博碩士論文 973310601 詳細資訊


姓名 高德培(Laju Gandharum)  查詢紙本館藏   畢業系所 國際永續發展碩士在職專班
論文名稱 福衛二號衛星影像應用於印尼油棕植區分類之研究
(Classification of Oil Palm in Indonesia Using FORMOSAT-2 Satellite Image)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 自2006年以來,印尼是世界最大的油棕原油輸出國。在2007年,其輸出油棕原油及相關產品約1千1百萬噸,其產值達62億美元。對印尼而言,油棕產業是至為重要的經濟支柱,但也為印尼帶來環境與社會的衝擊。其中,油棕墾殖區的擴張,就引發了森林濫墾濫伐的敏感議題。為了減少對環境的衝擊與符合國家經濟發展的需求,印尼必須要有一套永續油棕發展墾殖的規劃。本研究將嘗試應用遙測的技術,來輔助油棕墾殖永續發展的規劃。
本研究所選取的研究區位於印尼西爪哇省勃羅區西密量的油棕墾殖區。研究所使用的衛星影像是採用福衛二號的影像資料,其中包括8公尺解析度的4波段多光譜影像以及2公尺解析度的全色態影像。本研究的目標是測試先以多光譜影像的光譜資訊分類種植區域的油棕樹;接著再用紋理資訊加入光譜資訊分類油棕樹,然後再比較兩種方式的分類精度。本研究的紋理資訊主要是利用相關係數辨識2公尺全色態影像的的紋理,而分類方法是採用最大相似監督分類法。結果顯示以多光譜影像光譜資訊分類的總精度為66.4%,而由於福衛二號2公尺的全色態影像中,可辨識出9米的油棕種植間距,因此藉由全色態影像紋理分析的相關係數之加入,油棕樹的分類總分類精度可提升至76%,約增加了10.4%的分類精度。本研究未來希望可以在油棕墾殖永續發展規劃中,作為建立並更新油棕土地利用區的地圖製作使用。
摘要(英) Indonesia is the biggest exporter crude palm oil (CPO) in the world since 2006. Total export of Indonesian’s CPO and its derivatives in 2007 was about 11 million tons or equal to US$ 6.2 billion. It is a valuable sector that supports Indonesian economics, but it also causes environmental and social impacts. Deforestation is a sensitive issue related to oil palm plantation expansion. Sustainable oil palm development is needed to reduce environmental impacts and to meet economics purpose. Through the utilization of remote sensing (RS) technology, this study has tried to support sustainable oil palm development.
Cimulang oil palm plantation that lies in district of Bogor, West Java Province, Indonesia was chosen as study area. High spatial resolution FORMOSAT-2 satellite image that has 4 multispectral bands (8 m spatial resolution) and 1 panchromatic band (2 m spatial resolution) was used in this study. The objectives of this study are to classify growing stages of oil palms using only multispectral bands and to classify growing stages of oil palms using multispectral bands plus texture information of FORMOSAT-2 data, to test the accuracy of both classification results, and to support sustainable palm development by providing more often updated oil palm land use map. Texture extraction through image matching by correlation and maximum likelihood supervised classification method has been applied in this study. The result shows that overall accuracy for multispectral image classification is 66.4%. Triangular oil palms planting pattern that has space 9 m apart between trees can be seen visually in 2 m panchromatic image of FORMOSAT-2 data and it also can be extracted automatically by texture analysis through image matching by correlation. This texture information then added to multispectral bands for classification. The overall accuracy result of multispectral bands with texture information is 76.8%. Image classification accuracy has improved (10.4 %) if the classification process employed not only multispectral bands but also added with the texture information.
關鍵字(中) ★ 印尼
★ 福衛二號
★ 油棕
★ 分類研究
關鍵字(英) ★ Indonesia
★ Classification Studies
★ FORMOSAT-2 Satellite,Oli Palm
論文目次 Chinese Abstract i
Abstract ii
Acknowledgements iii
Table of Contents iv
List of Figures vi
List of Tables x
1.Introduction 1
2.Background Information 3
2.1.General information of Indonesia 3
2.2.Oil palm 4
2.2.1.The oil palm 5
2.2.2.Land suitability 7
2.2.3.Agro-industry process 8
2.2.4.Uses 8
2.2.5.Oil palm plantation in Indonesia 9
2.3.Brief description of remote sensing 11
2.4.Type of remote sensing image 14
2.5.Application of remote sensing for oil palm 16
2.6.Merging spectral and textural information for image classification 19
3.Study Area and Data Collection 21
3.1.Study area 21
3.2.Data collection 23
3.2.1.FORMOSAT-2 satellite data 23
3.2.2.Ground truth 26
4.Methodology 31
4.1.Image preparation 32
4.2.Multispectral image classification 33
4.2.1.Training fields 34
4.2.2.Maximum likelihood classification 35
4.2.3.Generalization (regrouping classes and smoothing zone edges) 35
4.3.Image classification with texture information 37
4.3.1.Applying High-pass filter 38
4.3.2.Texture extraction through image matching by correlation 39
4.4.Accuracy assessment 43
4.4.1.Overall’s, User’s and Producer’s accuracy 43
4.4.2.Kappa statistic 44
5.Result and Discussion 46
5.1.Geometric correction results 46
5.2.Results of multispectral images classification 47
5.3.Results of multispectral and texture information images classification 53
5.4.Comparison 57
6.Conclusion and Recommendation 60
6.1.Conclusion 60
6.2.Recommendation 61
References 63
參考文獻 1.Berbergolu, S. and Curran, P.J., 2005, Remote Sensing Image Analysis: Including the Spatial Domain, Merging Spectral and Textural Information for Classifying Remotely Sensed Images, Springer Science and Business Media, p113-136.
