博碩士論文 973403010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.238.184.78
姓名 羅法聖(Fa-Sain Lo)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 低溫高強度晶圓鍵合研究 :一種降低熱預算的綠色科技
(Low Temperature & High Strength Wafer Bonding : A Green Technology towards Lower Thermal Budget)
相關論文
★ 塑膠機殼內部表面處理對電磁波干擾防護研究★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響
★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究★ 石墨材料時變劣化微結構分析
★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響★ 可程式控制器機構設計之流程研究
★ 熱力微照射製作絕緣層矽晶材料之研究★ 微波活化對被植入於矽中之氫離子之研究
★ 矽/石英晶圓鍵合之研究★ 奈米尺度薄膜轉移技術
★ 光能切離矽薄膜之研究★ 氮矽基鍵合之研究
★ 以氫離子擴散機制製作單晶矽薄膜在石英上之研究★ 矽單晶轉移薄膜層表面埃級平滑化之研究
★ 薄膜電性效應對等離子體注入之影響研究★ 350nm波長光能量輔助矽晶表面光電平滑化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 晶圓鍵合(Wafer Bonding)是半導體科技產業之關鍵技術,可以廣泛地應用於Silicon On Insulator、Microelectronics、MEMS、3D IC和Optoelectronics等領域。同時由於全球暖化危機,各國都在積極研發節能減碳科技,半導體屬高能源密集產業,更需為綠色環保盡一份心力。因應產業節能與低碳社會需求,本研究目標為:引進熱預算(Thermal Budget)概念作為建立綠色節能的評估標準,進而研發低溫且高強度之晶圓鍵合技術作為評估標地。首先根據熱力學定律及綠色設計原則,設計出晶圓鍵合技術的綠色節能評估指標,可計算製程之熱預算、熱預算比值、能源效率及生態效率等數值。進一步根據表面活化理論及技術,結合HF-Dip化學濕化及Nitrogen Plasma電漿活化法,發展出低溫且高強度晶圓鍵合技術(Green Wafer Bonding)。實驗結果顯示Si/Si鍵合在75 oC,Si3N4/Si3N4在200 oC退火條件,可達到最高鍵合能2500 mJ/cm2 。經熱預算(Thermal Budget)評估比較,結果發現Si/Si (RCA-HF-N2 Plasma)技術有最低的熱預算比及最高的能源效率51.6%;Si3N4/Si3N4 (RCA-HF-N2 Plasma)技術次佳,熱預算比值2,能源效率28.6%。同時經晶圓鍵合技術特性比較,顯示GWB綠色晶圓鍵合技術較傳統晶圓鍵合技術更為節能減碳。從專利分析結果,顯示MEMS、SOI及Optoelectronics為其未來主要應用。本研究最後提出將Si3N4/Si3N4 鍵合技術應用於Smart-Cut製程中,可成功製作出超薄單晶矽薄膜,突破奈米元件製作之溫度限制。本研究成果可提升半導體產業的製程效率及貢獻於節能減碳,未來將可應用於綠色能源科技領域,如熱電能量轉換器、氫儲存器及薄膜太陽電池等。
摘要(英) Wafer bonding is the core technology for semiconductor industry and related micro/nano devices. It has made significant innovation in recent years for its widely applications, such as silicon on insulator、high performance microelectronics、micro-electromechanical systems、3D IC and optoelectronics, etc. Today, as energy saving and carbon reduction is continuing to evolve, wafer bonding technology is needed to innovate for the green earth. Different bonding materials do not present difficulty for wafer bonding, but thermal mismatch imposes a severe limitation on the annealing temperature. The innovation needs of wafer bonding are high bonding strength、cost effective and energy saving. The aim of this study is to design a systematic evaluation index for wafer bonding technology based on thermal budget theory, and develop low temperature & high strength wafer bonding technology. The evaluation index include thermal budget ratio, energy efficiency and eco efficiency. The study also proposed an innovative wafer bonding technology, it was named “Green Wafer Bonding”, by hybrid HF-Dip and Nitrogen Plasma Activation methods. By the experiments, it can be proved green wafer bonding can provide high strength bonding in low temperature: Si/Si (2500mJ/cm2, 75oC) and Si3N4/Si3N4 (2500mJ/cm2, 200oC). By the evaluation, it showed Si/Si (RCA-HF-N2 Plasma) has the lowest thermal budget and energy efficiency is 51.6% and Si3N4/Si3N4 (RCA-HF-N2 Plasma) needs double thermal budget and energy efficiency is 28.6%. GWB technology has the best bonding quality and the highest enegy saving performace than the conventional bondig technologies. By the patent analysis, it showed the main application of wafer bonding are including MEMS, SOI and optoelectronics, etc. The study also applied GWB (Green Wafer Bonding) technology in smart-cut process and produced a nano-scaled Si film successfully. Green Wafer Bonding has many advantages, such as high bonding strength, low temperature, saving time and cost. The research can be applied for developing the energy saving semiconductor industry and new technologies, such as thermal-electricity converter, hydrogen storage and thin film solar cell, etc.
