博碩士論文 973310605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.95.131.208
姓名 郭佑達(Diego Estuardo Ayala Leiva)  查詢紙本館藏   畢業系所 國際永續發展碩士在職專班
論文名稱 利用地熱發電廢熱水的水果乾燥機之設計
(Design of a Fruit Dryer Using Waste Heat from Geothermal Power Plant)
相關論文
★ 以數值模擬探討微管流之物理效應★ 微管流之層流與紊流模擬
★ 銅質均熱片研製★ 熱差式氣體流量計之感測模式及氣流道效應分析
★ 低溫倉儲噴流系統之實驗量測與數值模擬研究★ 壓縮微管流的熱流分析
★ 微小圓管的層流及熱傳數值模擬★ 微型平板流和圓管流的熱流特性:以數值探討壓縮和稀薄效應
★ 微管道電滲流物理特性之數值模擬★ 電滲泵內多孔介質微流場特性之數值模擬
★ 被動式微混合器之數值模擬★ 電滲泵的製作與性能測試
★ 叉合型流場於質子交換膜燃料電池之陰極半電池的參數探討★ 無動件式高流率電滲泵的製作與特性分析
★ 不同型式光纖與集光器搭配之效率測試★ 微電滲泵之暫態熱流研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 這項研究為以瓜地馬拉的Zunil地熱發電場供水果乾燥機的發電來源。根據乾燥機之方法、操作、乾燥物類別、生產率及此計劃之特性來做乾燥機的設計。研究中顯示,最適合此發電發法之乾燥機為批次箱式乾燥機。此乾燥機的每批生產量為40~45公斤/小時,表示每天可生產出約500公斤的水果乾。為了找出此乾燥機設計中的變量,本文使用Simprosys 2.1軟體模擬整個水果乾燥的過程及計算其質傳/熱傳平衡。從Zunil地熱場流出的攝氏80度廢水被導入熱交換器而成為此乾燥機的熱能來源。從此模擬的乾燥過程中,得出最佳的乾燥空氣設定應在攝氏35度至60度之間;而最佳的氣流率應為15,000公斤/小時,此氣流率能在一定溫度範圍下有最高效能。另一設計中的變量為空氣速率,模擬結果指出空氣速率設定在2.5 m/s最適合此乾燥機之設計。根據上述結果及考慮到循環中橫向部份,最佳的乾燥管路直徑及長度分別為0.637公尺及3.184公尺。
本文以RIAM方法來評估Zunil地熱發電場的水果乾燥機的環境影響,結果顯示64%的正面影響及36%的負面影響。根據此數據,此計劃具可行性。
摘要(英) This study proposes the design of a fruit dryer that uses waste heat from the Zunil geothermal power plant in Guatemala. Based primarily on mode, operation, feed class, throughput and the fragility of the product; it was found that the most suitable dryer for this study is a batch cabinet dryer. The dryer capacity is to dry a material flow rate of 40-45 kg/h of fruit per batch, which allow it dries about 500 kg of fruit per day. In the aim of finding the dryer design variables, Simprosys 2.1 software was used to simulate the drying process, and analyze mass/heat balance. Waste water coming out from the Zunil geothermal field at T = 800C will flow through the heat exchanger as the source of heat. From the drying process simulation, it was found that the most suitable working range of drying air temperatures is set between 35 and 600C; it was also noted that an air flow rate of 15,000 kg/h has the highest values of drying efficiencies for all temperatures; another design variable that was determined is the air velocity, from the results obtained, it was found that 2.5 m/s is the must suitable air velocity for the design; based on this results and a considering a circular transverse section, the suggested dryer chamber diameter and length are 0.637 m and 3.184 m respectively.
An environmental impact assessment of constructing a fruit convective batch dryer at the Zunil I geothermal power plant was made using the Rapid Impact Assessment Matrix (RIAM) methodology. The results of the EIA shows around 64% of impacts are positive, and 36% are in the category of negative impacts which indicates this project is feasible and practical to be implemented.