2.Chang, K.T., 2008, Introduction to Geographic Information Systems, Fourth Edition, Mc. Graw Hill International Editions.
3.Chen, D., Stow, D.A., and Gong, P., 2004, Examining the effect of spatial resolution and texture window size on classification accuracy: An urban environment case, International Journal of Remote Sensing 25, p2177-2192.
4.Coburn, C.A. and Roberts, A.C.B., 2004, A Multiscale Texture Analysis Procedure for Improved Forest Stand Classification, International Journal Remote Sensing, Vol. 25, No. 20, p4287-4308.
5.Colchester, M., Indonesia: Oil palm expansion for biofuel bringing more exploitation than development, Bulletin of World Rainforest Movement No. 112, 2006, Cited: May 4, 2010, URL: http://www.wrm.org.uy/bulletin/112/Indonesia.html
6.Corley, R.H.V. and Tinker, P.B., 2003, The Oil Palm, Fourth edition, Blackwell Science Ltd., Oxford.
7.EconomyWatch, Indonesia Economy, Cited: April 18, 2010,URL: http://www.economywatch.com/world_economy/indonesia/
8.Fedepalma, The Oil Palm, Cited: April 19, 2010, URL: http://www.fedepalma.org/oil_palm.htm
9.Gibson, P.J., 2000, Introductory Remote Sensing: Principles and Concepts, Routledge, London.
10.Gonzales R. C., and Woods, R. E., 2002, Digital Image Processing, Second Edition, Prentice Hall, New Jersey.
11.Ibrahim, S., Hasan, Z. A., and Khalid, M., 2000, Application of Optical Remote Sensing Technology for Oil Palm Management, The 21st Asian Conference on Remote Sensing, Taipei - Taiwan.
12.Jensen, J.R., 2005, Introductory Digital Image Processing. A Remote Sensing Perspective, 3rd Edition, Pearson Prentice Hall.
13.Liu, C.C. et al., 2007, Image processing of FORMOSAT-2 data for monitoring the South Asia tsunami, International Journal of Remote Sensing, Vol. 28, Nos. 13–14, 2007, p3093–3111.
14.Lillesand T., Kiefer R. W., and Chipman J., 2007, Remote Sensing and Image Interpretation, Fifth Edition, Wiley.
15.Lukman, F. M., and Poeloengan, Z., 1996, Application of remote sensing technique for oil palm plantation, management, Proc. of the 1997 PORIM International Palm Oil Congress - Competitiveness for the 21st Century, p460–467.
16.McMorrow, J. M., 1995, Relation of oil palm spectral response to stand age, Int. J. Remote Sensing, 16: 3203-3209.
17.National Portal of Republic of Indonesia, Profile of Indonesia, Cited: April 18, 2010, URL: http://www.indonesia.go.id/
18.Nordin, L., Shahruddin, A., and Mariamni, H., 2002, Application of AIRSAR Data to Oil Palm Tree Characterization, MACRES Bulletin, ISSN No: 1511-7748, Kuala Lumpur.
19.Perkebunan Nusantara VIII, Profile, Cited: April 20, 2010, URL: http://www.pn8.co.id/pn8_eng/index.php?option=com_content&task=category§ionid=4&id=13&Itemid=28
20.Sukamto, 2008, 58 Kiat Meningkatkan Produktivitas dan Mutu Kelapa Sawit (58 Techniques to Increasing and Quality of Oil Palm), Penebar Swadaya, Jakarta.
21.Sunarko, 2009, Budi Daya dan Pengelolaan Kebun Kelapa Sawit dengan Sistem Kemitraan (Cultivation and Management of Oil Palm through Partnership System), Agromedia Pustaka, Jakarta.
22.Taiwan’s NSPO (National Space Organization), Space Programs, FORMOSAT-2, Program Description, Cited: April 25, 2010, URL: http://www.nspo.org.tw/2008e/projects/project2/intro.htm
23.The IDL Astronomy User's Library, Image Filtering, NASA, Cited on May 25, 2010, URL: http://idlastro.gsfc.nasa.gov/idl_html_help/Filtering_an_Imagea.html#wp1022814
24.Tsai, F., Chung, C.K., and Liu, G.R., 2008, Texture Analysis for Three Dimensional Remote Sensing Data by 3d GLCM.
25.Tutorial: Fundamental Remote Sensing, Canadian Center of Remote Sensing, Cited: May 6, 2020, URL: http://www.ccrs.nrcan.gc.ca/resource/tutor/fundam/index_e.php
26.Verbyla, D.L., 1995, Satellite Remote Sensing of Natural Resources, CRC Press LLC.
27.Wahid, B.O., Nordiana, A.A., and Tarmizi, A.M., 2005, Satellite Mapping of Oil Palm Land Use, MPOB Information Series, MPOB TT No. 255, ISSN 1511 – 7871.
28.Weng, Q., 2010, Remote Sensing and GIS Integration: Theories, Methods, and Applications, Mc Graw Hill.
29.WikiPedia, Multi-spectral image, Cited: June 8, 2010, URL: http://en.wikipedia.org/wiki/Multi-spectral_image
30.WikiPedia, The Free Encyclopedia, Indonesia, Cited: April 18, 2010, URL: http://en.wikipedia.org/wiki/Indonesia
31.WikiPedia, The Free Encyclopedia, Oil Palm, Cited: April 19, 2010, URL: http://en.wikipedia.org/wiki/Oil_palm
指導教授 陳繼藩(Chi-Farn Chen) 審核日期 2010-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