關鍵字(中) ★ 晶圓鍵合
★ 熱預算
★ 表面活化
★ 節能減碳
關鍵字(英) ★ wafer bonding
★ thermal budget
★ surface activation
★ energy saving
論文目次 摘 要 i
ABSTRACT ii
致謝 iv
目 錄 v
圖目錄 vii
表目錄 ix
一、緒論 1
1-1 晶圓鍵合(Wafer Bonding)簡介 3
1-2 節能技術之需求 6
1-3 研究動機及想法 8
二、文獻回顧及理論 10
2-1 低溫晶圓鍵合相關研究 10
2-2 晶圓鍵合相關理論 14
2-3 晶圓鍵合相關應用研究 29
三、研究方法與綠色節能評估標準 33
3-1 綠色設計與熱預算(Thermal Budget) 34
3-2 結合化學與電漿活化鍵合法 40
3-3 GWB綠色晶圓鍵合製程與實驗規劃 46
四、實驗結果與討論 57
4-1 低溫晶圓鍵合實驗 58
4-1-1 Si/Si晶圓鍵合實驗 58
4-1-2 Si3N4/Si3N4 晶圓鍵合實驗 60
4-2 晶圓鍵合技術比較研究 62
4-2-1 Si3N4/Si3N4 晶圓鍵合實驗(無HF-Dip) 62
4-2-2 Si3N4/Si3N4 晶圓鍵合實驗(改變處理順序) 64
4-3 晶圓鍵合實驗結果討論 67
4-4 熱預算及節能效率評估 73
五、結論與應用 83
5-1 結論 83
5-2 Green Wafer Bonding技術應用研究 86
5-3 應用GWB鍵合技術於奈米薄膜轉移 91
5-4 應用GWB鍵合技術於TEC熱電轉換器 94
5-5 未來工作 98
參考文獻 100
[附錄一] Wafer Bonding應用研究:以專利分析技術探討 109
[附錄二] 著作列表及論文全文 124
參考文獻 [1] H. Moriceau, F. Rieutord, F. Fournel, Y. Le Tiec, L. Di Cioccio, C. Morales, et al., "Overview of recent direct wafer bonding advances and applications," Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 1, p. 043004, 2010.
[2] W. McDonough and M. Braungart, Cradle to cradle: Remaking the way we make things: MacMillan, 2010.
[3] F.-S. Lo, C. Chiang, C. Li, and T.-H. Lee, "Increasing More Bonding Energy in Nitrogen Plasma-Activated Wafer Bonding by HF-Dip," ECS Solid State Letters, vol. 3, pp. P102-P104, 2014.
[4] U. Gosele and Q. Y. Tong, "Semiconductor wafer bonding," Annual Review of Materials Science, vol. 28, pp. 215-241, 1998.
[5] L. Rayleigh, "A study of glass surfaces in optical contact," Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 156, pp. 326-349, 1936.
[6] K. T. Wan, D. T. Smith, and B. R. Lawn, "Fracture and Contact Adhesion Energies of Mica‐Mica, Silica‐Silica, and Mica‐Silica Interfaces in Dry and Moist Atmospheres," Journal of the American Ceramic Society, vol. 75, pp. 667-676, 1992.
[7] J. Lasky, "Wafer bonding for silicon‐on‐insulator technologies," Applied Physics Letters, vol. 48, pp. 78-80, 1986.
