博碩士論文 973402601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:35.172.150.239
姓名 柯明格(Miguel Conrado Valdez Vasquez)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 探討海平面溫度對中美洲巴拿馬地區 降雨與森林物候之非線性與非穩態性影響
(Exploring the Non-linear and Non-stationary Effects of Sea Surface Temperature on Regional Precipitation and Forest Phenology in Panama)
相關論文
★ 多時期衛星影像之自動化監督性分類★ 大範圍地區土地使用分類之研究
★ 高解析力衛星影像控制點座標之自動化萃取★ 影像最佳類別數目之研究
★ 遙控直昇機應用於工程管理監測可行性之研究★ 以地理資訊系統輔助共同管道之最適設計
★ 有理函數應用於空載多光譜影像幾何校正之研究★ SPOT自然色影像產生之研究
★ 結合影像區塊及知識庫分類之研究-以IKONOS衛星影像為例★ 遙控飛機空載視訊影像自動化鑲嵌方法之研究
★ 影像分割技術於高解析衛星影像分類之應用★ 小波多層次解析之影像融合應用
★ 線性複合模式應用於變遷偵測之研究★ 改良式變異向量分析法於變遷偵測之探討
★ 區塊分割變遷偵測法於多時期衛星影像之應用★ 資料挖掘技術應用於外來入侵植物研究 (以恆春地區銀合歡為例)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 全球海平面溫度的固有效應與在水文循環與植被覆蓋的反應異常性,複雜了熱帶區域尺度的氣候結構。而被太平洋與大西洋兩大洋以及南美與北美大陸塊體所包圍的中美洲,評估關聯性氣候驅力影響下的水文過程十分重要。本研究以時序性遙測影像進行小波分析,找出水文與植物的非穩態特徵。研究歸納十年與三十年兩個不同的時間窗期,同時以在大西洋與太平洋洋面溫度,與在中美洲巴拿馬拉阿米斯塔德國際公園研究區內的增強植生指數與降水量,進行一系列非穩態與非線性的引領與非引領遙相關信號之研究。選中此研究區域主要是避免人為影響可能掩蓋氣候遙相關信號,研究指出,跨越異常資料集中的線性遙相關特徵,展現洋面溫度與陸地區域有顯著的相關關係;同樣地,二年與三年非穩態的資料訊號呈現了陸區反應與穿越兩個海洋的洋面溫度異常,並與聖嬰-南方現象(ENSO)、北大西洋震盪(NAO)及可能與季節變化有一致的常數低頻訊號有關聯。藉由小波經驗正交函數(WEOF)分析,進一步反映了大西洋與太平洋的洋面溫度和研究區原始林地綠化之間的非線性關係。以遙測資料進行小波分析的結果顯示增強型植被指數/降水數據跟大西洋跟太平洋的洋面溫度呈現年度內的高頻訊號和兩年到三年期的低頻訊號。時空優先搜索進一步證實聖嬰-南方現象對研究區陸地反應的重要性。聖嬰-南方震盪遙相關型態可能會影響中美洲在雨季開始前幾個月,因雨量減少所造成的乾旱與乾季時植被覆蓋區域的減少。此外,這個長期的遙相關信號可以助於瞭解在地氣候變遷衝擊,並可藉由建立確定訊號之間的關係而幫助降雨的預測。
摘要(英) The inherent effects of global Sea Surface Temperature (SST) anomalies on hydrological cycle and vegetation cover complicate the structure of tropical climate at the regional scale. Assessing hydrological processes related to climate forcing is important in Central America because it is surrounded by both the Pacific and Atlantic oceans and two continental landmasses. In this study, the use of high-resolution remote sensing imagery and wavelet analysis helps identify nonstationary characteristics of hydrological and ecological responses. The study is conducted in two different time frames, 10 years and 30 years. In this study, a series of non-stationary and non-linear leading and non-leading teleconnection signals are identified between SST at the Atlantic and Pacific oceans and the Enhanced Vegetation Index (EVI) and precipitation in the La Amistad international Park at Panama, Central America. The site was selected to avoid anthropogenic influences that could mask climate teleconnection signals. Linear teleconnection patterns across anomalous datasets found significant correlation regions between SST and the terrestrial sites. Biennial and triennial Non-stationary signals are also exhibited between terrestrial responses and SST anomalies across ocean regions related with the El Niño Southern Oscillation (ENSO), North Atlantic Oscillation (NAO) signals as well as constant low frequency signals, which may coincide with the seasonality changes.
The Wavelet-based Empirical Orthogonal Function (WEOF) further reflects the nonlinear relationship between the Atlantic and Pacific SST and the greenness of a pristine forested site in Panama, La Amistad International Park.
The results of our remote sensing based wavelet analysis showed intra-annual high-frequency and biennial to triennial low-frequency signals between EVI/precipitation datasets and SST indices in both Atlantic and Pacific oceans. A spatiotemporal priority search further confirmed the importance of the effects of the ENSO over terrestrial responses in the selected study site. In addition, a series of potential non-leading teleconnection patterns were identified in the Pacific ocean.
Coincidence of the effect of ENSO teleconnection patterns on precipitation and vegetation suggests possible impacts of El Niño-associated droughts in Central America, accompanied by reduced rainfall, specifically during the first months of rainy season, and decline in vegetation cover during the dry season. In addition, this identified long-term teleconnection signals can aid for understanding the climate change impacts at local scales, and can aid to forecast precipitation by establishing a relationship in the information identified.
