博碩士論文 973211001 詳細資訊

以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:
姓名 梁正杰(Zheng-jie Liang)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 於虛擬環境中之雙耳時間差偵測機制研究
(The study of the ITD detection mechanism in virtual environments)
★ 人工膝關節術後定位系統★ 人工髖關節雙軸向動態磨耗試驗平台開發
★ 大型犬人工髖關節之應力分析★ 腰椎人工椎間盤之運動軌跡分析
★ 骨釘骨板鎖固機構之冷焊現象★ 人工牙根與骨骼介面之生物力學研究
★ 熱交換器之熱換管及端板擴管殘留應力分析★ 耦合有限元素法與邊界積分式於三維彈性力學的應用
★ 邊界積分式於剛體聲場散射問題的應用★ 新型輪椅座墊之設計與有限元分析
★ 耦合有限元素法與邊界積分式於隔音牆效能之分析★ 有限元素法與邊界積分式於流固互制問題的應用
★ 人體耳道之有限元素與邊界元素分析★ 奇異項重建法在二維聲場邊界元素分析之應用
★ 波源疊加法在二維聲場之分析★ 三維心電圖與病症自動判別系統之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 聲音於空間中的定位是大腦聽覺系統的基本功能。與其它感覺器官不同,聽覺器官對聲源空間位置的判斷,主要依賴於雙耳資訊的差異比較;雖然在某些情況下,利用頭部轉動或是單耳資訊亦可判斷出聲源的位置。
自然界的大部分聲音皆經過振幅調變(AM)或頻率調變(FM)而成,其中頻率調變掃描訊號(FM sweeps)即為 FM 訊號中一種重要的類型。本研究之主要目的,乃是以線性頻率掃描訊號(Linear FM sweeps)為工具,探討於虛擬環境中,大腦聽覺系統對於一個複合音所產生的雙耳差異資訊,其偵測機制為何;並進一步討論訊號的調變速率對聲音定位能力所產生的影響。
目前初步結果顯示,對於相同掃描幅度的 FM sweeps,訊號長度越長,聽覺系統越容易產生訊號移動的感覺,使得聲音定位效果減弱;而對於相同時間長度的 SFM(Sinusoidal Frequency Modulated)訊號,較快的調變速率,聽覺系統則產生較好的定位效果;而這些相關複合音的空間定位之研究,則將在本文中被討論。
摘要(英) The basic ability of human auditory system is spatial sound localization.Different from other sensory organs, for determining sound sources in space, the auditory organ depends mainly on the differential comparison of binaural cues; although it could be also ascertained by turning heads or using monaural cues under some conditions.
The aim of this research firstly is to investigate the ability of human observers to process interaural time difference produced by complex tone. We use directional FM sweeps, one of an important class of FM sounds, commonly discovered in natural communication signals such as speech. Secondly, it examines the effect of modulation rate to sound localization.
The preliminary results suggest that for the same sweep range of FM signals, as the signal length extends, the ability of sound localization decreases, due to the fact that it is easier for the auditory system to percept signal motion.
As for the SFM of the same temporal length, the higher the modulation rate, the better the sound localization determined by the auditory system. Implications of these findings for the localization of complex sounds are discussed.
關鍵字(中) ★ 聲音空間定位
★ 頻率調變掃描訊號
★ 雙耳資訊差異
關鍵字(英) ★ FM sweep
★ sound localization
★ motion integration
★ ITD detection
論文目次 中文摘要 i
目錄 ii
圖目錄 v
表目錄 v
第一章 緒論 1
1.1 前言與文獻回顧 1
1.2 文章架構 4
第二章 基本理論 5
2.1 聽覺系統簡介 5
2.2 空間聽覺原理 9
2.2.1 Duplex Theory 9
2.2.2 雙耳聽覺模型 12
2.2.3 虛擬環境中的雙耳聽覺現象 15
2.3 頭部反應轉移函數(HRTFs) 17
2.4 訊號偵測理論 18
第三章 實驗方法與流程 21
3.1 實驗一 21
3.1.1 受試者 21
3.1.2 實驗配置 21
3.1.3 刺激材料 22
3.1.4 實驗流程 28
3.2 實驗二 29
3.2.1 受試者與實驗配置 29
3.2.2 刺激材料 29
3.2.3 實驗流程 31
第四章 結果與討論 32
4.1 實驗一 結果與討論 32
4.2 實驗二 結果與討論 37
第五章 結論與未來發展 41
5.1 結論 41
5.2 未來研究方向 41
參考文獻 43
參考文獻 1. Buell, T.N., et al., Lateralization of Low-Frequency Tones - Relative Potency of Gating and Ongoing Interaural Delays. J Acoust Soc Am. 90(6): p. 3077-3085. 1991.