關鍵字(中) ★ 環境影響評估
★ 地熱廢熱利用
★ 水果乾燥
關鍵字(英) ★ Drying of fruits
★ Use of geothermal waste heat
★ Environmental impact assessment
論文目次 CHINESE ABSTRACT i
ENGLISH ABSTRACT ii
ACKNOWLEDMENTSTABLE OF CONTENTS iii
TABLE OF CONTENTS iv
LIST OF TABLES vi
LIST OF FIGURES vii
NOMENCLATURE ix
CHAPTER 1, INTRODUCTION 1
1.1 Research Problem 1
1.2 Purpose of study 3
1.3 Data analysis procedure 3
1.4 Thesis Limitations 4
1.5 Thesis Organization 4
CHAPTER 2, GEOTHERMAL DEVELOPMENT IN GUATEMALA 5
2.1 Geothermal Energy in Power Generation 5
2.1.1 Electric energy in Guatemala 5
2.1.2 Geothermal energy in Guatemala 7
2.2 Geothermal direct use applications 8
2.3 Zunil Geothermal field 11
2.3.1 Underground Resource potential 13
CHAPTER 3, DRYING FRUITS USING GEOTHERMAL ENERGY 15
3.1 Quetzaltenango agricultural production 15
3.2 Principles of drying 17
3.2.1 Psychometrics 20
3.2.2Material and Heat Balances 21
3.3 Drying of fruits 22
3.3.1 World production 22
3.3.2 Losses 23
3.3.3 Preservation by drying 23
3.3.4 Pretreatments for drying 23
3.3.6 Quality changes during drying and storage 24
3.3.7 Drying techniques and equipment 24
3.4 Dryer selection methodology 27
3.5 Dryer design 31
3.5.1 Heat & energy requirements 33
3.5.2. Energy efficiency of the dryer 36
3.5.3 Simprosys software 38
3.5.4 Dryer simulation 43
3.5.4.1 Simulation step for fan 46
3.5.4.2 Simulation step for heat exchanger 48
3.5.4.3 Simulation step for dryer 52
CHAPTER 4, ENVIRONMENTAL IMPACT ANALYSIS 58
4.2 RIAM methodology 58
4.2.1 Introduction 58
4.2.2 The rapid impact assessment matrix 60
4.2.2.1 Assesment criteria 61
4.2.2.2 Environmental Components 63
4.2.3 RIAM assessment ranges 63
4.3 Environmental impact assessment of the fruit dryer 66
4.3.1 Description of components 66
4.3.3.1 Physical/chemical (PC) 66
4.3.3.2 Biological / ecological (BE) 69
4.3.3.3 Sociological / cultural (SC) 70
4.3.3.4 Economic / operational (EO) 71
4.3.2 Results and interpretation 72
CHAPTER 5, CONCLUSIONS 75
5.1 Conclusions 75
5.2 Recommendations 78
參考文獻 Al Malek, S.A., Mohamed, A.M.O. 2005. Environmental impact assessment of off shore oil spill on desalination plant. Desalination 185: 9–30
Arévalo, A.S. 2003. Rapid environmental assessment tool for the extended Berlin geothermal field project. International Geothermal Conference, Iceland, Reykjavík, S12, pp.81-85.
Asturias, F. 2003. Reservoir assessment of Zunil I & II Geothermal fields, Guatemala. Geothermal Training Program United Nations University, Iceland, Report 3, 1-32.
Baba, A. 2003. Geothermal environmental impact assessment with special reference to the Tuzla, geothermal area, Canakkale, Turkey. Geothermal Training Program United Nations University, Iceland, Report 5, 1-40.
Baker, C.G.J.; Lababidi, H.M.S.; Masters, K. 2003. A web base expert system for food dryer selection. Computers and Chemical Engineering 27: 997-1009.
Baker C.G.J., Reay, D., 1982. Energy Usage for Drying in Selected U.K. Industrial Sectors, Proceedings of 3rd International Drying Symposium, 1: 201-209.
Brophy P., 1997. Environmental advantages to the utilization of geothermal energy. Renewable Energy 10: 367–77.
Caicedo, A., 1998. Direct application of geothermal energy for process heat in Guatemala. Geothermics, 17: 311-318.
CNEE, National Commission of Electric Energy, Guatemala, 2007. Matriz energética de Guatemala.
Chandrasekharam, D; Bundschuh, J. 2002. Geothermal energy resources for developing countries. Swets & Zeitlinger, Netherlands. 103-127, 167-177.
Di Pippo, R. 2007. Ideal thermal efficiency for geothermal binary plants. Geothermics 36: 276 – 285.
Di Pippo, R. 2005. Geothermal power plants, principles, applications and case studies. Elsevier Inc., New York.
Dickson, M; Fanelli M. 2005. Geothermal energy: utilization and technology. Earthscan Publications, London.
Gawell, K; Bates, D. 2004. Geothermal Literature Assessment: Environmental Issues. Geothermal Energy Association (GEA): Washington, D.C.
Hirunlabh, J., Thiebrat, S., Khedari, J., 2004. Chili and garlic drying by using waste heat recovery from a geothermal power plant. Geo-Heat-Center Bulletin 25.3: 25-27
INE, Instituto Nacional de Estadística, Guatemala. 2003. Censo Agropecuario Nacional.
Ivanova, D., Enimanev, Kr., Andonov, K., 2002. Energy and economic effectiveness of a fruit and vegetable dryer. Energy Conversion and Management 44: 763–769.
Jayaraman, K.S., Das Gupta, D.K., 1992. Drying of fruits and vegetables – recent developments in principles and techniques, Drying Technology, 10.1: 1-50
Jensen, A. 1998. Environmental impact assessment of Halong City Sanitation Project, Vietnam. In Environmental Impact Assessment Using the Rapid Impact Assessment Matrix (RIAM), K. Jensen (ed). Fredensborg, Denmark; Olsen & Olsen.
