博碩士論文 973406601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.227.190.93
姓名 歐婷芳(Thuan-Thi Ngo)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以低溫熱裂解程序降解土壤中五氯酚之研究
(Investigation on Low-Temperature Pyrolysis of Pentachlorophenol-Contaminated Soil)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 焚化與燃燒之高能量消耗與戴奧辛之生成限制了台灣安順廠同時處理含高濃度PCP和PCDD/Fs汙染之土壤之能力。本研究探討低溫下(150-400°C)土壤中的PCP裂解和多氯聯苯和呋喃之生成特性。受PCP汙染土壤裂解時之脫氯與裂解在本研究中有詳細的探討。大部分的PCP (>90%)和PCP之副產物可在350°C經40分鐘處理被去除。PCP之衰減率在溫度從150°C升到400°C時明顯上升(0.20-1.96 min-1)。裂解過程中發現PCDD/F濃度很低,土壤中為0.38-2.48 ng TEQ/kg,氣相中為0.0015-0.0044 ng TEQ/Nm3。土壤中PCP去除率達到70%時,最高的PCDD/F生成在250°C,為1436±230 ng/kg。然而,最高的毒性濃度(4.20±0.62 ng TEQ/kg)是在PCP去除效率為80%且操作溫度在300°C時。本研究進一步指出OCDD是裂解PCP之主要生成物種,OCDF則是第二顯著物種,可能原因是因為PCP裂解的主要副產物2,3,4,5-TeCP反應所造成。溫度大於300°C時,少量的戴奧辛與呋喃會被偵測到是由於高氯數之戴奧辛與呋喃脫氯所造成,尤其是OCDD在350°C和450°C時。土壤脫附是PCDD/F在氣相中分布的主要機制,350°C和400°C的戴奧辛與呋喃濃度並無明顯的差別。
為測試nZVI對於PCP的活性,熱促進處理方法(thermally enhanced pump-and-treatment method)與nZVI被用來移除土壤中的PCP和去除土壤中和液相之毒性。結果顯示土壤中與液相之PCP去除效果隨nZVI劑量增加而上升。利用nZVI復育土壤時PCP在水中的分布會增加。而pH降低會導致PCP在液相中分布減少但PCP脫氯增加。當溫度從25°C提升至85°C時,脫氯速率從2.26 h-1提高至6.84h-1。在85°C與pH = 1的條件下,脫氯提升了42%,PCP殘餘量則降低了6%。此系統中脫氯位置發生傾向於ortho>meta>para。基於此結果,本研究利用裂解結合nZVI去除土壤中之PCP。在150-300°C時,裂解結合nZVI之裂解速率為0.591-3.699 min-1,為未結合nZVI之四倍。活化能部分有nZVI為23.80 kJ/mol,無nZVI為36.98 kJ/mol。當nZVI劑量增加時,PCP之降解速率呈線性上升。衰減速率在200°C時nZVI劑量從0%到10%為0.21 min-1到1.56 min-1。PCP之脫氯在有無nZVI之情況下皆相同,但若有nZVI則裂解會更完全使最終產物變為phenol。溫度增加至300°C時土壤中主要為TeCP (0.4±0.1%)並且無其他副產物之生成,當溫度上升至300°C以上且時間在30分鐘以上情況亦同。特別的是在氣相中皆未偵測到PCP以及任何副產物。此研究提供了利用低溫熱裂解處理PCP汙染土壤之相關風險評估資訊。
摘要(英) High energy cost and potential formation of dioxins during incineration/combustion of pentachlorophenol (PCP) have limited their application on simultaneous removal of highly contaminated soil of PCP, polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) at AnShun in Taiwan. In this dissertation, investigation of PCP pyrolysis in soil at a relatively low temperature range (150-400oC) and the behavior of PCDD/Fs formation, dechlorination and destruction during pyrolysis of PCP-contaminated soil have been examined in detail. Most PCP (>90%) and PCP byproducts can be removed from soil at 350oC for 40 min. The PCP decay rates from soil increased exponentially from 0.20 to 1.96 min-1 as temperature was increased from 150oC to 400oC. Very low levels of PCDD/Fs were found in soil (0.38-2.48 ng TEQ/kg) and gaseous phase (0.0015-0.0044 ng TEQ/Nm3) during pyrolysis of PCP-contaminated soil. 70% of PCP removal from the soil was achieved, resulting in 1436?230 ng/kg, the highest PCDD/F formation at 250oC; however, the highest toxic concentration was measured around 4.20 ? 