[8] M. Shimbo, K. Furukawa, K. Fukuda, and K. Tanzawa, "Silicon‐to‐silicon direct bonding method," Journal of Applied Physics, vol. 60, pp. 2987-2989, 1986.
[9] Q.-Y. Tong and U. Goesele, Semiconductor wafer bonding: science and technology: John Wiley & Sons, New York, 1999.
[10] M. M. R. Howlader, S. Suehara, H. Takagi, T. H. Kim, R. Maeda, and T. Suga, "Room-temperature microfluidics packaging using sequential plasma activation process," Ieee Transactions on Advanced Packaging, vol. 29, pp. 448-456, AUG 2006 2006.
[11] P. K. Bondyopadhyay, "Moore′s law governs the silicon revolution," Proceedings of the Ieee, vol. 86, pp. 78-81, Jan 1998.
[12] R. Reedy, J. Cable, D. Kelly, M. Stuber, F. Wright, and G. Wu, "UTSi CMOS: A Complete RF SOI Solution," Analog Integrated Circuits and Signal Processing, vol. 25, pp. 171-179, 2000.
[13] G. G. Shahidi, "SOI technology for the GHz era," IBM journal of Research and Development, vol. 46, pp. 121-131, 2002.
[14] C. Breidenich, D. Magraw, A. Rowley, and J. W. Rubin, "The Kyoto protocol to the United Nations framework convention on climate change," American Journal of International Law, pp. 315-331, 1998.
[15] D. Fullerton and W. B. Wu, "Policies for green design," Journal of Environmental Economics and Management, vol. 36, pp. 131-148, Sep 1998.
[16] P. T. Anastas and J. B. Zimmerman, "Peer reviewed: design through the 12 principles of green engineering," Environmental science & technology, vol. 37, pp. 94A-101A, 2003.
[17] P. T. Anastas, L. G. Heine, and T. C. Williamson, Green engineering: American Chemical Society, 2000.
[18] S. R. Dovers and J. W. Handmer, "Contradictions in sustainability," Environmental Conservation, vol. 20, pp. 217-222, 1993.
[19] S. S. Iyer and A. J. Auberton-Hervé, Silicon wafer bonding technology: for VLSI and MEMS applications: Univ. Press of Mississippi, 2002.
[20] G. Wallis and D. I. Pomerantz, "Field assisted glass‐metal sealing," Journal of Applied Physics, vol. 40, pp. 3946-3949, 1969.
[21] H. Quenzer, C. Dell, and B. Wagner, "Silicon-silicon anodic-bonding with intermediate glass layers using spin-on glasses," in Micro Electro Mechanical Systems, 1996, MEMS′96, Proceedings. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems. IEEE, The Ninth Annual International Workshop on, 1996, pp. 272-276.
[22] S. N. Farrens, J. R. Dekker, J. K. Smith, and B. E. Roberds, "Chemical free room temperature wafer to wafer direct bonding," Journal of the Electrochemical Society, vol. 142, pp. 3949-3955, 1995.
[23] H. Takagi, K. Kikuchi, R. Maeda, T. Chung, and T. Suga, "Surface activated bonding of silicon wafers at room temperature," Applied physics letters, vol. 68, pp. 2222-2224, 1996.
[24] D. Resnik, D. Vrtačnik, U. Aljančič, and S. Amon, "Study of low-temperature direct bonding of (111) and (100) silicon wafers under various ambient and surface conditions," Sensors and Actuators A: Physical, vol. 80, pp. 68-76, 2000.
[25] Q.-Y. Tong, G. Fountain, and P. Enquist, "Room temperature SiO2∕ SiO2 covalent bonding," Applied physics letters, vol. 89, p. 042110, 2006.
[26] C. Wang and T. Suga, "Investigation of fluorine containing plasma activation for room-temperature bonding of Si-based materials," Microelectronics Reliability, vol. 52, pp. 347-351, 2012.
[27] Q. Y. Tong, G. Cha, R. Gafiteanu, and U. Gosele, "Low temperature wafer direct bonding," Microelectromechanical Systems, Journal of, vol. 3, pp. 29-35, 1994.