2. Wightman, F.L. and Kistler, D.J., The Dominant Role of Low-Frequency Interaural Time Differences in Sound Localization. J Acoust Soc Am. 91(3): p. 1648-1661. 1992.
3. Macpherson, E.A. and Middlebrooks, J.C., Listener weighting of cues for lateral angle: The duplex theory of sound localization revisited. J Acoust Soc Am. 111(5): p. 2219-2236. 2002.
4. Klumpp, R.G. and Eady, H.R., Some Measurements of Interaural Time Difference Thresholds. The Journal of the Acoustical Society of America. 28(5): p. 859-860. 1956.
5. Moore, B.C.J., An Introduction to the Psychology of Hearing. 5th ed, CA: Academic Press. 2003.
6. Jeffress, L.A., A place theory of sound localization. J Comp Physiol Psychol. 41(1): p. 35-9. 1948.
7. Rose, J.E., et al., Some neural mechanisms in the inferior colliculus of the cat which may be relevant to localization of a sound source. J Neurophysiol. 29(2): p. 288-314. 1966.
8. Goldberg, J.M. and Brown, P.B., Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol. 32(4): p. 613-636. 1969.
9. Joris, P.X., et al., Coincidence detection in the auditory system: 50 years after Jeffress. Neuron. 21(6): p. 1235-8. 1998.
10. Masterton, R.B. and Imig, T.J., Neural mechanisms for sound localization. Annu Rev Physiol. 46: p. 275-87. 1984.
11. Simmons, J.A., Perception of echo phase information in bat sonar. Science. 204(4399): p. 1336-8. 1979.
12. Saberi, K. and Perrott, D.R., Cognitive restoration of reversed speech. Nature. 398(6730): p. 760-760. 1999.
13. Dankiewicz, L.A., et al., Discrimination of amplitude-modulated synthetic echo trains by an echolocating bottlenose dolphin. J Acoust Soc Am. 112(4): p. 1702-1708. 2002.
14. Javel, E., Coding of AM tones in the chinchilla auditory nerve: implications for the pitch of complex tones. J Acoust Soc Am. 68(1): p. 133-46. 1980.
15. Smith, R.L. and Brachman, M.L., Response modulation of auditory-nerve fibers by AM stimuli: effects of average intensity. Hear Res. 2(2): p. 123-33. 1980.
16. Blauert, J., Spatial hearing: the psychophysics of human sound localization. revised ed, MA: The MIT Press. 1997.
17. Saberi, K., Modeling interaural-delay sensitivity to frequency modulation at high frequencies. J Acoust Soc Am. 103(5): p. 2551-2564. 1998.
18. 陳桂雪, MPEG-4音響編碼與遞迴MDCT 演算法之研究與分析 電機工程所, 國立成功大學. 2003
19. Fletcher, H. and Munson, W.A., Loudness, Its Definition, Measurement and Calculation. J Acoust Soc Am. 5(2): p. 82-108. 1933.
20. Cabeza, R., Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology and Aging. 17(1): p. 85-100. 2002.
21. Raleigh, L., Our perception of sound direction, Philosophical Magazine. p. 214-232. 1907.
22. Larcher, V. and Jot, J.M., Techniques d'interpolation de filtres audio-numériques: Application à la reproduction spatiale des sons sur écouteurs. in French Society of Acoustics. Marseille, France. 1997.
23. Kapralos, B., et al., Auditory Perception and Spatial (3D) Auditory Systems. York university: Ontario, Canada. 2003.
24. Sayers, B.M. and Cherry, E.C., Mechanism of Binaural Fusion in the Hearing of Speech. J Acoust Soc Am. 29(9): p. 973-987. 1957.
25. Colburn, H.S., Theory of binaural interaction based on auditory-nerve data. I. General strategy and preliminary results on interaural discrimination. J Acoust Soc Am. 54(6): p. 1458-70. 1973.
26. Hancock, K.E. and Delgutte, B., A physiologically based model of interaural time difference discrimination. Journal of Neuroscience. 24(32): p. 7110-7117. 2004.
27. Saberi, K., et al., Detection of dynamic changes in interaural delay. Acta Acustica United with Acustica. 89(2): p. 333-338. 2003.
28. Begault, D.R., 3-D sound for virtual reality and multimedia, San Diego, CA: Academic Press Professional. 1994.
29. Gescheider, G.A., Psychophysics: The Fundamentals. 3rd ed, Mahwah, NJ: Lawrence Erlbaum Associates. 1997.
30. Goodwin, C.J., Research In Psychology: Methods and Design. 5th ed, CA: John Wiley & Sons. 2007.
31. Hsieh, I.H. and Saberi, K., Detection of spatial cues in linear and logarithmic frequency-modulated sweeps. Atten Percept Psychophys. 71(8): p. 1876-89. 2009.
指導教授 謝宜蕙、鄔蜀威
(I-hui Hsieh、Shu-wei Wu)
審核日期 2010-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明