0.62 ng TEQ/kg at 300oC with 80% PCP removal from the soil. Further analysis has revealed that OCDD is the most dominant congener supposed to form from the pyrolysis of PCP, while OCDF is the second prevailing congener, possibly due to 2,3,4,5-TeCP reaction which is a main byproduct of PCP pyrolysis. Detection of less chlorinated dioxins and furans over 300oC indicates the dechlorination of highly chlorinated dioxins and furans, especially OCDD at 350oC and 400oC. Desorption from soil was supposed as a main mechanism for the distribution of PCDD/Fs in the gas phase, and not much difference in dioxins and furan levels was observed at 350oC and 400oC in the gas phase. In order to test the nZVI reactivity with PCP, a thermally enhanced pump-and-treatment method coupled with nZVI was proposed to remove PCP from soil and to detoxify aqueous phase and soil. The results indicated that total PCP removal in soil and aqueous phases increased with increasing nZVI dose. The PCP distribution in aqueous phase was enhanced when PCP-contaminated soil was remediated with nZVI. In addition, decrease in pH resulted in decreasing PCP distribution in aqueous phase but increasing PCP dechlorination. Dechlorination rate was enhanced from 2.26 to 6.84 h-1 as the temperature was increased from 25oC to 85oC. Dechlorination and PCP residual in soil were increased to 42% and decreased to 6%, respectively, at 85oC and pH1. The dechlorination of PCP preferred to occur at ortho> meta> para positions in the respect of OH group. Based on the results of nZVI reactivity with thermal enhancement, the combination of pyrolysis and nZVI was proposed to investigate the PCP removal from soil. Consequently, the decay rate constant (k) of pyrolysis combined with nZVI increased exponentially from 0.59 to 3.67 min-1 which were 4 times higher than that without nZVI in the temperature range of 150°C -300°C. The activation energies of PCP removal from soil with and without nZVI are 23.80 and 36.98 kJ/mol, respectively. PCP degradation increases linearly with increasing nZVI dose. The rate decay constant increased from 0.21 min-1 to 1.56 min-1 as nZVI dose was increased from 0% to 10% at 200oC. The order of PCP dechlorination during pyrolysis coupled with nZVI is the same as that in the absence of nZVI but dechlorination process during pyrolysis with nZVI occurred more completely into the final product as phenol. Increasing temperature to 300oC resulted in the predominant TeCP ((0.4 ? 0.1) %) in soil and none byproducts was detected in soil as either temperature or time was increased above 300oC and 30 min, respectively. Especially, both PCP and byproducts were not detected in gaseous phase. This study provides relevant information for risk assessment for PCP contaminated soils when low thermal pyrolysis is applied for remediation of PCP contaminated soil.