[28] H. Takagi and R. Maeda, "Direct bonding of two crystal substrates at room temperature by Ar-beam surface activation," Journal of crystal growth, vol. 292, pp. 429-432, 2006.
[29] U. Gösele, H. Stenzel, T. Martini, J. Steinkirchner, D. Conrad, and K. Scheerschmidt, "Self‐propagating room‐temperature silicon wafer bonding in ultrahigh vacuum," Applied physics letters, vol. 67, pp. 3614-3616, 1995.
[30] R. Knechtel, "Glass frit bonding: an universal technology for wafer level encapsulation and packaging," Microsystem technologies, vol. 12, pp. 63-68, 2005.
[31] X. X. Zhang and J.-P. Raskin, "Low-temperature wafer bonding: a study of void formation and influence on bonding strength," Microelectromechanical Systems, Journal of, vol. 14, pp. 368-382, 2005.
[32] Q. Y. Tong, E. Schmidt, U. Gösele, and M. Reiche, "Hydrophobic silicon wafer bonding," Applied physics letters, vol. 64, pp. 625-627, 1994.
[33] T. Alford, T. Tang, D. Thompson, S. Bhagat, and J. Mayer, "Influence of microwave annealing on direct bonded silicon wafers," Thin Solid Films, vol. 516, pp. 2158-2161, FEB 29 2008 2008.
[34] W. Kingery, H. Bowen, and D. Uhlmann, "Introduction to ceramics. 1976," John Willey & Sons, NY.
[35] M. Bruel, B. Aspar, and A. J. AubertonHerve, "Smart-cut: A new silicon on insulator material technology based on hydrogen implantation and wafer bonding," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 36, pp. 1636-1641, Mar 1997.
[36] G. K. Celler and S. Cristoloveanu, "Frontiers of silicon-on-insulator," Journal of Applied Physics, vol. 93, pp. 4955-4978, May 2003.
[37] J. W. Lee, C. S. Kang, O. S. Song, and C. K. Kim, "Application of linear annealing method to Si||SiO2/Si wafer direct bonding," Thin Solid Films, vol. 394, pp. 271-275, 8/15/ 2001.
[38] J. T. S. Lin, T. John Wolf Int. Inc., Taiwan, J. Peng, and T.-H. Lee, "Nova Cut™ process: fabrication of silicon on insulator materials," presented at the SOI Conference, IEEE International 2002, 2002.
[39] T.-H. Lee, C.-H. Huang, Y.-Y. Yang, P.-W. Li, T. Suryasindhu, and S. Lee, "Fabrication of a Nanoscale Single-Crystalline Silicon Thin Film on Insulator," Electrochemical and Solid-State Letters, vol. 10, pp. K17-K19, January 1, 2007 2007.
[40] T. H. Lee, C. H. Huang, Y. Y. Yang, T. Suryasindhu, and P. W. Li, "Nanoscale thick layer transfer of hydrogen-implanted wafer by using polycrystalline silicon sacrificial layer," Applied Physics Letters, vol. 91, pp. 203119-3, 11/12/ 2007.
[41] C. Qian and B. Terreault, "Blistering of silicon crystals by low keV hydrogen and helium ions," Journal of Applied Physics, vol. 90, pp. 5152-5158, Nov 2001.
[42] T. K. CHUANG and A. USENKO, "OXYGEN PLASMA CONVERSION PROCESS FOR PREPARING A SURFACE FOR BONDING," ed: WO Patent 2,012,003,161, 2012.
[43] "Packaging of Bio-MEMS: Strategies, Technologies, and Applications," IEEE Transactions on Advanced Packaging, vol. 28, p. 533, 2005.
[44] "Fabrication and characterization of folded SU-8 suspensions for MEMS applications," Sensors and Actuators A Physical, vol. 130-131, p. 379, 2006.
[45] "Determination of the adhesion energy of MEMS structures by applying Weibull-type distribution function," Sensors and Actuators A Physical, vol. 132, p. 407, 2006.
[46] Y. Byung-Kee Lee and Dong-Hoon Choi and Jun-Bo, "Use of nanoporous columnar thin film in the wafer-level packaging of MEMS devices," Journal of Micromechanics and Microengineering, vol. 20, p. 045002, 2010.
