博碩士論文 973406001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.238.174.50
姓名 楊文儀(Wen-yi Yang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 巨大孔徑幾丁聚醣膜之製備及其固定化酵素之研究
(Development of Modified Macroporous Chitosan Membranes for Enzyme Immobilization)
相關論文
★ 工業廢水對灌溉水質影響之研究-以黃墘溪為例★ 廢冷陰極管汞回收處理效率之研究
★ 室內懸浮微粒與生物氣膠之相關性探討-以某醫學中心為例★ 化學機械研磨廢液對工業區污水處理效益與 操作成本之影響
★ 網路數位電力監測系統於大學用電行為分析之研究★ 光電業進行自願性碳標準(VCS)減量計畫可行性之研究
★ 污染農地整治後未能符合農用成因之探討★ 桃園縣居家入侵紅火蟻防治方法探討
★ 印刷電路板產業濕式製程廢液回收鈀金屬可行性之研究★ 不同表面特性黏土催化高分子凝聚劑與消毒劑(氯)反應之研究
★ 界面活性劑對土壤/水系統中有機污染物分佈行為之研究★ 淨水程序中添加高分子凝聚劑對混凝與加氯處理效應之研究
★ 土壤無機相對揮發性有機污染物吸∕脫附行為之影響★ 土壤對Triton 系列各EO鏈選擇性吸附之研究
★ 土壤有機質對土壤/水系統中低濃度非離子有機污染物吸附行為之研究★ 不同表面特性黏土催化水中有機物之氯化反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究之主要目的在探討巨大孔徑幾丁聚醣膜的製備及其表面特性改質對酵素親和性之影響並藉由薄膜上金屬的摻合作為架橋,再將其固定於具特定生化功能的酵素以了解固定化酵素再利用之可行性。此外本研究亦針對幾種於生化和環境污染物降解上應用廣泛之酵素進行固定化基礎和應用研究,以解決目前固定化基材孔洞過小,易碎無法成形,不耐酸鹼以及再利用性和親水性不佳等缺失。
本研究以矽膠為固定支撐物並利用相轉化的製備方法將幾丁聚醣交聯於矽膠表面以形成巨大孔徑的幾丁聚醣薄膜。幾丁聚醣膜作為固定基材之前其表面必須先以高分子化合物進行交聯以使幾丁聚醣膜表面功能化。實驗結果顯示在製備巨大孔徑之幾丁聚醣膜時所利用之幾丁聚醣與粒徑為60-200 µm矽膠比例為1:25時為最佳製備條件,利用PMI測得平均孔洞大小為0.1623 µm,推論係因幾丁聚醣分子結構交互作用而使分子內之氫鍵產生作用,當矽膠含量增加則Si-O-Si 的吸收更加強烈,隨著矽膠含量的增加,孔洞強度明顯增加。利用不同之交聯劑(1,4 butanediol diglycidyl ether、Glutaraldehyde及 Epichlorohydrin)交聯幾丁聚醣膜,1,4 butanediol diglycidyl ether與 Epichlorohydrin需先開環以利與幾丁聚醣產生交聯,利用 FTIR測得之-OH、-NH2等官能基伸縮強度為最強,推斷此三種交聯劑皆有多個線性相互鍵結形成網絡結構,因此可以更有效地使幾丁聚醣膜上之官能基發揮到最佳效果。以13C NMR分析鑑定,可以確定改質後幾丁聚醣膜本身的官能基增加,以未改質之幾丁聚醣膜為基準,利用交聯劑1,4 butanediol diglycidyl ether之胺基為4.88 ,Glutaraldehyde之胺基為0.14 ,Epichlorohydrin之胺基為3.20。羧基的部分以1,4 butanediol diglycidyl. ether改質後之羧基為2.73 ,Glutaraldehyde改質後之羧基為1.34 ,Epichlorohydrin改質後之羧基為4.43,推論 1,4 butanediol diglycidyl ether及Epichlorohydrin開環後大部分接枝於幾丁聚醣膜矽膠上,因此可測得大量的胺基,但 Glutaraldehyde僅測得少數胺基,可能係由於大部分的胺基與幾丁聚醣膜相互反應所造成之結果。
游離與固定化酵素的活性實驗發現,游離Laccase之最適活性為pH5(8.01 %),在摻合不同交聯劑後最適活性以 Epichlorohydrin為pH 7(4.46 %)之效果最佳,推論是因為其於Epichlorohydrin交聯時的官能基羧酸增加而無法有多的空間固定化Laccase所致。游離Tyrosinase之最適活性為pH 5(1.74 %),在摻合不同交聯劑後最適活性1,4 butanediol diglycidyl ether為pH 7(0.45 %)之效果最佳,可能是因為幾丁聚醣會吸附H+離子,使固定化酵素對於H+離子產生斥力,若Tyrosinase與幾丁聚醣膜之距離愈近,則固定化酵素對於H+離子之斥力越大,因此需要更高之H+離子濃度。
固定化酵素再利用實驗,藉由FTIR觀察幾丁聚醣膜交聯改質前後官能基的變化,證明交聯劑與幾丁聚醣膜上的胺基產生鍵結。當金屬溶液pH值愈小,胺基質子化程度愈高,可架橋金屬離子的胺基數目就愈少使得金屬離子的吸附能力降低,但固定Tyrosinase後於低pH值(pH3)時的效果最佳,推測經固定Tyrosinase的幾丁聚醣膜其胺基減少而羧酸官能基增加。
摘要(英) The main objective of this study was to evaluate the preparation and modification of macroporous chitosan membrane affecting the surface properties of membrane and the affinity for the specific biochemical function enzymes. In this study, silica gel was used as support for the preparation chitosan crosslinked surface to form a macroporous of chitosan membrane by phase inversion methed. Chitosan membrane surface as a substrate before fixing must be first crosslinked to make surface functionalized on the chitosan membrane. Experimental results show that silica particle size of 60-200 μm at a ratio of 1:25 was optimum conditions to prepare the macroporous chitosan membrane. The measurment of PMI average