博碩士論文 973209015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.21.100.34
姓名 邱鉦琪(Jheng-ci Ciou)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應
(Promotion of Dehydrogenation Characteristics for LiBH4 by Addition of PdNi(OH)x Catalysts)
相關論文
★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應
★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質
★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應
★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應
★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應
★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應
★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應
★ 鈀金鎳觸媒在鹼性乙醇氧化環境下結構與活性的關係★ 不同形貌硒化鎘奈米晶之製備及其於有機光伏元件之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氫氣被視為未來最有發展的能源之ㄧ。氫經濟包含了氫氣的製造,氫氣的儲存以及氫氣的使用三部份。其中,發展高效能的儲氫技術及材料對於氫能源經濟的發展有決定性的影響。
硼氫化鋰(LiBH4)因具有高理論氫氣儲存量 (18.5 wt%) 而被視為非常有潛力的儲氫材料。在本研究中,LiBH4以鈀氫氧化鎳(Pd-Ni(OH)x)改質,其脫氫性質藉由程式溫度控制系統 (TPR)、熱重分析儀 (TGA)及程式溫控脫氫質譜儀 (TPD-MS) 量測。其脫氫反應前後的結構變化使用X光粉末繞射儀 (XRD) 分析。利用Pd-Ni(OH)x改質LiBH4的系統中,其具有良好的脫氫動力學性質,並且最大脫氫溫度 (Tm) 從740 K 大幅度的下降到370 K。因此得知添加Pd-Ni(OH)x可以有效的減少脫氫溫度。當LiBH4在系統中的比例從0.33增加到0.67時 (在 C2 和 C0.5試片中,LiBH4: Pd-Ni(OH)x = 1:2 增加到 2:1),脫氫量從1.5 wt % 增加為6.5 wt%,而最大脫氫溫度則由740 K下降到330 K。其中C0.5有最好的動力學性質,其脫氫反應後,樣品中的LiBH4、Pd、Ni、Ni(OH)2相分別轉變為Li6B4O9、PdB2、Ni相。
在針對不同的試片進行持溫373 K一小時的脫氫反應中,改質過後的試片脫氫量明顯大於尚未改質的試片,因此得知添加此觸媒可以使材料在低溫中展現良好的動力學性質。此外,為要了解Pd-Ni(OH)x中之[OH]-的重要性,將Pd-Ni(OH)x在473 K進行一小時熱處理,Ni(OH)2 相明顯轉變為NiO 相。將此熱處理過的樣品改質LiBH4(C0.5-H),並與C0.5的脫氫結果比較,可發現C0.5-H的起始脫氫溫度明顯高於C0.5,但兩者的脫氫量幾乎是相同的。由此可知[OH]-並不會影響脫氫量,但是會強烈的影響脫氫動力學。由以上的結果,可以得知利用Pd-Ni(OH)x所改質的LiBH4材料,是一個非常有潛力的儲氫系統。
摘要(英) H2 is viewed as one of the promising clean fuels of the future. The H2 economy involves three important areas: production, storage, and use.Among them, developing effective H2 storage methods and materials for transportation is a key challenge for basic research and a crucial factor in achieving the H2 economy.
LiBH4 is a potential H2 storage material owing to its high theoretical H2 capacity (18.5 wt% H2). In this study, the as-received LiBH4 is modified by Pd-Ni(OH)x additives and their dehydrogenation properties are investigated by a technique of temperature programmed reduction (TPR), thermogravimetric analyzer (TGA), and temperature programmed dehydrogenation-mass spectrometers (TPD-MS). The phase structures of the modified LiBH4 before and after dehydrogenation are analyzed by the X-ray powder diffraction (XRD) method. For the Pd-Ni(OH)x modified
LiBH4, it presents superior dehydrogenation kinetics, and its Tm (the main dehydrogenation peak) is changed from 740 to 370 K, suggesting that the Pd-Ni(OH)x additive can effectively reduce LiBH4 dehydrogenation temperature. Addition of Pd-Ni(OH)x into LiBH4 changes their dehydrogenation properties and reaction kinetics. When the amount of LiBH4 in the mixture increases from 0.33 to 0.67 (LiBH4: Pd-Ni(OH)x = 1:2 to 2:1 for C2 and C0.5), their desorption capacity increases and Tm decreases from 1.5 to 6.5 wt% and 740 to nearby 340 K, respectively. Among them, the C0.5 sample presents the superior dehydrogenation kinetics, and after dehydrogenation, LiBH4, Pd, Ni and Ni(OH)2 in the C0.5 sample transfer to Li6B4O9, PdB2, and Ni, respectively.