關鍵字(中) ★ 海平面溫度
★ 降雨
★ 森林物候
★ 遙相關
關鍵字(英) ★ Sea Surface Temperature
★ Precipitation
★ Forest Phenology
★ Teleconnection
論文目次 Table of Contents
摘要 ................................... i
ABSTRACT .................................................. ii
ACKNOWLEDGMENT ............................................iv
LIST OF FIGURES ...................................................ix
LIST OF TABLES .....................................................xi
LIST OF ACRONYMS ............................................. xii
1. Introduction ....................................................... 1
1.1 General Background .................................................... 1
1.2 Research Science Questions ........................................................ 6
1.3 Dissertation Structure .................................................... 7
2. Literature Review .................................................. 8
2.1 Teleconnection and Climate Change Studies in the Region .................................... 8
2.1.1 El Niño Southern Oscillation ...................................................... 10
2.1.2 North Atlantic Oscillation .................................................... 14
2.1.3 Pacific North American Pattern .......................................................... 16
2.2 Stationary and Non-stationary stochastic processes. ............................................. 19
2.3 Non-stationary, nonlinear processes studies. ......................................................... 19
2.4 Methods for non-linear non-stationary time series analysis. ................................. 22
2.5 Climate Anomalies in Panama ....................................24
3. Study Area .................................................... 27
3.1 Terrestrial Study Area ............................... 27
3.2 Oceanic Study Area ...................................................... 28
4. Methodology ....................................................... 30
4.1 Conceptual Framework ....................................................... 31
4.2 Data Collection ................................................... 32
4.2.1 Enhanced Vegetation Index Data ........................................................... 32
4.2.2 Precipitation data ......................................................... 35
4.2.3 Land Surface Temperature.............................................. 36
4.2.4 Sea Surface Temperature ..................................................... 37
4.3 Data Pre-Processing ....................................................... 37
4.3.1 TRMM precipitation data correction ....................................................... 39
4.4 Assessment of variability via box plot .............................................. 42
4.5 Wavelet analysis of variability .......................................................... 43
4.5.1 Principal Component Analysis ...................................................... 46
4.6 Wavelet analysis of teleconnectivity ............................................... 48
4.6.1 Linear correlation analysis ........................................................ 48
4.6.2 Stepwise Regression Analysis ............................................. 49
4.6.3 Wavelet Analysis .............................. 50
5. Results and discussion ........................................................... 54
5.1 Results for short term analysis .................................................... 54
5.1.1 Assessment of variability via box plot ............................................................ 54
5.1.2 Wavelet Analysis of Variability ..................................................................... 55
5.1.3 Wavelet Analysis of Teleconnectivity ............................................................ 62
5.2 Results of Long Term Analysis............................................... 81
5.2.1 Wavelet analysis of variability ......................................................... 81
5.2.2 Principal Component Wavelet Processing ..................................................... 85
5.2.3 Mapping Teleconnection Regions ........................................................... 86
6. Conclusions ...................................................... 91
7. References .........................................................95
參考文獻 References
[1] Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary
Reviews: Computational Statistics, 2(4), 433–459. doi:10.1002/wics.101
[2] Aceituno, P., Prieto, M., Solari, M., Martínez, A., Poveda, G., & Falvey, M. (2008). The
1877–1878 El Niño episode: associated impacts in South America. Climatic Change, 92(3-
4), 389–416. doi:10.1007/s10584-008-9470-5
[3] Agosta, E. A., & Compagnucci, R. H. (2012). Central-West Argentina Summer
Precipitation Variability and Atmospheric Teleconnections. Journal of Climate, 25(5),
1657–1677. doi:10.1175/JCLI-D-11-00206.1
[4] Aguilar, E., Peterson, T. C., Obando, P. R., Frutos, R., Retana, J. A., Solera, M., …
Mayorga, R. (2005). Changes in precipitation and temperature extremes in Central America
and northern South America, 1961–2003. Journal of Geophysical Research, 110(D23107),
1–15. doi:10.1029/2005JD006119
[5] Aiba, S., & Kitayama, K. (2015). Effects of the 1997 – 98 El Niño drought on rain forests
of Mount Kinabalu , on rain forests of Mount Kinabalu , Borneo. Journal of Tropical
Ecology, 18(02), 215–230. doi:10.1017/S0266467402002146
[6] Alfaro, E. (2000). Response of Air Surface Temperatures over Central America to Oceanic
Climate Variability Indices. Topicos Meteorologicos y Oceanograficos, 7(2), 63–72.
[7] Alfaro, E. J., & Cortés, J. (2012). Atmospheric forcing of cool subsurface water events in
Bahía Culebra , Gulf of Papagayo , Costa Rica. Revista Biologica Tropical [online], 60(2),
173–186.
96
[8] Amador, J. a., Alfaro, E. J., Lizano, O. G., & Magaña, V. O. (2006). Atmospheric forcing
of the eastern tropical Pacific: A review. Progress in Oceanography, 69(2-4), 101–142.
doi:10.1016/j.pocean.2006.03.007
[9] ANAM. (2011). Second National Communication before the United Nation Climate
Change Framework Convention (UNCCFC), Panamá (in Spanish). (p. 170). Panama city,
Panama.
[10] Anctil, F., & Paulin, C. (2004). Wavelet Analysis of the Interannual Variability in
Southern Quebec Streamflow. Journal of Climate, 17, 163–174.
[11] Baettig, M. B., Wild, M., & Imboden, D. M. (2007). A climate change index: Where
climate change may be most prominent in the 21st century. Geophysical Research Letters,
34(1), L01705. doi:10.1029/2006GL028159
[12] Barborak, J., Montes, J., Patry, M., & Salas, A. (2008). Mission Report: Reactive
monitoring mission to the Talamanca Range La Amistad Reserves/La Amistad National
Park-PILA, Costa Rica and Panama (p. 38). Quebec, Canada.