pore size 0.1623 μm indicated that the molecular structure of chitosan with hydrogen bonding interactions within the molecule which effect increasing with the content of silica increased. From SEM (Scanning Electron Microscopy) results, the surface structure, the roughness and pore distribution arrangement of the chitosan membrane could be revealed. The use of different cross-linking agents (1,4 butanediol diglycidyl ether, Glutaraldehyde and Epichlorohydrin) to form crosslinked chitosan membranes revealed that 1,4 butanediol diglycidyl ether and Epichlorohydrin must be first open-ring to facilitate the cross-linking of chitosan. This is confirmed by the reserved peak shift of both OH and NH2 group in the FT-IR spectra. In 13C NMR analysis indicated that amine and carboxyl group are significantly increased after membrane surface modification.
The effect of various parameters such as temperature and pH on the relative activity of both free and immobilized enzymes was also studied in details. The relative enzyme activity upon immobilization was greatly enhanced several folds of its original activity. The stability of enzymes over a range of pH was significantly improved by immobilization. The immobilized enzyme possessed good operational stability and reusability properties that support its potentiality for practical applications. This decreased activity is probably due to the repulsion between positive surface of chitosan membrane surface and Tyrosinase.
The results of FT-IR, NMR, UV–vis, and SEM analyses revealed the effect of the presence of silica gel as a support could provide a large surface area, and therefore, the enzyme could be immobilized only on the surface, and thus minimized the diffusion limitation problem. The resultant enzyme immobilized membranes were also characterized based on their activity retention, immobilization efficiency, and stability aspects.The immobilization process increased the activity of immobilized enzyme even higher than that of total (actual) activity of native enzyme. Thus, the obtained macroporous chitosan membranes in this study could act as a versatile host for various guest molecules.
關鍵字(中) ★ 幾丁聚醣膜
★ 固定化酵素
★ 金屬親和力
★ 表面官能化
關鍵字(英) ★ chitosan membrane
★ enzyme immobilization
★ metal affinity
★ surface functionality
論文目次 目 錄
目次 頁次
目 錄 I
圖目錄 IV
表目錄 VI


第一章 前言 1

1-1 研究緣起 1
1-2 研究目的 4

第二章 文獻回顧 5

2-1 幾丁類物質之簡介 5
2-1-1 幾丁質及幾丁聚醣的介紹 5
2-2 幾丁聚醣之特性 9
2-3 幾丁聚醣膜改質機制 11
2-4 吸附機制與吸附模式 12
2-4-1 幾丁聚醣的吸附 14
2-4-2 吸附過程 17
2-5 幾丁聚醣於環工上之應用 17
2-6 酵素 18
2-6-1 特性與種類 19
2-6-2 酵素於環工上之應用 20
2-6-3 幾丁聚醣在酵素系統之應用 22
2-7 固定化擔體之種類與選擇 23
2-8 固定化酵素的簡介 25
2-8-1 固定化方法 26
2-8-2 固定化載體選擇 30
2-8-3 固定化酵素之選擇 31
2-9 金屬架橋 35

第三章 實驗設備與方法 37

3-1 實驗藥品 37
3-2 實驗設備 38
3-2-1 孔隙測定儀 (低壓) 38
3-2-2 分光光譜儀 39
3-2-3 場發射掃瞄式電子顯微鏡 39
3-2-4 傅立葉轉換紅外線光譜儀 39
3-2-5 熱重/熱差分析儀 39
3-2-6 火焰式原子吸收光譜儀 40
3-2-7 NMR固態核磁共振光譜儀 40
3-2-8 烘箱 40
3-2-9 pH 計 40
3-2-10 電子天平 40
3-2-11 高速攪拌器 41
3-2-12 電磁加熱攪拌器 41
3-2-13 水平震盪機 41
3-3 儀器原理 41
3-3-1 孔徑分析儀 41