關鍵字(中) ★ dioxin formation
★ byproducts
★ soil
★ nano scale zero valent iron
★ low thermal
★ Pentachlorophenol
關鍵字(英) ★ soil
★ nano scale zero valent iron
★ dioxin formation
★ byproducts
★ low thermal
★ Pentachlorophenol
論文目次 Abstract
Chapter1 Introduction
1.1 Background and motivation ………………………………………………………….....1
1.2 Objectives and Scope…………………………………………………………………......3
Chapter 2 Literature Review
2.1 History of production and use of PCP …………………………………..........................6
2.2 History of An Shun site …………………………………………………………………..6
2.3 Chemical and physical properties of PCP …………………………………….................7
2.4 Chemical and properties of PCDD/Fs ……………………………………......................8
2.5 Technologies for PCP remediation from soil …………………………………………....9
2.6 Thermal remediation technologies ……………………………………………..............10
2.6.1 Incineration/ combustion ……………………………………………………...10
2.6.2 Potential PCDD/Fs formation from chlorophenols during thermal…….......11
2.6.3 Mechanism of PCDD/F formation from chlorophenols ……………………..13
2.7 Low-thermal technologies …………………………………………………....................15
2.7.1 Thermal desorption ……………………………………………………............15
2.7.2 Low-temperature pyrolysis...…………………………………………………..16
2.8 Removal of chlorinated phenols by nZVI …………………………...............................19
2.8.1 nZVI characteristics …………………………………………………………..19
2.8.2 nZVI synthesis ……………………………………………………....................19
2.8.3 General mechanisms of pollutant remediation by nZVI ………….................21
2.8.4 Literature review on remediation of chlorinated compounds with nZVI…..21
Chapter 3 Materials and Experimental Methods
3.1 Materials ………………………………….....................................................................55
3.2 Soil preparation ………………………………………………………………………..55
3.3 Experimental systems ……………………………………………………………….....56
3.3.1 Thermal system ………………………………………………………………...56
3.3.2 nZVI system for testing nZVI reactivity with PCP contaminated soil ..........57
3.3.2.1 nZVI synthesis …………………………………………………………57
3.3.2.2 Experimental setup for PCP degradation with nZVI ………………57
3.4 Analytical methods …………………………………………………...............................58
3.4.1. Analytical methods for PCP determination in soil …………………………..58
3.4.2. Analytical methods for PCDD/F ……………….……………………………...59
3.4.3. Analytical methods for chloride determination ……………………………...60
3.4.4. Instruments for analysis of nZVI reactivity ………………………………….60
Chapter 4 Results and Discussion
4.1 Analytical methods for PCP analysis …………………………………………….........66
4.2 Degradation of PCP contaminated soil with low thermal pyrolysis (200-400o) ……...66
4.2.1 Kinetics of PCP removal from soil ……………………………………………66
4.2.2 Analysis of the temperature impact on the fate of PCP during pyrolysis ….69
4.2.3 Analysis of the temperature impact on byproduct releases………………….70
4.2.4 Analysis of time impact on byproduct releases ………………………………71
4.2.5 Formation and degradation of PCDD/Fs in soil……………………………...71
4.2.6 Formations and degradation of PCDD/F congeners in soil………………….73
4.2.7 Formation and degradation of PCDD/Fs in gaseous phase …………………75
4.2.8 Proposed pathways leading to PCDD/F formation and removal …………...76
4.2.9 Possible overall pathways of PCP removal from soil ………………………..77
4.3 PCP degradation in slurry soil with nZVI…………………………………..................79
4.3.1 Characteristics and reactivity of nZVI ……………………………………….79
4.3.1.1 Effect of synthesis environment...……………………………………..79
4.3.1.2 Effect of acid washing after reaction ………………………………...81
4.3.2 Effect of nZVI dose …………………………………………………………….81
4.3.3 Effect of initial pH on PCP removal from slurry soil…………………...........81
4.3.4 Effect of temperature …………………………………………………………..83
4.3.5 Effect of time …………………………………………………………...............84
4.3.6 Identification of byproducts …………………………………………………...84
4.4 PCP degradation in soil with nZVI coupled with thermal…………………………….85
4.4.1 Temperature effect on PCP removal from soil ………………………………85
4.4.2 Effect of nZVI dose …………………………………………………….............88
4.4.3 Analysis of PCP byproducts …………………………………………………..89
4.4.3.1 Temperature effect on byproduct releases …………………………..89
4.4.3.2 Time effect on byproduct releases ……………………………………90
4.4.4 Pathways of pyrolysis of PCP contaminated soil in the presence of nZVI ....91
Chapter 5 Conclusions and Perspectives
5.1 Conclusions ……………………………..……………………………………………..116
5.2 Perspectives …………………………………………………………………………....119
References …………………………………………………………………………………120
參考文獻 Acharya, P., Prabhu, S., Barkdoll, M., 1995. Estimation of metholodogy and validation of particulate entrainment in a pilot-scale rotary kiln-based hazardous waste incinerator. Environmental Progress 14, 44–50.
Addink R. and Olie K. 1995. Mechanisms of formation and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans in heterogeneous systems. Environmental Science and Technologies 29, 1425-1434.
