博碩士論文 973404008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.235.179.111
姓名 盧建均(Chien-Chun Lu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 應用LED 調變光源技術於人因照明之研究
(Study on Human-Factor lighting employing LED modulation light source technology)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立
★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究★ 含銅鎳之錫薄膜線之電致遷移研究
★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究★ 電遷移誘發銅墊層消耗動力學之研究
★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究★ 錫鎳覆晶接點之電遷移研究
★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響★ 覆晶凸塊封裝之兩界面反應交互作用研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文研究夜間照明用的LED光源,以滿足人「視覺上需求」-高演色性和「非視覺效應(non-visual effect)」-低晝夜節律刺激。
在第1部分,我們研究設計LED光源並與現有市面上螢光燈特性比較。實驗的結果,由藍光LED峰波長 {Wp = 450nm}和紅色LED {Wp = 630nm}搭配的綠色螢光粉{Wp = 540nm},可以得到色溫不同的白光光源(2300 K-5000 K)。而製成的白光LED光源具高演色性,並比螢光燈具有低的晝夜刺激值的優點。這是因為白光LED光源可選擇較短藍光LED峰波長幅射,因此可「降低作用於人眼的作用光谱 (action spectrum) 」。另外,由於光源特性,LED的「“藍光光譜能量(波長<500 nm)佔全部能量的比值”」比螢光燈低,也有效降低光源的晝夜刺激值。
第二部分探討本文設計的LED光源和螢光燈對人褪黑激素的影響。我們分析人在不同光源照射前後,褪黑激素的分泌情形。在微弱光(<10lux)的情況,有56%的增加。在LED(色溫3000 K)的情況,有42%的增加。在螢光燈(色溫3000 K,5000K)的情況下,僅為25%,15%。本文試者對光源的特性進行定量研究,我們可以發現人眼在相同視覺亮度-「流明」,褪黑素分泌的抑製作用隨生理亮度-「晝夜刺激照度」增加。而本實驗設計的LED光源為何能取得了較好的結果,是因為具較低的「晝夜刺激照度」,因此減弱於褪黑激素分泌的抑制作用。並且這些研究數據說明LED的光譜特性可以被微調,以減弱對人類的非視覺效應。
摘要(英) This paper studies the LED light source used for night lighting to meet people′s "visual needs" -- high color rendering index and “non-visual effects " - low circadian simulate values. In the first part, we design the LED light source and compare it with the existing fluorescent lamp. By adjusting the intensity of LED light source at different wavelengths, the blue light LED {Wp = 450nm} light source and the red LED {Wp = 630nm} light source mixed with green phosphor source {Wp = 540-545nm}, and white light with different color temperatures (2300 K-5000 K) can be obtained. The LED white light source has the characteristics of high color rendering index and has the advantage of lower circadian stimulation than the fluorescent lamp. This is because the LED source can choose a shorter blue LED peak wavelength radiation, thus "reducing the action spectrum effect acting on the human eye". In addition, because of the characteristics of the light source, the blue light spectral energy (<500 nm) of LED accounts for the total energy ratio, which is lower than that of the fluorescent lamp, and also effectively reduces the circadian simulate value.
The second part discusses the effects of LED lamp and fluorescent lamp on human melatonin. We analyzed the secretion of melatonin before and after exposure to different light sources. In the case of dim light (<10lux), there is an increase of 56%. In the case of LED (color temperature 3000 K), there is an increase of 46%. In the case of the fluorescent lamp (color temperature 3000 K, 5000K), it is only 25%, 15%. In this paper, we quantitatively studied the characteristics of light source. We can see that the inhibitory effect on melatonin secretion in the same {visual intensity} - "lumens", the inhibitory effect increased with {physiological brightness} - “circadian flux". And why the LED light source in this experiment can achieve good results. We concluded that LED 3000 K is lower in "circadian flux" and therefore weakened in the inhibition of melatonin secretion. And these data show that the spectral properties of LED can be finely tuned to reduce the non-visual effects on human beings.
關鍵字(中) ★ 發光2極體
★ 褪黑激素
★ 晝夜節律系統
關鍵字(英) ★ LED
★ Melatonin
★ Circadian system
論文目次 Chapter 1 Background and Motivation.....................1
Chapter 2 Theoretical Foundation and Review.............7
2.1 The structure of the human eye..................7
2.2 The sensory cells of the retina.................8
2.3 Circadian rhythm................................9
2.4 Optical - eye - brain pathways.................10
2.5 Melatonin .....................................11
2.6 Melatonin Action Spectrum, Circadian Stimulus..12
2.7 Photonic Luminosity Spectrum, Luminosity P ....13
Chapter 3 Creation of LED light sources, which is bright and comfortable to eyes and dark to the circadian system.................................................14
3.1 Introduction...................................14
3.2 First Experiment –Exploring the manufacturing method of LED light source, to achieve high CRI and low CS/P....... ...........................................15
3.2.1 Background ......................................15
3.2.2 Experimental Design ...........................17
3.2.3 Results....................................... 22
3.3 Second Experiment – Study low CS / P LED source at tunable correlated color temperature….............35
3.3.1 Background...................................... 35
3.3.2 Experimental Design .............................36
3.3.3 Results .........................................38

3.4 Discussion
3.4.1 Discussion on the LED light source modulation technology ............................................50
3.4.2 Discussion on the LED light source and fluorescent light source on circadian rhythm stimulation values…............................................... 55
Chapter 4 Effects of nighttime lights by LED and fluorescent lighting on human melatonin..............................................59
4.1 First Experiment – Compare the melatonin suppression between LED light sources with different CCT....................................................59
4.1.1 Purpose..........................................59
4.1.2 Method for Experiment ...........................60
4.1.3 Results .........................................66
4.1.4 Discussions and Conclusion.......................70
4.2 Second Experiment -Compare the effect on circadian rhythm of melatonin secretion between the LED obtained in the first experiment and the fluorescent lamps..................................................71
4.2.1 Purpose......................................... 71
4.2.2 Method for experiment ...........................71
4.2.3 Results .........................................77
4.3 Discussion and Conclusion.............................................81
References.............................................87
參考文獻 1.Schubert EF, Kim, J. K. (2005) Solid-state light sources getting.smart. Science 308(5726) : 1274-1278.