3-3-2 分光光譜儀 42
3-3-3 場發射掃瞄式電子顯微鏡 42
3-3-4 傅利葉轉換紅外線光譜儀 43
3-3-5 熱重/熱差分析儀 43
3-3-6 火焰式原子吸收光譜儀 44
3-3-7 固態核磁共振光譜儀 44
3-4 實驗分析及前處理 46
3-4-1 孔徑分析儀 46
3-4-2 分光光譜儀 46
3-4-3 掃描式電子顯微鏡 46
3-4-4 傅利葉轉換紅外線光譜儀 47
3-4-5 熱重/熱差分析儀 48
3-4-6 火焰式原子吸收光譜儀 48
3-4-7 固態核磁共振光譜儀 49
3-5 實驗方法及流程 50
3-5-1 巨大孔徑幾丁聚醣膜之製備 50
3-5-2 巨大孔徑幾丁聚醣膜之表面改 質 54
3-5-3 酵素活性分析 54
3-5-4 固定化酵素製備 55
3-5-5 酵素最適反應條件 55
3-5-6 架橋實驗 55
3-5-6-1 金屬離子架橋實驗 57
3-5-6-2 固定化酵素 58
3-5-6-3 金屬離子脫附實驗 58

第四章 結果與討論 59

4-1 巨大孔洞幾丁聚醣膜之表面特性分析 59
4-1-1 孔隙分析 59
4-1-2 幾丁聚醣膜之熱分析 65
4-1-3 幾丁聚醣膜之孔洞結構 67
4-2 幾丁聚醣薄膜之表面改質 70
4-2-1 改質前後官能基之變化 71
4-2-1-1 傅利葉轉換紅外線光譜儀(FTIR)分析 71
4-2-1-2 固態核磁共振光譜(NMR)分析 79
4-2-2 改質前後表面形態變化 82
4-2-3 交聯劑的鍵結 90
4-3 幾丁聚醣膜改質前後對酵素鍵結之差異 95
4-3-1 改質前幾丁聚醣膜與酵素之鍵結 95
4-3-2 改質後幾丁聚醣膜與酵素之鍵結 99
4-3-3 幾丁聚醣膜之羧基接枝率 108
4-4 游離酵素與固定化酵素之活性比較 113
4-4-1 不同酵素濃度與矽膠比例的選擇 113
4-4-2 游離酵素之最佳pH值 117
4-4-3 固定化酵素之最佳pH值 119
4-5 固定化酵素之再利用 123
4-5-1 金屬架橋之選擇 123
4-5-2 架橋固定化酵素之活性 128
4-5-3 脫附金屬架橋之研究 131

第五章 結論與建議 140

5-1 結論 140
5-2 建議 144

參考文獻 145
參考文獻 [1] 陳國誠, 酵素工程學. 藝軒出版社, 1992.
[2] Morpurgo, M., et al., Covalent modification of mushroom tyrosinase with different amphiphic polymers for pharmaceutical and biocatalysis applications. Applied biochemistry and biotechnology, 56, 1 , p. 59-72, 1996.
[3] Serafica G. C., P.J.M., Belfort G. , Protein Fractionation Using Fast Flow Immobilized Metal Chelate Affinity Membranes. Biotechnology and Bioengineering, 43, p. 21-36, 1994.
[4] Rodemann, K. and E. Staude, Synthesis and characterization of affinity membranes made from polysulfone. Journal of Membrane Science, 1994. 88(2–3): p. 271-278.
[5] Gerstner, J.A., R. Hamilton, and S.M. Cramer, Membrane chromatographic systems for high-throughput protein separations. Journal of Chromatography A, 596, 2, p. 173-180, 1992.
[6] Malakian A. , G.M., Bellefeuille J. , Purification of monoclonal and polyclonal IgG with affinity membrane matrix coupled with proteins A and G. Am. Lab, 40, p. 40, 1993.
[7] Ikediobi, C.O., M. Stevens, and L. Latinwo, Immobilization of linamarase on non-porous glass beads. Process Biochemistry, 33(5): p. 491-494, 1998.
[8] Hang, K.L.B., et al., Heterogeneous N-deacetylation of chitin in alkaline solution. Carbohydrate Research, 303, 3, p. 327-332, 1997.
[9] Madihally, S.V. and H.W.T. Matthew, Porous chitosan scaffolds for tissue engineering. Biomaterials, 20, 12, p. 1133-1142, 1999.
[10] 陳澄河, 蝦蟹殼傳奇, 科學發展月刊, 369: p. 62-67, 2003.
[11] Eiden, C.A., Jewell, C.A., Wightman, J.P., Interaction of lead and chromium with chitin and chitosan, J. Apply. Polym. Sci., 25, 1587~1599, 1980.
[12] Randall J. M., Randall V. G., McDonald, G. M., Toung R. N., J. Appl. Polym. Sci., 23, 727~729, 1979.
[13] Shigeno, Y., Kondo, K., Takemoto,K., J. Appl. Polym. Sci., 25,731~734, 1980.
[14] Kawamura, Y., et al., Adsorption of metal ions on polyaminated highly porous chitosan chelating resin. Journal Name: Industrial and Engineering Chemistry Research; (United States); Journal Volume, 32, 2, p. Medium , p.386-391, 1993.