[13] Barbosa, H. (2006). Interannual Variability of Vegetation Dynamics In The Semi-Arid
Northeast Region of Brazil And Its Relationship to Enso Events. In International
Conference on Southern Hemisphere Meteorology and Oceanography (pp. 855–860).
Iguacu, Brazil. Retrieved from
http://onlinelibrary.wiley.com/doi/10.1002/cbdv.200490137/abstract
[14] Barrows, T. T., Juggins, S., De Deckker, P., Calvo, E., & Pelejero, C. (2007). Longterm
sea surface temperature and climate change in the Australian-New Zealand region.
Paleoceanography, 22(2), n/a–n/a. doi:10.1029/2006PA001328
[15] Benestad, R. E. (2004). Empirical-Statistical Downscaling in Climate Modeling. EOS
Transactions, American Geophysical Union., 85(42), 3–5.
97
[16] Berg, W., L’Ecuyer, T., & Kummerow, C. (2006). Rainfall Climate Regimes : The
Relationship of Regional TRMM Rainfall Biases to the Environment. Journal of Applied
Meteorology and Climatology, 45(3), 434–454.
[17] Boucharel, J., Dewitte, B., Garel, B., & Penhoat, Y. (2009). Nonlinear Processes in
Geophysics ENSO ’ s non-stationary and non-Gaussian character : the role of climate shifts,
453–473.
[18] Boushaki, F. I., Hsu, K. L., Sorooshian, S., Park, G. H., Mahani, S., & Shi, W. (2009).
Bias Adjustment of Satellite Precipitation Estimation Using Ground-Based Measurement:
A Case Study Evaluation over the Southwestern United States. Journal of
Hydrometeorology, 10(5), 1231–1242. doi:10.1175/2009JHM1099.1
[19] Buermann, W. (2003). Interannual covariability in Northern Hemisphere air
temperatures and greenness associated with El Niño-Southern Oscillation and the Arctic
Oscillation. Journal of Geophysical Research, 108(D13), 4396.
doi:10.1029/2002JD002630
[20] Burkett, V. R., Wilcox, D. a., Stottlemyer, R., Barrow, W., Fagre, D., Baron, J., …
Doyle, T. (2005). Nonlinear dynamics in ecosystem response to climatic change: Case
studies and policy implications. Ecological Complexity, 2(4), 357–394.
doi:10.1016/j.ecocom.2005.04.010
[21] Cabrera, D. G., Huasco, W. H., Doughty, C. E., Metcalfe, D. B., Girardin, C. A. J.,
Farfa, F., … Malhi, Y. (2011). Drought impact on forest carbon dynamics and fluxes in
Amazonia ´. Nature, 519, 78–82. doi:10.1038/nature14213
[22] Canadell, P. (2000). Non-Linear responses and surprises : A new Earth System Science
initiative. Global Change Newsletter. The International Geosphere–Biosphere Programme
(IGBP: A Study of Global Change of the International Council for Science (ICSU), 43, 1–
98
2.
[23] Cane, M. a. (2005). The evolution of El Niño, past and future. Earth and Planetary
Science Letters, 230(3-4), 227–240. doi:10.1016/j.epsl.2004.12.003
[24] Castro, J. J., Ramirez, M., Saunier, R., & Meganck, R. (1995). The La Amistad
biosphere reserve. In R. Saunier & R. Meganck (Eds.), Conservation of Biodiversity in the
New Regional Planning (p. 150). New York, NY: Dept. of Regional Development and
Environment, Executive Secretariat for Economic and Social Affairs, General Secretariat,
Organization of American States (1995).
[25] CCAD-SICA. (2010). Problematic and Impact of the Climate Change Variability on the
Region. In R. Rodriguez (Ed.), Regional Strategy on Climate Change, 2012 (p. 95). San
Salvador: Comision Centroamericana para el Desarollo, Sistema de Integracion
Centroamericana.
[26] Chang, N., Mullon, L., & Weiss, J. (2012). Integrated Remote Sensing and Wavelet
Analysis for Short-term Teleconnection Pattern Identification in Northeast America
Integrated Remote Sensing and Wavelet Analysis for Short-term Teleconnection Pattern
Identification in Northeast America, (June).
[27] Chang, N.-B., Vasquez, M. V., Chen, C.-F., Imen, S., & Mullon, L. (2015). Global
nonlinear and nonstationary climate change effects on regional precipitation and forest
phenology in Panama, Central America. Hydrological Processes, 29(3), 339–355.
doi:10.1002/hyp.10151
[28] Chen, D., & Cane, M. A. (2008). El Nino prediction and predictability. Journal of
Computational Physics, 227, 3625–3640. doi:10.1016/j.jcp.2007.05.014
99
[29] Chiew, F. H., & McMahon, T. A. (2002). Global ENSO-streamflow teleconnection ,
streamflow forecasting and interannual variability. Hidrological Sciences Journal, 47(3),
505–522.
[30] CIA. (2008). The World Factbook. Panama. Retrieved April 01, 2015, from
https://www.cia.gov/library/publications/the-world-factbook/geos/pm.html
[31] Claudio, H., Cheng, Y., Fuentes, D., Gamon, J., Luo, H., Oechel, W., … Sims, D.
(2006). Monitoring drought effects on vegetation water content and fluxes in chaparral with
the 970 nm water band index. Remote Sensing of Environment, 103(3), 304–311.
doi:10.1016/j.rse.2005.07.015
[32] Condit, R. (1998). Ecological implications of changes in drought patterns: shifts in
forest composition in panama, 413–427.
[33] Condit, R., Aguilar, S., Hernandez, A., Perez, R., Lao, S., Angehr, G., … Foster, R. B.
(2004). Tropical forest dynamics across a rainfall gradient and the impact of an El Niño dry
season, 51–72.