Addink, R., Bakker, W.C.M., Olie, K., 1992. Influence of H2O and HCl on the formation of polychlorinated dibenzo-p-dioxins/dibenzofurans in a carbon/fly ash mixture. Organohalogen Compound 8, 205-284.
Addink, R., Govers, H.A.J., Olie, K., 1995. Desorption behavior of polychlorinated dibenzo-p-dioxins/dibenzofurans on a packed fly ash bed. Chemosphere 31, 3945-3950.
Addink, R., Olie, K., 1993. The influence of the oxygen concentration on PCDD/PCDF formation during de novo synthesis on fly ash. Organohalogen Compound 11, 355-358.
Ahlborg, V.G., Becking, G.C., Birnbaum, L.S., 1994. Toxic equivalency factors for dioxin like PCBs. Chemosphere 28, 1049-1067.
Altarawneh, M., Dlugogorski, B. Z., Kennedy, E.M., Mackie, J.C., 2009. Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Progress in Energy and Combustion Science 35, 245-274.
Aracil, R.F., Conesa, J.A., 2010. Chlorinated and Nonchlorinated Compounds from the Pyrolysis and Combustion of Polychloroprene. Environmental Science & Technology 44, 4169–4175.
Bandara, J., Mielczarski, J.A., Kiwi, J., 2001. Adsorption mechanism of chlorophenols on iron oxides, titanium oxides and aluminum oxide as detected by infrared spectroscopy. Applied Catalysis B: Environment 34, 307-320.
Bandara, J., Mielczarski, J.A., Lopez, A., Kiwi, J., 2001. Sensitized degradation of chlorophenols on iron oxides induced by visible light. Comparision with titanium oxide. Applied Catalysis B: Environmental 34, 321-333.
Berkel, V., Olie, O.M., Van de Berg, K.M., 1988. Thermal degradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans on fly ash from a municipal incinerator. International Journal of Environmental Analytical Chemistry 34, 51-67.
Berruti, S.F., Mehrotra, A.K., 2001. Thermal desorption treatment of contaminated soils in a novel batch thermal reactor, Industrial & Engineering Chemistry Research 40, 5421-5430.
Bouras, O., Bollinger, J.C., Baudu, M., 2010. Effect of humic acids on pentachlorophenol sorption to cetytrimethylammonium-modified, Fe- and Al-pillared montmorillonites. Applied Clay Science 50, 58-63.
Bouras, O., Houari, M., Khalaf, H., 1999. Adsorption of some phenolic derivatives by surfactant treated Al-pillared Algerian Bentonite. Toxicological & Environmental Chemistry 70, 221–227.
Bouras, O., Houari, M., Khalaf. H., 2001. Using of surfactant modified Fe-pillared bentonite for the removal of pentachlorophenol from aqueous stream. Environmental Technology 22, 69–74.
Boyd, S.A., Shaobai, S., Lee, J.F., Mortland, M.M., 1988. Pentachlorophenol sorption by organo-clays. Clays and Clay Minerals 36, 125–130.
Carrol, D., Sleep, B., Krol, M., Boparai, H., Kocur, C., 2012. Nanoscale zero metal valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources, In Press.
Chang M.C., Kang H.Y., 2009. Remediation of pyrene-contaminated soil by synthesized nanoscale zero valent iron particles. Journal of Environmental Science and Health Part A 44, 576-582.
Chang, M.C., Shu, H.Y., 2005. Using nanoscale zero valent iron for the remediation of polycyclic aromatic hydrocarbons contaminated soil. Journal of Air and Waste Management Association 55, 1200-1207.
Chen, J.L., Al-Abed, S.R., Ryan, J.A., Li, Z., 2001. Effect of pH on dechlorination of trichloroethylene by zero-valent iron. Journal of Hazardous Material B83, 243-254.
Chen, J.W., Xiu, Z.M., Lowry, G.V., Pedro, J.J.A., 2011. Effect of natural organic matter on toxicity and reactivity of nano-scale-zero valent iron. Water Research 45, 1995-2001.