[15] Jha, I. N., L. Iyengar and A. V. S. Prabhakara Rao, Removal of Cadmium Using Chitosan, J. Environ. Eng. 114, 962–975, 1988.
[16] Jasson-Charrier, M., Guibal, E., Roussy, J., Delanghe, B., Le-Cloirec, P.,Vanadium (IV) sorption by chitosan: kinetics and equilibrium, Water Res., 30, 465~475, 1996.
[17] Hsien T. Y., Rorrer, G.L. Heterogeneous Crosslinking of Chitosan, Separation Science and Technology, 30, 2455-2475, 1995.
[18] Guibal, E.;Milot, C.;Tobin, J.M., Chitosan sorbents for platinum sorption from dilute solutions, Ind. Eng. Chem. Res, 37, 1454~1463, 1998.
[19] 糜福龍、李松濤、沈玉如, 幾丁聚醣-三聚磷酸鈉螯合型樹脂對二價銅離子之研究吸附, Chemistry The Chinese Chem. Soc., Taipei, 57, 1,11~24,1999.
[20] 董崇民、廖建棠、鄭敬賢, 幾丁聚醣圓珠吸附銅離子之研究, 明志技術學院學報, 32, p. 117~122, 2000.
[21] Brugnerotto, J., et al., An infrared investigation in relation with chitin and chitosan characterization. Polymer, 42, 8, p. 3569-3580, 2001.
[22] 許漢平, 以食鹽為造孔劑製備高吸附能力幾丁聚醣薄膜之應用, 國立聯合大學化學工程學系碩士班, 2006.
[23] Muzzarelli R.A.A. , J.C., Gooday G.W. , Chitin in Nature and Technology, Plenum Press, New York, 1986.
[24] Babel, S. and T.A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials, 97, 1–3, p. 219-243, 2003.
[25] M., R.K., Chitin and its association with other molecules. Journal of Polymer Science Part C: Polymer Symposia, 28, 1, p. 83-102, 1969.
[26] Wang, X., Y. Du, and H. Liu, Preparation, characterization and antimicrobial activity of chitosan–Zn complex. Carbohydrate Polymers, 56, 1, p. 21-26, 2004.
[27] 賴淑琪, 水產廢棄蝦、蟹外殼之高度利用. 食品工業, 1979. 11.
[28] 江晃榮,「生體高分子(幾丁質、膠原蛋白)產業現況與展望」,財團法人生物技術開發中心, 1998.
[29] Chiou, M. S., Li H. Y., Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads, Chemosphere, 50, p.1095-1105, 2003.
[30] Juang, R. S., F. C. Wu, and R. L. Tseng, Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan, Water Res., 35, pp.613-618, 2000.
[31] 陳健祺, 幾丁類物質在生醫材料上的應用, 食品工業月刊, 32, 4, p. 9-17, 2000.
[32] 林欣榜, 幾丁類物質在食品加工上的應用, 食品工業月刊, 10, p. 26-37, 1999.
[33] Shahidi, F., J. K. Vidana Arachchi, and Y. J. Jeon, Food applications of chitin and chitosan, Trends in Food Sci.& Technol., 10, 37-51, 1999.
[34] Filar, L.F., Wirick, M. G., Bulk and solution properties of chitosan. In: Proceedings of the 1st International Conference on chitin and chitosan. Muzzarelli, R. A. A., and Pariser, E. R. (Eds)., p. 169, 1978.
[35] Aiba, S.-i., Studies on chitosan: 4. Lysozymic hydrolysis of partially N-acetylated chitosans. International Journal of Biological Macromolecules, 14, 4, p. 225-228, 1992.
[36] Crini, G. and P.-M. Badot, Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in Polymer Science, 33, 4, p. 399-447, 2008.
[37] Cohen-Kupiec, R. and I. Chet, The molecular biology of chitin digestion. Current Opinion in Biotechnology, 9, 3, p. 270-277, 1998.
[38] Kurita, K., Chemistry and application of chitin and chitosan. Polymer Degradation and Stability, 59, 1–3, p. 117-120, 1998.
[39] Rathke T.D., Hodson S.M., Review of chitin and chitosan as fiber and film formers, J.M.S.-Rev. Macromol. Chem. C34, 375-380, 1994.
[40] Muzzarelli R.A.A., Human enzymatic activities related to the therapeutical administration of chitin derivatives, Cell Mol. Biol. Life Sci. 53, 131-136, 1997.
[41] Le Y., Anand S.C., Horrocks A.R., Development of antibacterial polysaccharide fibres abd their performance, in: European Conference on Advances in Wound Management, Amsterdam, Netherlands, 1996.
[42] Lee, S.-T., et al., Equilibrium and kinetic studies of copper (II) ion uptake by chitosan-tripolyphosphate chelating resin. Polymer, 42, 5, p. 1879-1892, 2001.
[43] R.Olsen, D. Schwartzmiller, W. Weppner, R. Winandy, G. Skjak-Brack, T. Anthonsen, P.A. Sandford (eds.), Chitin and Chitosan: Source, Chemistry, Biochemistry, Physical Properties and Applications, Elsevier Applied Science, New York, 1989.