[34] Condit, R., Perez, R., & Nefertaris, D. (2011). Forests of Panama and Costa. In Trees of
Panama and Costa Rica (p. 496). Princeton University Press.
[35] Condom, T., Rau, P., & Espinoza, J. C. (2011). Correction of TRMM 3B43 monthly
precipitation data over the mountainous areas of Peru during the period 1998-2007.
Hydrological Processes, 25(12), 1924–1933. doi:10.1002/hyp.7949
[36] De Gooijer, J. G., & Kumar, K. (1992). Some recent developments in non-linear time
series modelling, testing, and forecasting. International Journal of Forecasting, 8(2), 135–
156. doi:10.1016/0169-2070(92)90115-P
100
[37] Deser, C., Alexander, M. A., Xie, S., & Phillips, A. S. (2010). Sea Surface Temperature
Variability : Patterns and Mechanisms. Annual Review of Marine Science, 2, 115–143.
doi:10.1146/annurev-marine-120408-151453
[38] Dettinger, M. D., Battisti, D. S., & Bitz, C. M. (2001). Interhemispheric Effects of
Interannual and Decadal ENSO-like Climate Variations on the Americas. In V. Markgraf
(Ed.), Interhemispheric Climate Linkages (p. 454). San Diego, CA: Academic Press.
[39] Dixon, P. G., Goodrich, G. B., & Cooke, W. H. (2008). Using Teleconnections to
Predict Wildfires in Mississippi. Monthly Weather Review, 136, 2804–2811.
doi:10.1175/2007MWR2297.1
[40] Duke, E. A., Goldstein, J. H., Teel, T. L., Finchum, R., Huber-Stearns, H., Pitty, J., …
Sánchez, L. O. (2014). Payments for ecosystem services and landowner interest: Informing
program design trade-offs in Western Panama. Ecological Economics, 103, 44–55.
doi:10.1016/j.ecolecon.2014.04.013
[41] Enfield, D. B., & Alfaro, E. (1999). The Dependence of Caribbean Rainfall on the
Interaction of the Tropical Atlantic and Pacific Oceans. Journal of Climate, 12, 2093–2103.
[42] Enfield, D. B., & Mayer, A. (1997). Tropical Atlantic sea surface temperature variability
relation. Journal of Geophysical Research, 102, 929–945.
[43] Engelbrecht, B. M. J., Comita, L. S., Condit, R., Kursar, T. a, Tyree, M. T., Turner, B.
L., & Hubbell, S. P. (2007). Drought sensitivity shapes species distribution patterns in
tropical forests. Nature, 447(7140), 80–2. doi:10.1038/nature05747
[44] Espinosa, D., Mendez, A., Madrid, I., & Rivera, R. (1997). Assessment of climate
change impacts on the water resources of Panama : the case of the La Villa , Chiriqui and
Chagres river basins. Climate Research, 9, 131–137.
101
[45] ETESA. (2007). Panama Weather General Description : Factors that determine the
climate of Panama . Retrieved April 05, 2015, from
http://www.hidromet.com.pa/clima_panama.php?idioma=ing
[46] Fankhauser, S., Smith, J. B., & Tol, R. S. J. (1999). Weathering climate change : some
simple rules to guide adaptation decisions. Ecological Economics, 30, 67–78.
[47] Flahive, K., Mateo, S. J., & Spalding, A. (2014). Forest Vocational Lands of Eastern
Panamá (p. 43). Panama city, Panama: McGill.
[48] Franzke, C., Feldstein, S. B., & Lee, S. (2011). Synoptic analysis of the Pacific-North
American teleconnection pattern. Quarterly Journal of the Royal Meteorological Society,
137(655), 329–346. doi:10.1002/qj.768
[49] Franzke, C., & Woollings, T. (2011). On the Persistence and Predictability Properties
of North Atlantic Climate Variability. Journal of Climate, 24(2), 466–472.
doi:10.1175/2010JCLI3739.1
[50] Geist, H. J., & Lambin, E. F. (2001). What Drives Tropical Deforestation? A metaanalysis
of proximate and underlying causes of deforestation based on subnational case
study evidence (p. 116). Louvain-La-Nouve, Belgium.
[51] George, R. K. (1998). Interannual variability of annual streamflow and the Southern
Oscillation in Costa Rica. Hydrological Sciences Journal, 43(3), 409–424.
[52] Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet
transform and wavelet coherence to geophysical time series. Nonlinear Processes in
Geophysics, 11(5/6), 561–566.
[53] Guilyardi, E., Bellenger, H., Collins, M., Ferrett, S., Cai, W., & Wittenberg, A. (2012).
A first look at ENSO in CMIP5. CLIVAR exchanges, 17(58), 29–32.
102
[54] Guzman, H., Benfield, S., Breedy, O., & Mair, J. (2008). Broadening reef protection
across the Marine Conservation Corridor of the Eastern Tropical Pacific : Distribution and
diversity of reefs in Las Perlas Archipelago, Panama. Environmental Conservation, 35(1),
9.
[55] Harshthorn, G. S. (1992). Forest loss and future options in Central America. In J. M.
Hagan & D. W. Johnston (Eds.), Ecology and conservation of neotropical migrant land
birds (pp. 13–22). Washington, D.C.: Smithsonian Institution Press.
[56] Hemanth, C. H., Sivasai, A., Rama, N., & Brahman, P. (2011). NON LINEAR AND
NON-STATIONARY DATA ANALYSIS USING HILBERT-HUANG TRANSFORM
Publication of Little Lion Scientific R & D , Islamabad PAKISTAN. Journal of Theoretical
and Applied Information Technology, 29(2), 74–84.