2.Brainard GC, Hanifin JP, Greeson JM, Byrne B, Glickman G, Gerner E, Rollag MD (2001) Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. The Journal of Neuroscience 21(16) : 6405-6412.
3.Duffy JF, Czeisler CA (2009) Effect of light on human circadian physiology. Sleep medicine clinics 4(2) : 165-177.
4.Vimal RL, Pandey‐Vimal MUC, Vimal LSP, Frederick BB, Stopa EG, Renshaw PF, Harper DG (2009) Activation of suprachiasmatic nuclei and primary visual cortex depends upon time of day. European Journal of Neuroscience 29(2) : 399-410.
5.Paul, K. N., Saafir, T. B., & Tosini, G. (2009). The role of retinal photoreceptors in the regulation of circadian rhythms. Reviews in endocrine and metabolic disorders, 10(4), 271-278.
6.Graham, D. M., & Wong, K. Y. (2015). Melanopsin-expressing, Intrinsically Photosensitive Retinal Ganglion Cells (ipRGCs).
7.Boivin DB, Duffy JF, Kronauer RE, Czeisler CA (1996) Dose-response relationships for resetting of human circadian clock by light. Nature 379(6565) :540.
8.Fonken LK, Nelson RJ (2014) The effects of light at night on circadian clocks and metabolism. Endocrine reviews 35(4) : 648-670.
9.Lewy AJ, Wehr TA, Goodwin FK, Newsome DA, Markey SP (1980) Light suppresses melatonin secretion in humans. Science 210(4475) :1267-1269.
10.Brainard GC, Sliney D, Hanifin JP, Glickman G, Byrne B, Greeson JM, Jasser S, Gerner E, Rollag MD (2008) Sensitivity of the human circadian system to short-wavelength (420-nm) light. Journal of biological rhythms 23(5) : 379-386.
11.West KE, Jablonski MR, Warfield B, Cecil KS, James M, Ayers MA, Maida J, Bowen C, Sliney DH, Rollag MD, Hanifin JP, Brainard GC (2011) Blue light from light-emitting diodes elicits a dose-dependent suppression of melatonin in humans. Journal of applied physiology 110(3) : 619-626.
12.Yasukouchi A, Ishibashi K (2005) Non-visual effects of the color temperature of fluorescent lamps on physiological aspects in humans. Journal of physiological anthropology and applied human science 24(1) : 41-43.
13.Blask, David E., et al. "Melatonin-depleted blood from premenopausal women exposed to light at night stimulates growth of human breast cancer xenografts in nude rats." Cancer research 65.23 (2005): 11174-11184.
14.Stevens, Richard G., et al. "Meeting report: the role of environmental lighting and circadian disruption in cancer and other diseases." Environmental health perspectives (2007): 1357-1362.
15.Lockley SW, Brainard GC, Czeisler CA (2003) High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. The Journal of Clinical Endocrinology & Metabolism 88(9) : 4502-4502.
16.Cajochen C, Münch M, Kobialka S, Kräuchi K, Steiner R, Oelhafen P, Orgül S, Wirz-Justice A (2005) High sensitivity of human melatonin, alertness, thermoregulation, and heart rate to short wavelength light. The journal of clinical endocrinology & metabolism 90(3) : 1311-1316.
17.Lockley SW, Evans EE, Scheer FA, Brainard GC, Czeisler CA, Aeschbach D (2006) Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans. Sleep 29(2) : 161-168.
18.Rahman SA, Flynn-Evans EE, Aeschbach D, Brainard GC, Czeisler CA, Lockley SW (2014) Diurnal spectral sensitivity of the acute alerting effects of light. Sleep, 37(2) : 271.
19.Revell VL, Arendt J, Fogg LF, Skene DJ (2006) Alerting effects of light are sensitive to very short wavelengths. Neuroscience letters 399(1) : 96-100.
20.Kozaki T, Koga S, Toda N, Noguchi H, Yasukouchi A (2008) Effects of short wavelength control in polychromatic light sources on nocturnal melatonin secretion. Neuroscience letters 439(3) : 256-259.
21.Brainard GC, Hanifin JP, Warfield B, Stone MK, James ME, Ayers M, Kubey A, Byrne B, Rollag M (2015) Short-wavelength enrichment of polychromatic light enhances human melatonin suppression potency. Journal of pineal research 58(3) :352-361.
22.Rahman, S. A., Hilaire, M. A. S., & Lockley, S. W. (2017). The effects of spectral tuning of evening ambient light on melatonin suppression, alertness and sleep. Physiology & Behavior, 177, 221-229.
指導教授 劉正毓(Cheng-Yi Liu) 審核日期 2018-1-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明