[44] Sandford D.A., Stinnes A. (Eds.), Biomedical Applications of High Purity Chitosad-Physical, Chemical and Bioactive Properties, ACS Symposium Series, 467, 430-435, 1991.
[45] Spreen K.A., Zikakis J.P., Austin P.R., Zikakis J.P. (Ed.), Chitin, Chitosan and Related Enzymes, Academic Press, Orlando, p. 57, 1984.
[46] Zikakis J.P., Saylor W.W., Austin P.R. (eds.),Chitin and Chitosan, The Japanese Society of Chitin and Chitosan, Tottori, p. 233, 1982
[47] Markey M.L., Bowman M.L., Bergamini M.V.W. (Eds.), Chitin and Chitosan, Elsevier Applied Science, London, P. 713, 1989
[48] Nair K.G.R., Madhavan P., Chitosan for removal of mercury from water, Fishery Tech. 21, 109-114, 1984.
[49] C. Peniche-covas, L.W. Alwarez, W.Arguelles-Monal, The adsorption of mercuric ions by chitosan, J. Appl. Polym. Sci. 46, 1147-1152, 1987.
[50] Jha N., Leela I., A.V.S. Prabhakar Rao, Removal of cadmium using chitosan, J. Environ. Eng. 114, 962-969, 1988.
[51] Harry S., The theory of coloration of textiles, in A. Johnson (Ed.), Thermodynamics of Dye sorption, 2nd Edition, Society of Dyers and Colorists, West Yorkshire, UK, p.255, 1989.
[52] Dutta P.K., Ravi Kumar M.N.V., Textile industries: safety, health and environment in: R.K. Trivedy (Ed.), Advances in Wastewater Trement Technologies, Global Science, India, p. 229, 1998.
[53] Allan G., Crospy G.D., Lee J.H., Miller M.L., Reif W.M., Proceedings of a Symposium on Man-made Polymers in Paper Making, Helsinki, Finland, 1972.
[54] Arof L., Subban R.H.Y., Radhakrishna S., P.N. Prasad (Ed.), Polymer and Other Advanced Materials: Emerging Technologies and Business, Plenum Press, New York, p. 539, 1995.
[55] Miyazaki S., Chitin and chitosan as vehicle for drug delivery, Zairyo Gijutsu 16, 276-281, 1998.
[56] Ritthidej G.C., Chomto P., Pummangura S., Menasveta P., Chitin and chitosan as disintigrants in paracetamol tablets, Drug Dev. Ind. Pharm. 20, 2019-2024, 1994.
[57] Pather S.I., Russell I., Syee, J.A., Neau S.H., Sustained release theophylline tablets by direct compression. Part I: Formulation and in vitro testing, Int. J. Pharm. 164, 1-6, 1998.
[58] Mi F.L., Her N.L., Kaun C.Y., T.Wong, S.S. Shyu, Chitosan tablets for controlled drug release of theophylline: effect of polymer drug wet or dry blend and anionic-cationic inter polymer, J. Appl. Polym. Sci. 66, 2495-2502, 1997.
[59] H.L. Chu, D.B. Yeh, J.F. Shaw, Production of L-DOPA by banana leaf polyphenol oxidase. Bot. Bull. Acad. Sinica, 34, 57-62, 1993.
[60] M. Morpurgo, O. Schiavon, P. Caliceti, F.M. Veronese, Covalent modification of mushroom tryosinase with different amphiphic polymers for pharmaceutical biocatalysis applications. Appl. Biochem. Biotechnol., 56, 59-64, 1996.
[61] Q. Li, E.T.D., E. W. Grandmaison and M. F.A. Goosen, Applications of Chitin and Chitosan, p. 3-29, 1992.
[62] 吳仲韋, 不同分子量之幾丁聚醣與纖維素摻合於薄膜製程及物性之研究, 國立中央大學化學工程與材料工程研究所, 2002.
[63] Jeon, Y.-J. and S.-K. Kim, Continuous production of chitooligosaccharides using a dual reactor system. Process Biochemistry, 35, 6, p. 623-632, 2000.
[64] Kim, J.Y., et al., Synthesis of chitooligosaccharide derivative with quaternary ammonium group and its antimicrobial activity against Streptococcus mutans. International Journal of Biological Macromolecules, 32, 1–2, p. 23-27, 2003.
[65] Zhang, H., et al., Preparation of chitooligosaccharides from chitosan by a complex enzyme. Carbohydrate Research, 320(3–4): p. 257-260, 1999.
[66] Shantha, K.L. and D.R.K. Harding, Synthesis and characterisation of chemically modified chitosan microspheres. Carbohydrate Polymers, 48, 3, p. 247-253, 2002.
[67] Dal Pozzo, A., et al., Preparation and characterization of poly(ethylene glycol)- crosslinked reacetylated chitosans, Carbohydrate Polymers, 42, 2, p.201-206, 2000.