[47] F. Hsueh-An Yang and Mingching Wu and Weileun, "Localized induction heating solder bonding for wafer level MEMS packaging," Journal of Micromechanics and Microengineering, vol. 15, p. 394, 2005.
[48] S. Frank Niklaus and Edvard Kälvesten and Göran, "Wafer-level membrane transfer bonding of polycrystalline silicon bolometers for use in infrared focal plane arrays," Journal of Micromechanics and Microengineering, vol. 11, p. 509, 2001.
[49] V. Papanek and R. B. Fuller, Design for the real world: Thames and Hudson London, 1972.
[50] D. T. Allen and D. R. Shonnard, Green engineering: environmentally conscious design of chemical processes: Pearson Education, 2001.
[51] C.-T. Ko and K.-N. Chen, "Low temperature bonding technology for 3D integration," Microelectronics reliability, vol. 52, pp. 302-311, 2012.
[52] H. Moriceau, F. Rieutord, C. Morales, and A. Charvet, "Surface plasma treatments enabling low temperature direct bonding," Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 12, pp. 378-382, MAR 2006 2006.
[53] F.-S. Lo, C.-C. Chiang, C. Li, and T.-H. Lee, "Enhancement of Bonding Strength for Low Temperature Si3N4/Si3N4 Direct Wafer Bonding by Nitrogen-Plasma Activation and Hydrofluoric Pre-dip," ECS Transactions, vol. 64, pp. 111-117, 2014.
[54] Q. Y. Tong and U. Gosele, "SEMICONDUCTOR WAFER BONDING - RECENT DEVELOPMENTS," Materials Chemistry and Physics, vol. 37, pp. 101-127, Mar 1994.
[55] R. W. Bower, M. S. Ismail, and B. E. Roberds, "Low temperature Si3N4 direct bonding," Applied physics letters, vol. 62, pp. 3485-3487, 1993.
[56] Q.-Y. Tong, Q. Gan, G. Hudson, G. Fountain, P. Enquist, R. Scholz, et al., "Low-temperature hydrophobic silicon wafer bonding," Applied physics letters, vol. 83, pp. 4767-4769, 2003.
[57] F. Santeri Tuomikoski and Sami, "Wafer-Level Bonding of MEMS Structures with SU-8 Epoxy Photoresist," Physica Scripta, vol. 2004, p. 223, 2004.
[58] T. Takeshi Matsumura and Masayoshi Esashi and Hiroshi Harada and Shuji, "Multi-band radio-frequency filters fabricated using polyimide-based membrane transfer bonding technology," Journal of Micromechanics and Microengineering, vol. 20, p. 095027, 2010.
[59] M. T. Veikko Lindroos, Ari Lehto and Teruaki Motooka, "Handbook of Silicon Based MEMS Materials and Technologies ", ed.
[60] B. F. a. R. M. Y. a. R. G. Sheng Li and Carl, "Fabrication of micronozzles using low-temperature wafer-level bonding with SU-8," Journal of Micromechanics and Microengineering, vol. 13, p. 732, 2003.
[61] "Thermocompression bonding for wafer level hermetic packaging of RF-MEMS devices," Journal of Korean Sensors Society, vol. 15, p. 58, 2006.
[62] "Wafer bonding with nano-imprint resists as sacrificial adhesive for fabrication of silicon-on-integrated-circuit (SOIC) wafers in 3D integration of MEMS and ICs," Sensors and Actuators A Physical, vol. 154, p. 180, 2009.
[63] C. T. P. a. H. Y. a. S.-C. S. a. M.-C. C. a. H.-P. Chou, "A low-temperature wafer bonding technique using patternable materials," Journal of Micromechanics and Microengineering, vol. 12, p. 611, 2002.
[64] I. Ban, U. E. Avci, D. L. Kencke, P. Tolchinsky, P. L. D. Chang, and Ieee, "Integration of Back-Gate Doping for 15-nm Node Floating Body Cell (FBC) Memory," 2010 Symposium on Vlsi Technology, Digest of Technical Papers, pp. 159-160, 2010.