[57] Heumann, B. W., Seaquist, J. W., Eklundh, L., & Jönsson, P. (2007). AVHRR derived
phenological change in the Sahel and Soudan, Africa, 1982–2005. Remote Sensing of
Environment, 108(4), 385–392. doi:10.1016/j.rse.2006.11.025
[58] Hlinka, J., Hartman, D., Vejmelka, M., Novotná, D., & Paluš, M. (2013). Non-linear
dependence and teleconnections in climate data: sources, relevance, nonstationarity.
Climate Dynamics. doi:10.1007/s00382-013-1780-2
[59] Hodson, D., Sutton, R. T., Cassou, C., Keenlyside, N., Okumura, Y., & Zhou, T. (2009).
Climate impacts of recent multidecadal changes in Atlantic Ocean Sea Surface
Temperature: a multimodel comparison. Climate Dynamics, 34(7-8), 1041–1058.
doi:10.1007/s00382-009-0571-2
[60] Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., … Liu, H. H.
(1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary
time series analysis. Proceedings of the Royal Society A, 454, 903–995.
103
[61] Huber, S., & Fensholt, R. (2011). Analysis of teleconnections between AVHRR-based
sea surface temperature and vegetation productivity in the semi-arid Sahel. Remote Sensing
of Environment, 115(12), 3276–3285. doi:10.1016/j.rse.2011.07.011
[62] Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002).
Overview of the radiometric and biophysical performance of the MODIS vegetation
indices. Remote Sensing of Environment, 83(1-2), 195–213. doi:10.1016/S0034-
4257(02)00096-2
[63] Huete, A., Justice, C., & Leeuwen, W. (1999). MODIS VEGETATION INDEX
ALGORITHM THEORETICAL BASIS.
[64] Huffman, G., Adler, R., Bolvin, D., Gu, G. J., Nelkin, E., Bowman, K., … Wolff, D.
(2007). Mean seasonal and spatial variability in gauge-corrected, global precipitation.
Journal of Hidrometeorology, 8(1), 38–55. doi:10.1175/JHM560.1
[65] Hurrell, J. W., & Deser, C. (2009). North Atlantic climate variability : The role of the
North Atlantic Oscillation. Journal of Marine Systems, 78(1), 28–41.
doi:10.1016/j.jmarsys.2008.11.026
[66] Ji, X., & Chen, Y. F. (2012). Characterizing spatial patterns of precipitation based on
corrected TRMM 3B43 data over the mid Tianshan Mountains of China. Journal of
Mountain Science, 9(5), 628–645. doi:10.1007/s11629-012-2283-z
[67] Jiang, Z, Huete, a, Didan, K., & Miura, T. (2008). Development of a two-band enhanced
vegetation index without a blue band. Remote Sensing of Environment, 112(10), 3833–
3845. doi:10.1016/j.rse.2008.06.006
[68] Jiang, Zhangyan, Huete, A. R., Kim, Y., & Didan, K. (2007). 2-band Enhanced
Vegetation Index without a blue band and its application to AVHRR data. In W. Gao & S.
L. Ustin (Eds.), Remote Sensing and Modeling of Ecosystems for Sustainability IV (Vol.
104
6679, pp. 667905–667905–9). doi:10.1117/12.734933
[69] Johnson, N., & Feldstein, S. B. (2010). The Continuum of North Pacific Sea Level
Pressure Patterns : Intraseasonal , Interannual , and Interdecadal Variability. Journal of
Climate, 23, 851–867. doi:10.1175/2009JCLI3099.1
[70] Johnstone, J. a. (2010). A quasi-biennial signal in western US hydroclimate and its
global teleconnections. Climate Dynamics, 36(3-4), 663–680. doi:10.1007/s00382-010-
0755-9
[71] Joseph, R., & Nigam, S. (2006). ENSO Evolution and Teleconnections in IPCC ’ s
Twentieth-Century Climate Simulations : Realistic Representation ? Journal of Climate, 19,
4360–4377.
[72] Justice, C. ., Giglio, L., Korontzi, S., Owens, J., Morisette, J. ., Roy, D., … Kaufman,
Y. (2002). The MODIS fire products. Remote Sensing of Environment, 83(1-2), 244–262.
doi:10.1016/S0034-4257(02)00076-7
[73] Karmalkar, A. V., Bradley, R. S., & Diaz, H. F. (2011). Climate change in Central
America and Mexico: regional climate model validation and climate change projections.
Climate Dynamics, 37(3-4), 605–629. doi:10.1007/s00382-011-1099-9
[74] Kawale, J., Chatterjee, S., Kumar, A., Liess, S., Steinbach, M., & Kumar, V. (2011).
Anomaly construction in climate data: issues and challenges. In A. N. Srivastava, N. V.
Chawla, & A. S. Perera (Eds.), Proceedings of the Conference on Intelligent Data
Understanding (pp. 189–203). Mountain View, CA.
[75] Keener, V. W., Feyereisen, G. W., Lall, U., Jones, J. W., Bosch, D. D., & Lowrance, R.
(2010). El-Niño/Southern Oscillation (ENSO) influences on monthly NO3 load and
concentration, stream flow and precipitation in the Little River Watershed, Tifton, Georgia
105
(GA). Journal of Hydrology, 381(3-4), 352–363. doi:10.1016/j.jhydrol.2009.12.008
[76] Kim, Y., Huete, A. R., & Jiang, Z. (2007). Multisensor reflectance and vegetation index
comparisons of Amazon tropical forest phenology with hyperspectral Hyperion data. In W.