[68] Koyano, T., Koshizaki, N., Umehara, H., Nagura, M., Minoura, N., Surface states of PVA/chitosan blended hydrogels , Polymer, vol.41, pp.4461-4465, 2000.
[69] Tan, T., Wang, F., Zhang H., 2002, Preparation of PVA/chitosan lipase membrane reactor and its application in synthesis of monoglyceride, Journal of Molecular Catalysis B: Enzymatic, vol.18, pp.325-331, 2002.
[70] Duffus J. H., Heavy metals a meaningless term? IUPAC Technical Report, Pure and Applied Chemistry, vol. 74, pp. 793-807, 2002.
[71] 工業污染防治季刊,第86 期, 2003.
[72] 行政院環境保護署環署水字第1030005842號令修正發布第二條條文, "放流水標準," 2014.
[73] Guibal, E., Interactions of metal ions with chitosan-based sorbents: a review. Separation and Purification Technology, 38, 1, p. 43-74, 2004.
[74] McKay, G.; Blair, H.S.; Findon, A. Indian J Chem 1989, 28, 356.
[75] Peniche-Covas, C.; Alvarez, L.W.; Argüelles-Monal, W. J Appl Polym Sci, 46, 1147, 1992.
[76] Vasconcelos, M.T.; Leal, M.F.; Soares, H.M.V.M. Anal Chim Acta,330, 273, 1996.
[77] Qian, S.; Huang, G. Jiang, J.; He, F.; Wang, Y. J Appl Polym Sci 2000,77, 3216, 2000.
[78] Guibal, E.; Ruiz, M.; Vincent, T.; Sastre, A.; Navarro Mendoza, R. Sep Sci Technol, 36, 1017, 2001.
[79] 陳國誠, 微生物酵素工程學, 藝軒圖書出版社, 1992.
[80] Muzzarelli, R.A.A., Natural chelating polymers: Alginic acid, chitin, and chitosan, 1973.
[81] Rhazi, M., et al., Influence of the nature of the metal ions on the complexation with chitosan.: Application to the treatment of liquid waste. European Polymer Journal, 38(8): p. 1523-1530, 2002..
[82] Vold, I.M.N., et al., Binding of ions to chitosan—selectivity studies. Carbohydrate Polymers, 54, 4: p. 471-477, 2003.
[83] Hofrichter M, Ziegenhagen D, Sorge S, Ullrich R, Bublitz F, Fritsche W., Degradation of lignite (low-rank coal) by ligninolytic basidiomycetes and their manganese peroxidase system, Applied Microbiology and Biotechnology, 52, 1, p. 78-84, 1999.
[84] RA, M., Colorimetric determination of chitosan, Center for Innovative Biomaterials, 260, 2, p. 255-257, 1998.
[85] 陳美惠, 幾丁聚醣之抑菌作用. 食品工業月刊, 32, 4, p. 29 – 38, 2000.
[86] Saiano, F., et al., Metal ion adsorption by Phomopsis sp. biomaterial in laboratory experiments and real wastewater treatments. Water Research, 39, 11, p. 2273-2280, 2005.
[87] 環境微生物, 中華民國環境工程學會, 1999.
[88] Karen, E.;Gerhardt, X.D.;Huang, B.R., Glick, B. M., Greenberg., Phytoremediation and rhizoremediation of organic soil contaminants:Potential and challenges., Plant Science, 176, 20–30, 2009.
[89] Leonowicz A, Cho NS, Luterek J, Wilkolazka A, Wojtas-Wasilewska M, Matuszewska A, Hufrichter M, Wesenberg D, Rogalski J., Fungal laccase : properties and activity on lignin. J Basic Microbiol .41(3 - 4) : 185 – 227 , 2001.
[90] Urán, N., Esposito, E., Potential applications of oxidative enzymes andphenoloxidase-likecompounds in wastewater and soil treatment: a review, Environmental 28,83–99, 2000.
[91] Leonowicz A,Cho NS, Luterek J, Wilkolazka A, Wojtas-Wasilewska M , Matuszewska A, Hufrichter M, Wesenberg D,Rogalski J., Fungal laccase : properties and activity on lignin. J Basic Microbiol .41, 3-4 185–227, 2001.
[92] Niku P. M. L., Viikari L., Enzyme oxidation of alkenes, J. Molecular Catalysis B Enzymatic., 10, 435-444, 2000.
[93] Mougin JL, Jouanin C, Roux F, The attendance cycles of the Cory’s Shearwater Calonectris diomedea borealis on Selvagem Grande. Comptes Rendus de l’Académie des Sciences de Paris, 323, 385-390, 2000.
[94] Larsson S, Reimann A, Nilvebrant NO, Jonsson LJ., Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce, Appl Biochem Biotechnol, 77-79, 91-103, 1999.
[95] Li L, Steffens JC, Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta, 215, 239-247, 2002.
[96] Servili et al.,2000
[97] Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science, 285, 727–729, 1999.
[98] Abadulla E , Tzanov T, Costa S, Robra KH, Cavaco-Paulo A, Gubitz GM., Decolorization and detoxification of textile dyes with a laccase from Trametes hirsute, Appl Environ Microbiol, 66,8, 3357-62, 2000.