For the dehydrogenation of various samples measured at 373 K for 1 h, the desorption capacity of modified LiBH4 is larger than that of un-modified one, implying that the modified sample displays good desorption kinetics at low temperatures. Moreover, in order to investigate the [OH]- group effect on their dehydrogenation, Pd-Ni(OH)x is heat treated at 473 K for 1 h, and Ni(OH)2 phase transfers to NiO. For the dehydrogenation of C0.5 and C0.5-H (LiBH4 modified by heated catalysts), the onset temperature of C0.5-H is higher than that of C0.5 while their desorption capacities are almost the same. This indicates that the [OH]- group does not influence the H2 capacities, but strongly affect the dehydrogenation kinetics of the mixtures. As a result, the Pd-Ni(OH)x-modified LiBH4 is a promising material for H2 storage materials.
關鍵字(中) ★ 鈀氫氧化鎳
★ 程式溫控還原系統
★ 脫氫反應
★ 程式溫控脫氫質譜儀
★ 硼氫化鋰
★ 儲氫材料
關鍵字(英) ★ dehydrogenation
★ H2 storage
★ LiBH4
★ Pd-Ni(OH)x
論文目次 摘要..................................................... I
Abstract................................................III
誌謝......................................................V
Table of Contents ..................................... VII
List of Tables.........................................XIII
Chapter Ⅰ Introduction...................................1
1. H2 energy..............................................1
2. H2 storage.............................................2
2.1 Metal hydride........................................10
2.2 Intermetallic compounds .............................13
2.3 Complex hydrides.....................................13
Chapter ΙΙ Literature Review.............................15
1. Hydrides Destabilization .............................15
1.1 Catalytic additives .................................15
1.2 Reduction of materials size..........................17
2. H2 Storag Modification................................20
2.1 LiBH4 system.........................................20
2.2 LiBH4-metels system .................................23
2.3 LiBH4-metal hydride system ..........................26
3. Hydrogenation and Dehydrogenation Characteristics of Pd, Ni,and Pd-Ni Alloys..................................30
3.1 Characteristics of Pd ...............................30
3.2 Characteristics of Ni................................30
3.3 Characteristics of Pd-Ni alloys......................32
4. Motivation of This Study..............................38
Chapter Ⅲ Experimental procedure .......................40
1. Preparation of Materials .............................40
1.1 LiBH4 and Ni(OH)2....................................40
1.2 Preparation of Pd and Pd-Ni(OH)x catalysts...........40
1.3 Heat treatment of the catalysts......................40
1.4 Ball-milling of materials ...........................42
2. Characterization of Modified Materials................44
2.1 X-ray power diffraction (XRD)........................44
2.2 Temperature programmed reduction (TPR) ..............44
2.3 Thermogravimetric analyzer (TGA) ....................47
2.4 Temperature programmed dehydrogenation - Mass
spectrometer (TPD-MS)....................................47
Chapter IV Results and Discussion........................49
1. The effect of Pd, Ni(OH)2 or Pd-Ni(OH)x...............49
2. The effect of B/P ratios .............................52
2.1 TPR measurements ....................................52
2.2 TGA results .........................................52
3. The effect of LiBH4 to Pd-Ni(OH)x ratios..............56
3.1 The XRD characterization.............................56
3.2 The TPR measurements.................................61
3.3 The TGA measurement..................................64
3.4 The TPD-MS characterization..........................67
3.5 Dehydrogenation capacity ............................67
4. The effect of [OH]- species...........................73
4.1 The XRD characterization.............................73
4.2 TGA results .........................................73
4.3 TPD-MS characterization..............................76
4.4 Dehydrogenation capacity ............................76
Chapter V Conclusions....................................79
References ..............................................81
參考文獻 References
[1] U.S. Department of Energy, Office of Basic Energy Science: Basic Research Needs for the H2 Economy, Report of BES Workshop on H2 Production, Storage and Use, Argonne National Laboratory, May 13-15, 2003.