Gao & S. L. Ustin (Eds.), Proceedings of SPIE - The International Society for Optical
Engineering. (pp. 667906–667906–10). Florence, Italy. doi:10.1117/12.734974
[77] Koellner, T., & Scholz, R. W. (2007). Assessment of Land Use Impacts on the Natural
Environment. The International Journal of Life Cycle Assesment, 12(1), 16–23.
[78] Krishnaswamy, J., Vaidyanathan, S., Rajagopalan, B., Bonell, M., Sankaran, M.,
Bhalla, R. S., & Badiger, S. (2014). Non-stationary and non-linear influence of ENSO and
Indian Ocean Dipole on the variability of Indian monsoon rainfall and extreme rain events.
Climate Dynamics, 1–10. doi:10.1007/s00382-014-2288-0
[79] Krzywinski, M., & Altman, N. (2014). Points of Significance: Visualizing samples with
box plots. Nature Methods, 11(2), 119–120. doi:10.1038/nmeth.2813
[80] Kwon, H.-H., Lall, U., & Khalil, A. F. (2007). Stochastic simulation model for
nonstationary time series using an autoregressive wavelet decomposition: Applications to
rainfall and temperature. Water Resources Research, 43(5), n/a–n/a.
doi:10.1029/2006WR005258
[81] Labat, D., Ababou, R., & Mangin, A. (2000). Rainfall–runoff relations for karstic
springs. Part II: continuous wavelet and discrete orthogonal multiresolution analyses.
Journal of Hydrology, 238(3-4), 149–178. doi:10.1016/S0022-1694(00)00322-X
[82] Latif, M., & Keenlyside, N. S. (2008). El Nino Southern Oscillation response to global
warming. Proceedings of the National Academy of Sciences of the United States of America,
106(49), 20578–20583.
106
[83] Leathers, D., & Palecki, M. (1992). The Pacific/North American Teleconnection Pattern
and United States Climate. Journal of Climate, 5, 707–716.
[84] Legates, D. R., & Willmott, C. J. (1990). Mean seasonal and spatial variability in gaugecorrected,
global precipitation. International Journal of Climatology, 10(2), 111–127.
[85] Liu, Z., Yoshmura, K., Bowen, G. J., & Welker, J. M. (2014). Pacific–North American
Teleconnection Controls on Precipitation Isotopes (δ 18 O) across the Contiguous United
States and Adjacent Regions: A GCM-Based Analysis. Journal of Climate, 27(3), 1046–
1061. doi:10.1175/JCLI-D-13-00334.1
[86] Lupo, A., & Kininmonth, W. (2014). Global Climate Models and Their Limitations. In
Climate Change Reconsidered II: Physical Science. (Idso, C.D., pp. 7–148). Chicago,
Illinois: The Heartland Institute.
[87] Magaña, V. O., Vázquez, J. L., Pérez, J. L., & Pérez, J. B. (2003). Impact of El Niño on
precipitation in Mexico. Geofisica Internacional, 42(3), 313–330.
[88] Malhi, Y., & Phillips, O. L. (2004). Tropical forests and global atmospheric change: a
synthesis. Philosophical Transactions of the Royal Society B: Biological Sciences,
359(1443), 549–555. doi:10.1098/rstb.2003.1449
[89] Montroy, D., Richman, M., & Lamb, P. (1997). Observed Nonlinearities of Monthly
Teleconnections between Tropical Pacific Sea Surface Temperature Anomalies and Central
and Eastern North American Precipitation. Journal of Climate, 11, 1812–1835.
[90] Moreno, A. R. (2006). Climate change and human health in Latin America: drivers,
effects, and policies. Regional Environmental Change, 6(3), 157–164. doi:10.1007/s10113-
006-0015-z
107
[91] Mudelsee, M. (2003). Estimating Pearson’s Correlation Coefficient with Bootstrap
Confidence Interval from Serially Dependent Time Series. Mathematical Geology, 35(6),
651–665. doi:10.1023/B:MATG.0000002982.52104.02
[92] Muller, W. A., & Roeckner, E. (2008). ENSO teleconnections in projections of future
climate in ECHAM5/MPI-OM. Climate Dynamics, 31(5), 533–549. doi:10.1007/s00382-
007-0357-3
[93] Mullon, L., Chang, N., Yang, Y. J., & Weiss, J. (2012). Integrated Remote Sensing and
Wavelet Analysis for Short-term Teleconnection Pattern Identification in Northeast
America Integrated Remote Sensing and Wavelet Analysis for Short-term Teleconnection
Pattern Identification in Northeast America, (June).
[94] Mullon, L. G., Chang, N., Imen, S., & Yang, Y. J. (2014). Forecasting Precipitation
from Multi-Platform Remote Sensing Systems using Wavelet-Based Neural Network
Models. In IEEE 11th International Conference on Networking, Sensing and Control
(ICNSC) (pp. 584–589). IEEE.
[95] Muñoz, E., Wang, C., & Enfield, D. (2010). The Intra-Americas Springtime Sea Surface
Temperature Anomaly Dipole as Fingerprint of Remote Influences. Journal of Climate,
23(1), 43–56. doi:10.1175/2009JCLI3006.1
[96] Mwale, D., & Gan, T. Y. (2005). Wavelet Analysis of Variability, Teleconnectivity, and
Predictability of the September–November East African Rainfall. Journal of Applied
Meteorology, 44(1971), 256–269.
[97] Mwale, D., Gan, T. Y., Devito, K., Mendoza, C., Silins, U., & Petrone, R. (2009).
Precipitation variability and its relationship to hydrologic variability in Alberta.
Hydrological Processes, 3056(August), 3040–3056. doi:10.1002/hyp
108
[98] Nakagawa, M., Tanaka, K., Nakashizuka, T., Ohkubo, T., Kato, T., Maeda, T., & Sato,
K. (2000). Impact of severe drought associated with the 1997 – 1998 El Niño in a tropical
forest in Sarawak. Journal of Tropical Ecology, 16(03), 355–367.