[65] C. Maleville and C. Mazuré, "Smart-Cut< sup>® technology: from 300 mm ultrathin SOI production to advanced engineered substrates," Solid-State Electronics, vol. 48, pp. 1055-1063, 2004.
[66] W. P. Maszara, "Silicon‐On‐Insulator by Wafer Bonding: A Review," Journal of The Electrochemical Society, vol. 138, pp. 341-347, 1991.
[67] M. Bruel, "Process for the production of thin semiconductor material films," ed: US Patent 5,374,564, 1994.
[68] F. S. Lo, R. Y. Xu, C. C. Ho, C. Li, and T. H. Lee, "Thermal stress induced thin film transfer from single-crystal silicon layer on sapphire substrate," Integrated Ferroelectrics.
[69] G. Smestad, "Conversion of heat and light simultaneously using a vacuum photodiode and the thermionic and photoelectric effects," Solar Energy Materials and Solar Cells, vol. 82, pp. 227-240, MAY 1 2004 2004.
[70] I. Alekseeva, A. Budnik, and V. Zherebtsov, "Characteristics of a thermionic laser radiation-to-electricity converter," Atomic Energy, vol. 96, pp. 87-95, FEB 2004 2004.
[71] M. Asghari and A. V. Krishnamoorthy, "Silicon photonics: Energy-efficient communication," Nature Photonics, vol. 5, pp. 268-270, 2011.
[72] S. H. Christiansen, R. Singh, and U. Gosele, "Wafer Direct Bonding: From Advanced Substrate Engineering to Future Applications in Micro/Nanoelectronics," Proceedings of the IEEE, vol. 94, pp. 2060-2106, 2006.
[73] J. Garguilo, F. Koeck, R. Nemanich, X. Xiao, J. Carlisle, and O. Auciello, "Thermionic field emission from nanocrystalline diamond-coated silicon tip arrays," Physical Review B, vol. 72, OCT 2005 2005.
[74] J. Lan, D. Cheng, D. Cao, and W. Wang, "Silicon nanotube as a promising candidate for hydrogen storage: from the first principle calculations to grand canonical Monte Carlo simulations," The Journal of Physical Chemistry C, vol. 112, pp. 5598-5604, 2008.
[75] L. Schlapbach and A. Züttel, "Hydrogen-storage materials for mobile applications," Nature, vol. 414, pp. 353-358, 2001.
[76] F. Lo, P. Lu, B. Ragan-Kelley, A. Minnich, T. Lee, M. Lin, et al., "Modeling a thermionic energy converter using finite-difference time-domain particle-in-cell simulations," Physics of Plasmas (1994-present), vol. 21, p. 023510, 2014.
[77] F. Lo, R. Hsu, C.-C. Ho, C. Li, and T.-H. Lee, "Thermal Stress Induced Thin Film Transfer from Single-crystal Silicon Layer on Sapphire Substrate," Integrated Ferroelectrics, vol. 144, pp. 73-78, 2013.
[78] B. Moyzhes and T. Geballe, "The thermionic energy converter as a topping cycle for more efficient heat engines - new triode designs with a longitudinal magnetic field," Journal of Physics D-Applied Physics, vol. 38, pp. 782-786, MAR 7 2005 2005.
[79] J. Smith, G. Bilbro, and R. Nemanich, "Theory of space charge limited regime of thermionic energy converter with negative electron affinity emitter," Journal of Vacuum Science & Technology B, vol. 27, pp. 1132-1141, MAY 2009 2009.
[80] D. A. Jones, T. P. Lelyveld, S. D. Mavrofidis, S. W. Kingman, and N. J. Miles, "Microwave heating applications in enviromnental engineering - a review," Resources Conservation and Recycling, vol. 34, pp. 75-90, Jan 2002.
[81] M. Chen, "Towards smart city: M2M communications with software agent intelligence," Multimedia Tools and Applications, vol. 67, pp. 167-178, Nov 2013.
[82] J. H. Lee, R. Phaal, and S. H. Lee, "An integrated service-device-technology roadmap for smart city development," Technological Forecasting and Social Change, vol. 80, pp. 286-306, Feb 2013.
指導教授 李天錫(Tien-Hsi Lee) 審核日期 2015-5-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明