[2] J. M. Ogden, Int. J. Hydrogen Energy, 1999, 24, 709.
[3] B. Dogan, ASME Conference PVP2006-ICPVT-11, Vancouver,
Canada, July 23–27, 2006.
[4] L. Schlapbach, A. Zuttel, Nature, 2001, 414, 353.
[5] R. von Helmolt, U. Eberle, J. Power Sources, 2007, 165, 833.
[6] Quantum Technologies, Inc., Irvine.
[7] R. C. Weast, M. J. Astle, W. H. Beyer, CRC handbook of chemistry and physics. 64th ed., Boca Raton, FL: CRC Press; 1983-1984.
[8] M. L. Trudeau, MRS Bull, 1999, 24, 23.
[9] The Linde Group, Wiesbaden.
[10] H. Diaz, A. Percheron-Gue´gan, J. C. Achard, Int. J. Hydrogen.Energy, 1979, 4, 445.
[11] G. Sandrock, G. Thomas, Appl. Phys. A, 2001, 72, 153.
[12] B. Bogdanovic, M. Schwickardi, J. Alloys Compd., 1997, 253, 1.
[13] W. Grochala and P. P. Edwards, Chem. Rev., 2004, 104, 1283.82
[14] F. SchMth, B. Bogdanovic, M. Felderhof, Chem. Commun., 2004, 37,2249.
[15] J. J Vajo, S. L. Skeith, F. Mertens, J. Phys. Chem. B, 2005, 109, 3719.
[16] K. Miwa, N. Ohba, S. Towata, Phys. Rew. B, 2004, 69, 245120.
[17] S. Orimo, Y. Nakamori, A. Zu¨ttel, Mater. Sci. Eng. B, 2004, 108,
[18] P. Chen, Z. Xiong, J. Luo, J. Lin, K. L. Tan, Nature, 2002, 420, 302.
[19] J. Lu, Z. Z. Fang, H. Y. Sohn, J. Phys. Chem. B, 2006, 110, 14236.
[20] T. Ichikawa, K. Tokoyoda, H. Y. Leng, H. Fujii, J. Alloys Compd.,
2005, 400, 245.
[21] W. Grochala, P. P. Edwards, Chem. Rev., 2004, 104, 1283.
[22] A. Zaluska, L. Zaluski and J. O. Strom-Olsen, Appl. Phys. A, 2001,72, 157.
[23] M. Zhu, H. Wang, L. Z. Ouyang, M. Q. Zeng, Int. J. Hydrogen.Energy, 2006, 31, 251.
[24] R. Wiswall, Hydrogen Met II, 1978, 29, 209.
[25] Y. Fukai, Springer series in materials science, 1993.
[26] G. Barkhordarian, T. Klassen, R. Bormann, J. Alloys Compd., 2004,364, 242.
[27] A. Zaluska, L. Zaluski, J. O. Strom-Olsen, J. Alloys Compd., 1999,288, 217.
[28] H. Imamura, K. Masanari, M. Kusuhara, H. Katsumoto, T. Sumi, Y.83 sakata, J. Alloys Compd., 2005, 386, 211.
[29] J. Huot, G. Liang, S. Boily, A. V. Neste, R. Schulz, J. Alloys Compd,1999, 293, 495.
[30] J. V. Vucht, F. A. Kuijpers, H. Bruning, Philips Res Rep, 1970, 25,133.
[31] J. J. Reilly, R. H. Wiswall, Inorg. Chem., 1974, 13, 218.
[32] J. J. Reilly, G. D. Sandrock, Sci. Am., 1980, 242, 118.
[33] W. Grochala, P. P. Edwards, Chem. Rev., 2004, 104, 1283.
[34] F. SchMth, B. Bogdanovic, M. Felderhof, Chem. Commun., 2004, 37,2249.
[35] S. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel, C. M. Jensen, Chem.Rev., 2007, 107, 4111.
[36] J. J. Vajo, G. L. Olsen, Scr. Mater., 2007, 56, 829.
