diamond-coated silicon wire array with enhanced field-emission performance,‖ Nanotechnology 18, 435703 (2007).
[60] V. Guieu, F. L. Labarthet, L. Servant, D. Talaga, and N. Sojic, ―Ultrasharp optical-fiber nanoprobe array for Raman local enhancement imaging,‖ small 4, 96 (2008).
指導教授 李勝偉(Sheng-wei Lee) 審核日期 2010-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明