Jensen, K., Bach, H.K., Heang Knudsen, C., Foster, T.M., Mangor, K., Haslov, D.B. 1998. Initial impact evaluation of a tourism development project in Malasia. In Environmental Impact Assessment Using the Rapid Impact Assessment Matrix (RIAM), K. Jensen (ed). Fredensborg, Denmark: Olsen & Olsen.
Kudra, T., 1998. Instantaneous dryer indices for energy performance analysis, In_zynieria Chemiczna I Procesowa., 19.1: 163–72.
Lippmann, M., 2002. Geothermal and electricity market in Central America. Geothermal Resources Council Transactions, 26: 37-42.
Lund, J. 1996. Design of a small fruit drier using geothermal energy. Geo-Heat Center Bulletin, 17.1: 24-26.
Lund, J., Freeston, D., Boyd, T., 2005. Direct application of geothermal energy: 2005 Worldwide review, Geothermics 34: 691–727.
Lund, J., Lienau, P., Lunis, B. 1998. Geothermal direct use engineering and design guidebook, Geo-Heat Center, Bulletin, 19: 333-357.
Lobato, M., Palma, J., Manzo A., 2003. Geothermal Guatemala. Geothermal Resource Council Bulletin, May/June, 117-121.
Manzo, A.R.R., 2005. Geothermal power development in Guatemala 2000–2005. In: Proc. WGC2005.
Maroulis, Z., Saravacos, G., 2003. Food Process Design. Marcel Dekker, New York.
Maroulis, Z.B.; Saravacos, G.D.; Mujumdar, A.S. 2007 (3rd Ed.). Spreadsheet-aided dryer design, In Handbook of Industrial Drying. A.S. Mujumdar (Ed.), Taylor & Francis, Boca Raton.
Master, K. 1985. Spray Drying Handbook, 4th Ed; John Wiley & Sons, New York.
Mérida, L., 1999. Curing blocks and drying fruit in Guatemala. Geo-Heat Center Quart. Bull. 20(4): 19-22.
MEM, Ministerio de Energía y Minas, Guatemala. http://www.mem.gob.gt/Portal/home.aspx (accessed: March 12, 2010)
Mujumdar, A., 2007. Handbook of Industrial Drying. Taylor & Francis, Boca Raton.
Mujumdar, A.S; Zhen-Xiang Gong. 2008. Software for design and analysis of drying systems. Drying Technology, 26(7): 884-894.
Mujumdar, A.S; Z.-X. Gong. 2010. Simulation of drying nonaqueous systems-an application of Simprosys software. Drying Technology, 28: 111-115.
Pastakia, C; Jensen, A. 1998. The rapid impact assessment matrix (RIAM) for EIA. Environmental Impact Assessment Review. 18.5: 461-482.
Pakowski Z., Mujumdar, A.S., 2007 (III ed.). Basic process calculations in drying, in Handbook of Industrial Drying. A.S. Mujumdar (Ed.), Taylor & Francis, Boca Raton.
Perry, R. 1997. Perry’s Chemical Engineers’ Handbook, 7th Ed; McGraw- Hill. New York.
Phillips, J., (2010), Evaluating the level and nature of sustainable development for a geothermal power plant. Renewable and Sustainable Energy Reviews 14: 2414–2425.
Richardson, A.S., Jenson, W.M.P., 1976. Energy Research and Development Adm., Aero jet Nuclear Company, Report No. E (10-1)-1375.
Rybach, L., 2003. Geothermal energy: sustainability and the environment. Geothermics, 32: 463-470.
Sokhansanj, S., Jayas, D., 2007. Drying of foodstuffs, in Handbook of Industrial Drying. A.S. Mujumdar (Ed.), Taylor & Francis, Boca Raton.
Sumotarto, U., 2007. Design of a geothermal energy dryer for beans and grains drying in Kamojang geothermal field, Indonesia. Geo-Heat-Center Bulletin 28.1: 13-18.
Strumillo, C., Jones, P.L., Zylla, R., 2007. Energy aspects in drying, in Handbook of Industrial Drying. A.S. Mujumdar (Ed.), Taylor & Francis, Boca Raton.
Strumillo, C., Kudra, T., 1986. Drying: Principles Applications and Design. Gordon and Breach Science, Glasgow.
Yousefi H., Ehara S., 2007, EIA for Sustainable Geothermal Energy Development, Proceedings of 29th NZ Geothermal Workshop, November 19-21, Auckland, New Zealand, 014: 1-9.
Yousefi, H.,Ehara, S.,Yousefi, A., Seiedi, F. 2009. Environmental impact assessment of Sabalan geothermal power plant, NW Iran. Proceedings, Thirty-Fourth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 9-11, pp.1-9.
指導教授 吳俊諆(Jiunn-Chi Wu) 審核日期 2010-11-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明