[37] J. J. Vajo, F. Mertens, C. C. Ahn, R. C. Bowman, Jr., B. J. Fultz, J.Phys. Chem. B, 2004, 108, 13977.
[38] B. Bogdanovic, M. Schwickardi, J. Alloys Compd., 1997, 253, 1.
[39] B. Bogdanovic, U. Eberle, M. Felderhoff, F. Schuth, Scr. Mater, 2007,56, 813.
[40] N. Hanada, T. Ichikawa, S. Hino, H. Fujii, J. Alloys Compd., 2006,420, 46.
[41] J. Yang, A. Sudik, D. J. Siegel, D. Halliday, A. Drews, R. O. Carter, C.Wolverton, G. J. Lewis, J. W. A. Sachtler, J. J. Low, S. A. Faheem, D.A. Lesch, V. Ozolins, Angew. Chem. Int. Ed., 2008, 47, 882.
[42] J. J. Hu, Y. F. Liu, G. T. Wu, Z. T. Xiong, Y. S. Chua, P. Chen, Chem.Mater, 2008, 20, 4398.
[43] H. W. Brinks, B. C. Hauback, S. S. Srinivasan and C. M. Jensen, J.Phys. Chem. B, 2005, 109, 15780.
[44] H. Wu, ChemPhysChem., 2008, 9, 2157.
[45] S. Orimoa, Y. Nakamoria, G. Kitaharaa, K. Miwab, N. Ohbab, S.Towaatab, A. Z¨uttel, J. Alloys Compd., 2005, 427, 404.
[46] A. Züttel, P. Wenger, S. Rentsch, P. Sudan, Ph. Mauron, Ch.Emmenegger, J. Power Sources, 2003, 118, 1.
[47] J. Yang, A. Sudik, C. Wolverton, J. Phys. Chem. C, 2007, 111, 19134.
[48] D. J. Ssigel, C. Wolverton,V. Ozolins, Phys. Rev. B: Condens. Matter,Mater. Phys. 2007, 76, 134102.
[49] G. L. Xia, Y. H. Guo, Z. Wu, X. B. Yu, J. Alloys Compd, 2009, 479,545.
[50] C. Liu, F. Li, L. P. Ma, H. M. Cheng, Adv. Mater., 2010, 22, E1.
[51] J. J. Vajo, S. L. Skeith, F. Mertens, J. Phys. Chem. B, 2005, 109,3719.
[52] S. A. Jin, Y. S. Lee, J. H. Shim, Y. W. Cho, J. Phys. Chem. C, 2008,112, 9520.
[53] C. W. Chou, S. J. Chu, H. J. Chiang, C. Y. Huang, J. Phys. Chem. B,2001, 105, 38.85
[54] R. J. Wu, J. G. Wu and T. K. Tsai, Sensors and Actuators B, 2006,120, 104.
[55] L. Z. Ouyang, H. V. Dong, C. H. Peng, L. X. Sun, M. Zhu, Int. J.Hydrogen Energy, 2007, 32, 3929.
[56] D. Vojtech, A. Michalcova, M. Klementova, J. Serak, M.
Mort’anikova, Mater. Lett., 2009, 63, 1074.
[57] A. Lahiri, R. Das, R. G. Reddy, J. Power Sources, 2010, 195, 1688.
[58] K. W. Wang, S. R. Chung, C. W. Liu J. Phys. Chem. C, 2008, 112,10242.
[59] P. Wynblatt, R. C. Ku, Surf. Sci., 1977, 65, 511.
[60] A. Vazquez, F. Pedraza, Appl. Surf. Sci., 1996, 99, 213.
[61] K.W. Wang, S.R. Chung, W. H. Hung, T. P. Perng, Appl. Surf. Sci.,
2006, 252, 8751.
[62] X. B. Yu., D. M. Grant, G. S. Walker, J. Phys. Chem. C 2009, 113,
17945.
[63] Y. Miho, I. Ryuichi, K. Hiroshi, T. Masaki. J. Phys. Chem. C 2008,
112, 3294.
[64] Au. Ming, S. William, J. Arthur, Z. Christine, J. Alloys Compd., 2008,
462, 303.
指導教授 王冠文(Kuan-Wen Wnag) 審核日期 2010-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明