Cheng, R., Wang, J., Zhang, W., 2008. Degradation of chlorinated phenols by nanoscale zero valent iron. Frontiers of Environmental Science & Engineering 2, 103-108.
Cheng, R., Zhou, W., Wang, J.L., Qi, D., Zhang, W. X., Qian, Y., 2010. Dechlorination of pentachlorophenol using nanoscale of Fe/Ni particles: Role of nano-Ni and its size effect. Journal of Hazardous Materials 180, 79-85.
Cheng, R., Zhou, W., Wang, J.L., Qi, D.D., Lin, G., Zhang, W.X., Qian, Y., 2010. Dechlorination of pentachlorophenol using nanoscale Fe/Ni particles: role of nano Ni and its size effect. Journal of Hazardous Materials 180, 79-85.
Cong, X., Xue, N., Wang, S., Li, K., Li, F., 2010. Reductive dechlorination of organochlorine pesticides in soils from an abandoned manufacturing facility by zero-valent iron. Science of the Total Environment 408, 3418-3423.
Corsby, D.G., Beynon, K I., Korte, F., Still, G.G., Vonk, J.W., Greve, P.A.. 1981. Environmental Chemistry of Pentachlorophenol. Pure and Applied Chemistry 53, 1051-1080.
Cunliffe, A.M., Williams, P,T., 2007. PCDD/PCDF isomer pattern in waste incinerator fly ash and desorbed into the gas phase in relation to temperature. Chemosphere 66, 1929-1938.
Cunliffe, A.M., Williams, P.T., 2007. Influence of temperature on PCDD/PCDF desorption from waste incineration fly ash under nitrogen. Chemosphere 66, 1146-1152.
Czaplicka, M., 2004. Sources and transformations of chlorophenols in the natural environment. Science of the Total Environment 322, 21-39.
Dai, Y., Li, F., Ge, F., Zhu, F., Wu, L., Yang, X., 2006. Mechanism of the enhanced degradation of pentachlorophenol by ultrasound in the presence of elemental iron. Journal of Hazardous Materials B137, 1424–1429.
Dams, R.I., Patonb, G., Killham, K., 2007. Bioaugmentation of pentachlorophenol in soil and hydroponic systems. International Biodeterioration & Biodegradation 60, 171–177.
Dela Cruz, A.L.N., Gehling, W., Lomnicki, S., Cok R., Dellinger, B., 2011. Detection of environmentally persistent free radicals at a superfund wood treating site. Environmental Science & Technology 45, 6356-636.
Dickson, L.C., Karasek, F.W., 1987. Mechanism of formation of polychlorinated dibenzo-p-dioxins produced on municipal incinerator fly ash from reactions of chlorinated phenols. Journal of Chromatography 389, 127-137.
Dombek, T., Dolan, E., Schultz, J., Klarup, D., 2001. Rapid reductive dechlorination of atrazine by zero valent iron under acidic condition. Environmental Pollution 111, 21-27.
Egger, K.W., Cocks, A.T., 1977. Pyrolysis reactions involving carbon-halogen bonds, in: S. Patai (Eds.), The Chemistry of the Carbon-Halogen Bond, John Wiley Press, New York, 677-746.
Eicemann, G.A., Rghei, H.O., 1982. Products from laboratory chlorination of fly ash from municipal incinerator. Environmental Science & Technology 16, 53–56.
Environmental Protection Bureau of Tainan City, The pollution survey of two-ninth paths of Tainan city, Report Number 2004-09-25, 2004
Falciglia, P..P., Giustra, M.G., Vagliasindi, F.G.A., 2011. Low temperature thermal desorption of diesel polluted soil: Influence of temperature and soil texture on contaminant removal kinetics. Journal of Hazardous Materials 185, 392-400.
Feng, H.C., Peng, G.X., Mei, Z. Y., Yi, L., Sheng, W.D., Xiao, T. H., 2010. Characterization of nanoscale iron and its degradation of 2,4-dichlorophenol. Chinese Science Bulletin 55, 350-357.