[99] Guha, S., Jaffe, P. R., Biodegradation hydrophobic compounds partitioned into the micellar phase of nonionic surfactants, Environ. Sci. Technol, 30, pp.1382-1391, 1996.
[100] Lenhart J.L., Sun W.Q., Payne G.F., Coupling enzymatic reaction with chemisorption for the selective removal of substituted phenolic isomers, Chem. Eng. Sci. 52, 645-648, 1997.
[101] Zeng, X. and E. Ruckenstein, Cross-linked macroporous chitosan anion-exchange membranes for protein separations. Journal of Membrane Science, 148, 2, p. 195-205, 1998.
[102] Gümüşderelioğlu, M. and P. Agi, Adsorption of concanavalin A on the well-characterized macroporous chitosan and chitin membranes. Reactive and Functional Polymers, 61, 2, p.211-220, 2004.
[103] Zhao, Z.-P., Z. Wang, and S.-C. Wang, Formation, charged characteristic and BSA adsorption behavior of carboxymethyl chitosan/PES composite MF membrane. Journal of Membrane Science, 217, 1–2, p. 151-158, 2003.
[104] Messing, R. A., Immobilized Enzymes For Industrial Reactors, Academic press, 2-3, 1975.
[105] Rosatto S.S., Sotomayor P.T., Kubota L.T., Gushikem Y., SiO2/Nb2O5 sol–gel as a support for HRP immobilization in biosensor preparation for phenol detection. Electrochim. acta. 47, 4451 – 4458, 2002.
[106] Liu S., Yu J., Ju H., Renewable phenol biosensor based on a tyrosinase-colloidal gold modified carbon paste electrode, J. electroanal. chem. 540, 61 – 67, 2003.
[107] Bonakdar M., Vilchez J. L., H.A.lumina sol-gel derived tyrosinase biosensor, Anal. Chem. 72, 4701-4712, 2003.
[108] Zachariah K., H.A. Mottola, Continuous-flow determination of phenol with chemically immobilized polyphenoloxidase (tyrosinase). Anal. Lett. 22, 1145-1158, 1989.
[109] Dashevsky, Protein loss by the microencapsulation of an enzyme (lactase) in alginate beads. Int. j. pharm. 161, 1-5, 1998.
[110] K.H. Hyung, W. Shin, Characterization of immobilized laccase and its catalytic activities, J. Korean Electrochem., Soc. 2, 31-37, 1999.
[111] 田蔚城, 生物技術, 眾光文化事業有限公司出版, p. 203-217, 1996.
[112] 陳國誠, 生物固定化技術與產業應用, 茂昌圖書有限公司.
[113] Rogalski, J., et al., Immobilization of laccase from Cerrena unicolor on controlled porosity glass. Journal of Molecular Catalysis B: Enzymatic, 6, 1–2, p. 29-39, 1999.
[114] Leonowicz, A., J. Sarkar, and J.-M. Bollag, Improvement in stability of an immobilized fungal laccase. Applied Microbiology and Biotechnology, 29, 2-3, p. 129-135, 1988.
[115] Sarkar, J.M. and J.M. Bollag, Inhibitory effect of humic and fulvic acids on oxidoreductases as measured by the coupling of 2,4-dichlorophenol to humic substances. Science of The Total Environment, 62, p. 367-377, 1987.
[116] Pointing, S., Feasibility of bioremediation by white-rot fungi, Applied Microbiology and Biotechnology, 57, 1-2, p. 20-33, 2001.
[117] Bollag, J.M., Decontaminating soil with enzyme:An in situ method using phenolic and anilinic compounds. Environ. Sci. Technol., 26(10): p. 1876-1881, 1992.
[118] Liliana Gianfreda, J.-M.B., Effect of Soils on the Behavior of Immobilized Enzymes. Soil Science Society of America Journal - SSSAJ, 58, 6,1994.
[119] Patrick J. Collins, M.J.J.K., Jim A. Field, and alan D. W. dobson, Oxidation of anthracene and benzo[a]pyrene by Laccases from Trametes versicolor. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 62, p. 4563-4567, 1996.
[120] 許廷竹, 聚乳酸/聚離胺酸混摻物上血漿蛋白的吸附熱力學與動力學, 國立台灣科技大學/纖維及高分子工程系碩士論文,2000.
[121] 洪嘉臨, 混合離子交換與薄膜過濾程序有效分離蛋白質混合溶液, 元智大學化學工程與材料科學學系碩士論文, 2005.
[122] 夏其昌, 蛋白质化学与蛋白质组学,北京科学出版新华书店经销, 第一版, 2004.
[123] Carlo Galli, Patrizia Gentili., Chemical messengers: mediated oxidations with the enzyme laccasey, J. Phys. Org. Chem., 17,973–977, 2004.
[124] Claus, H., Laccases: structure, reactions, distribution, Micron, 35, 93-96, 2004.
[125] Torres, E., Bustos-Jaimes, I., LeBorgne, S., Otential use of oxidative enzymes for the detoxification of organic pollutants, Appl. Catal. B Environ., 46, 1–15, 2003.