[99] Nason, G. P. (2003). Stationary and non-stationary time series. In H. M. Mader, S. G.
Coles, Connor C.B., & L. J. Connor (Eds.), Statistics in Volcanology (Special Pu., pp. 129–
142). London: Geological Society.
[100] Nobre, P., & Shukla, J. (1996). Variations of Sea Surface Temperature, wind stress, and
rainfall over the Tropical Atlantic and South America. Journal of Climate, 9, 2464–2479.
[101] Oliver, J. E. (2005). Pacific North American Pattern (PNA). In Encyclopedia of Earth
Sciences Series (pp. 563–564). Netherlands: Springer Netherlands.
[102] Paeth, H., Scholten, A., Friederichs, P., & Hense, A. (2008). Uncertainties in climate
change prediction: El Niño-Southern Oscillation and monsoons. Global and Planetary
Change, 60(3-4), 265–288. doi:10.1016/j.gloplacha.2007.03.002
[103] Palka, E. J. (2005). A GEOGRAPHIC OVERVIEW OF PANAMA : Pathway to the
Continents and Link between the Seas. In R. S. Harmon (Ed.), The Río Chagres, Panama
(pp. 3–18). Netherlands: Springer.
[104] Parry, M., Canziani, O., Palutikof, J., van der Linden, P., & Hanson, C. (2007). Climate
Change 2007 : Impacts , Adaptation and Vulnerability. Contribution of Working Group II
to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (p.
982). Cambbridge UK: Cambridge University Press.
[105] Phillips, O., Hall, P., Gentry, A., Sawyer, S., & Vasquez, R. (1994). Dynamics and
species richness of tropical rain forests. Proceedings of the National Academy of Sciences
of the United States of America, 91(March), 2805–2809.
109
[106] Potter, K. (2006). Methods for Presenting Statistical Information : The Box Plot. In H.
Hagan, A. Kerren, & P. Dannemann (Eds.), Visualization of Large and Unstructured Data
Sets (GI-Edition., pp. 97–106). Lecture. Notes in Informatics (LNI),.
[107] Potvin, C., Guay, B., & Pedroni, L. (2008). Is reducing emissions from deforestation
financially feasible ? A Panamanian case study. Climate Policy, 8, 23–40.
doi:10.3763/cpol.2007.0386
[108] Poveda, G., & Mesa, O. (1997). Feedbacks between Hydrological Processes in Tropical
South America and Large-Scale Ocean – Atmospheric Phenomena. Journal of Climate,
10(10), 2690–2702.
[109] Quéré, C. Le, Rödenbeck, C., Buitenhuis, E. T., Conway, T. J., Langenfelds, R., Gomez,
A., … Heimann, M. (2006). Saturation of the Southern Ocean CO2 Sink Due to Recent
Climate Change. Science, 185(1994), 2003–2007.
[110] Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., & Schlax, M. G.
(2007). Daily High-Resolution-Blended Analyses for Sea Surface Temperature. Journal of
Climate, 20(22), 5473–5496. doi:10.1175/2007JCLI1824.1
[111] Ropelewski, C. F., & Halpert, M. S. (1987). Global and regional scale precipitation
patterns associated with the El Niño/Southern Oscillation. Monthly Weather Review, 115,
1606–1626.
[112] Roswintiarti, O., Niyogi, S., & Raman, S. (1998). Teleconnections between tropical
Pacific Sea Surface Temperature anomalies and North Carolina precipitation anomalies
during El Nino events. Geophysical Research Letters, 25(22), 4201–4204.
[113] Salomonson, V. V, Barnes, W. L., Maymon, P. W., & Montgomery, H. E. (1990).
MODIS : Advanced Facility Instrument for Studies of the Earth as a System. IEEE
Transactions on Geoscience and Remote Sensing, 27(2), 145–153.
110
[114] Schneider, U., Becker, A., Finger, P., Meyer-christoffer, A., Ziese, M., & Rudolf, B.
(2014). GPCC ’ s new land surface precipitation climatology based on quality-controlled in
situ data and its role in quantifying the global water cycle. Theoretical and Applied
Climatology, 115(1-2), 15–40. doi:10.1007/s00704-013-0860-x
[115] Seierstad, I. a., Stephenson, D. B., & Kvamstø, N. G. (2007). How useful are
teleconnection patterns for explaining variability in extratropical storminess? Tellus A,
59(2), 170–181. doi:10.1111/j.1600-0870.2007.00226.x
[116] Smith, T. M., & Reynolds, R. W. (2003). Extended Reconstruction of Global Sea
Surface Temperatures Based on COADS Data ( 1854 – 1997 ). Journal of Climate,
16(1996), 1495–1510.
[117] Solomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K., Tignor, M., … Chen, Z.
(2008). Climate Change 2007: The Physical Science Basis. Contribution of Working Group
I to the Fourth Assesment Report of the Intergovernmental Panel on Climate Change (p.
996). Cambridge, United Kingdom and New York, USA: Cambridge University Press.
[118] Stephens, B. B., Gurney, K. R., Tans, P. P., Sweeney, C., Peters, W., Aoki, S., … Lloyd,
J. (2007). Weak Northern and Strong Tropical Land Carbon Uptake from Vertical Profiles
of Atmospheric CO 2, (June), 1732–1735.
[119] Sterl, A., Oldenborgh, G. J. Van, Hazeleger, W., & Burgers, G. (2007). On the
robustness of ENSO teleconnections. Climate Dynamics.
[120] Sutton, R. T., & Hodson, D. L. R. (2007). Climate Response to Basin-Scale Warming
and Cooling of the North Atlantic Ocean. Journal of Climate, 20(5), 891–907.
doi:10.1175/JCLI4038.1
[121] Taylor, R. G. (2013). Ground water and climate change. Nature Climate Change,
3(April), 322–329. doi:10.1038/NCLIMATE1744
111
[122] Tedeschi, R. G., Cavalcanti, I. F. a., & Grimm, A. M. (2013). Influences of two types
of ENSO on South American precipitation. International Journal of Climatology, 33(6),
1382–1400. doi:10.1002/joc.3519
[123] Torrence, C., & Compo, G. P. (1995). A Practical Guide to Wavelet Analysis. Bulletin
of the American Meteorological Society, 79(1), 61–78.
[124] Torrence, C., & Compo, G. P. (1998). A Practical Guide to Wavelet Analysis. Bulletin
of the American Meteorological Society, 79(1), 61–78.
[125] Torrence, C., & Webster, P. (1999). Interdecadal Changes in the ENSO – Monsoon
System. Journal of Climate, 12, 2679–2690.
[126] Turner, J. (2004). El Nino Southern Oscillation and Antartica. International Journal of
Climatology, 31, 1–31. doi:10.1002/joc.965
[127] Tyree, M. T., Engelbrecht, B. M. J., Vargas, G., Kursar, T. A., States, U., Forest, A., …
Vermont, M. T. T. (2003). Desiccation Tolerance of Five Tropical Seedlings in Panama .
Relationship to a Field Assessment of Drought Performance 1. Plant Phisiology, 132(3),
1439–1447. doi:10.1104/pp.102.018937.1995
[128] UNEP. (2010). Latin America and the Caribbean: Environmental Outlook (p. 371).
Panama city, Panama.
[129] UNEP-WCMC. (1990). World Heritage Sites. Protected Areas and World Heritage:
Talamanca Range-La Amistad Reserves/La Amistad National Park.
[130] Venegas, S. A., Mysak, L. A., & Straub, D. N. (1997). Atmosphere – Ocean Coupled
Variability in the South Atlantic. Journal of Climate, 10, 2904–2920.
[131] Verdon, D. C., & Franks, S. W. (2006). Long-term behaviour of ENSO: Interactions
with the PDO over the past 400 years inferred from paleoclimate records. Geophysical
Research Letters, 33(6), L06712. doi:10.1029/2005GL025052
112
[132] Villarini, G., Serinaldi, F., Smith, J. a., & Krajewski, W. F. (2009). On the stationarity
of annual flood peaks in the continental United States during the 20th century. Water
Resources Research, 45(8). doi:10.1029/2008WR007645
[133] Wan, S.-Q., Feng, G.-L., Dong, W.-J., Li, J.-P., Gao, X.-Q., & He, W.-P. (2005). On the
climate prediction of nonlinear and non-stationary time series with the EMD method.
Chinese Physics, 14(3), 628–633.
[134] Wan, Z. (2006). MODIS Land Surface Temperature Products Users ’ Guide (p. 30).
Santa Barbara, California.
[135] Wang, Z. M. (1999). MODIS Land-Surface Temperature Algorithm Theoretical Basis
Document ( LST ATBD ) (p. 74). Santa Barbara, California.
[136] Wanner, H., Brönnimann, S., Casty, C., Luterbacher, J., Schmutz, C., & David, B.
(2001). NORTH ATLANTIC OSCILLATION – CONCEPTS AND STUDIES, (1984),
321–382.
[137] Ward, P. J., Jongman, B., Kummu, M., Dettinger, M. D., & Sperna, F. C. (2014). Strong
influence of El Niño Southern Oscillation on flood risk around the world.
doi:10.1073/pnas.1409822111
[138] Waylen, P., Caviedes, C., Poveda, G., Mesa, O., & Quesada, M. (1998). Rainfall
Distribution and Regime in Costa Rica and its Response to the El Nino-Southern
Oscillation.pdf. Yearbook, Conference of Latin Americanists Geographers, 24, 75–84.
[139] Waylen, P., & Quesada, M. (2002). The effects of Atlantic and Pacific sea surface
temperatures on the mid-summer drought of Costa Rica.pdf. In J. M. García-Ruiz, J. Jones,
& J. Arnáez (Eds.), Environmental Change and Water Sustainability (pp. 197–206).
Zaragoza, Spain: Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones
Científicas.
113
[140] World Bank. (2006). Rural Productivity and Consolidation of the Mesoamerican
Biological Corridor Project. (p. 146). Panama city, Panama.
[141] Xu, H., Xie, S.-P., Wang, Y., & Small, J. (2005). Effects of Central American
Mountains on the Eastern Pacific Winter ITCZ and Moisture Transport *. Journal of
Climate, 18, 3856–3873.
[142] Yin, Z.-Y., Liu, X., Zhang, X., & Chung, C. F. (2004). Using a geographic information
system to improve Special Sensor Microwave Imager precipitation estimates over the
Tibetan Plateau. Journal of Geophysical Research, 109(D03110), 1–16.
doi:10.1029/2003JD003749
[143] Zhang, A., & Jia, G. (2013). Monitoring meteorological drought in semiarid regions
using multi-sensor microwave remote sensing data. Remote Sensing of Environment, 134,
12–23. doi:10.1016/j.rse.2013.02.023
[144] Zhang, X., Zhao, J., Sun, Q., Wang, X., Guo, Y., & Li, J. (2011). Soil Moisture Retrieval
From AMSR-E Data in Xinjiang (China): Models and Validation. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 4(1), 117–127.
doi:10.1109/JSTARS.2010.2076336
指導教授 陳繼藩(Chi Farn Chen) 審核日期 2015-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明