[126] Bourbonnais, R., Paice, M. G., Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation, FEBS Lett., 267, 99–102, 1990.
[127] Muheim, A., Fiechter, A., Harvey, P. J., Schoemaker, H. E., On the mechanism of oxidation of non-phenolic lignin model compounds by the laccase–ABTS couple, Holzforschung, 46, 121–126, 1992.
[128] Katriina Matilainena, Tiina Hamalainenb, Anne Savolainena, Thea Sipilainen-Malma, Jouko Peltonenb, Tomi Erhoa, Maria Smolandera, Performance and penetration of laccase and ABTS inks on various printing substrates, Colloids and Surfaces B: Biointerfaces, 90, 119– 128, 2012.
[129] Sariaslani, F. S., Beale, J. M. Jr., Rosazza, P., Oxidation of rotenone by polyporus anceps laccase, J.Nat. Prod., 47, 692–697, 1984.
[130] Kawai, S., Umezawa, T., Higuchi, T., Oxidation of methoxylated benzyl alcohols by laccase of coriolus versicolor in the presence of syringaldehyde, Wood Res., 76, 10–16, 1989.
[131] Land E.J., Ramsden C.A. Tyrosinase autoactivation and the chemistry of ortho-quinone amines, Acc Chem Res.,36, 300-308, 2003.
[132] Seo S.Y., Sharma V.K., Sharma N., Mushroom tyrosinase: recent prospects. Journal of Agriculture and Food Chemistry, 51, 2837-2853, 2003.
[133] López-Nicolás JM, Pérez-López AJ, Carbonell-Barrachina A, García-Carmona F., Kinetic study of the activation of banana juice enzymatic browning by the addition of maltosyl-beta-cyclodextrin. Journal of Agriculture and Food Chemistry, 55, 9655-9662, 2007.
[134] Min K., Park D.H., Yoo Y.J. Electroenzymatic synthesis of L-DOPA. Journal of Biotechnology, 146, 40-44, 2010.
[135] Krishnaveni R., Rathod V., Thakur M.S., Neelgund Y.F., Transformation of L-tyrosine to L-dopa by a novel fungus, Acremonium rutilum, under submergedfermentation. Current Microbiology 58: 122 -128, 2009.
[136] Loncar N., and Vujcic Z., Tentacle carrier for immobilization of potato phenoloxidase and its application for halogenophenols removal from aqueous solutions. Journal of Hazard Material, 196:73-78, 2011.
[137] Kameda E, Langone M.A., Coelho M.A. Tyrosinase extract from Agaricus bisporus mushroom and its in natura tissue for specific phenol removal. Environmental Technology. 11, 1209-1215, 2006.
[138] Miretzky, P., Cirelli, A.F. Hg(II) removal from water by chitosan and chitosan derivatives: a review. Journal of Hazardous Materials, 167:10-23, 2009.
[139] Li, D., M.W. Frey, and Y.L. Joo, Characterization of nanofibrous membranes with capillary flow porometry. Journal of Membrane Science, 286, 1–2: p. 104-114, 2006.
[140] Patanaik, A. and R.D. Anandjiwala, Hydroentanglement nonwoven filters for air filtration and its performance evaluation. Journal of Applied Polymer Science, 117, 3, p. 1325-1331, 2010.
[141] Gupta, A. J.a.K., Pore volume of nanofiber nonwovens porous materials Inc., 14, p. 25-30. , 2005.
[142] Kathleen, V. V. and K. Paul, Structure analysis and degree of substitution of chitin, chitosan and dibutyrylchitin by FT-IR spectroscopy and solid state 13C NMR, Carbohydrate Polymers, 58, pp.409-416, 2004.
[143] Perminova, I. V., N. Y., Grechishcheva, and V. S., Petrosyam, Relationships between structure and bing affinity of humic substance for polycyclic aromatic hydrocarbons:relevance of molecukar descriptors, Environ. Sci. Technol., 33, pp.3781-3787, 1999.
[144] Zeng, X. F. and E. Ruckenstein, Control of pore sizes in macroporous chitosan and chitin membranes. Industrial and Engineering Chemistry Research, 35(11): p. 4169-4175, 1996.
[145] Ruckenstein, E. and X. Zeng, Macroporous chitin affinity membranes for lysozyme separation. Biotechnology and Bioengineering, 56(6): p. 610-617 , 1997.
[146] IUPAC Manual of Symbols and Terminology, Appendix 2, Part 1, “Colloid and Surface Chemistry.” Pure Appl. Chem., 31, 578 , 1972.
[147] Ahrland S., Chatt J., and Davies N., The relative affinities of ligand atoms for acceptor molecules and ions," Quarterly Reviews, Chemical Society, vol. 12, pp. 265-276, 1958.
[148] 薛煜彬, 葡萄與葡萄細胞乙醇萃取物對抑制酪胺酸酶活性之效能評估, 亞洲大學, 2008.
指導教授 李俊福(Jiunn-fwu Lee) 審核日期 2015-5-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明