Fisher, B., 1991. Pentachlorophenol: toxicology and environmental fate. Journal of Pesticide Reform 11, 1-5
Gan, S., E.V. Lau, H.K. Ng, Remediation of soils contaminated with polycylic aromatic hydrocarbon (PAHs). Journal of Hazardous Materials 172 (2009) 532-549.
Gao, X., Wang, W., Liu, X., 2007. Low-temperature dechlorination of hexachlorobenzene on solid supports and pathway hypothesis. Chemosphere 71, 1093-1099.
Ghaffar, A., Tabata, M., 2009. Dechlorination/detoxification of aromatic chlorides using fly ash under mild conditions. Waste Management 29, 3004-3008.
Gillham, R.W, O’Hannesin, S.F., 1994. Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water 32, 958-967.
Gullon, I.M., Esperanza, M., Font., 2001. Kinetic model for the pyrolysis and combustion of poly-(ethylene terephthalate) (PET). Journal of Analytical and Applied Pyrolysis 1, 635-650.
Gunawardana, B., Singhal, N., Swedlund, P., 2011. Degradation of chlorinated phenols by zero valent iron and bimetals of iron- A review. Environmental Engineering Research 16, 187-203.
Hagenmaier, H., Brunner, H., Haag, R., Kraft, M., 1987. Copper-catalyzed dechlorination/hydrogenation of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and other chlorinated aromatic compounds. Environmental Science & Technology 21 (11) 1085-1088.
Harjanto, S., Kasai, E., Terui, T., Nakamura, T., 2002. Behavior of dioxin during thermal remediation in the zone combustion process. Chemosphere 47, 687-693.
He, Y., Xu, J., Wang, H., Ma, Z., Chen, J., 2006. Detailed sorption isotherms of pentachlorophenol on soils and its correlation with soil properties. Environmental Research 101, 362-372.
He, Y., Xu, J., Wang, H., Zhang, Q., Muhammad, A., 2006. Potential contributions of clay minerals and organic matter to pentachlorophenol retention in soil. Chemosphere 65, 497-505.
Hinton, W.S., Lane, A.M., 1991. Synthesis of polychlorinated dioxins over MSW incinerator fly ash to identify catalytic species. Chemosphere 23, 831-840.
Hinton, W.S., Lane, A.M., 1992. Effect of zinc, copper and sodium on formation of polychlorinated dioxins on MSW incinerator fly ash. Chemosphere 25, 811-819.
Hou, C. F., Ge, X. P., Zhou, Y. M., Li, Y., Wang, D.S., 2010. Characterization of nano scale iron and its degradation of 2,4-dichlorophenol. Chinese Science Bulletin 55, 350-357.
Huang, H., Buekens, A., 2000. Chemical kinetic modeling of PCDD formation from chlorophenol catalyzed by incinerator fly ash. Chemosphere 41, 943-951.
Hwang, Y. H., Kim, D. G., Shin, H. S., 2011. Effects of synthesis conditions on the characteristics and reactivity of nanoscale zerovalent iron. Applied catalysis B: Environmental 105, 144-150.
Ishida, M., Shijo, R., Nie, P., Nakanura, N., Sakai, S., 1998. Full-scale plant study on low temperature thermal dechlorination of PCDDs/ PCDFs in fly ash. Chemosphere 37, 2299–2308.
Jauhiainen, J., Conesa, J.A., Font, R., Gullon, I.M., 2004. Kinetics of the pyrolysis and combustion of olive oil solid waste. Journal of Analytical and Applied Pyrolysis 72, 9–15.
Jiamjitrpanich, W., Polprasert, C., Parkpian, P., Delaune, R.D., Jugsujinda, A., 2010. Environmental factors influencing remediation of TNT-contaminated water and soil with nanoscale zero-valent iron particles. Journal of Environmental Science and Health Part A 45, 263-274.
Jou C. J., 2008. Degradation of pentachlorophenol with zero-valence iron coupled with microwave energy. Journal of Hazardous Materials 152, 699-702.
Jou, C.J. G., Hsieh, S. C., Lee, C.L., Lin, C., Huang, H.W., 2010. Combining zero valent iron nanoparticles with microwave energy to treat chlorobenzene. Journal of Taiwan Institute of Chemical Engineers 41, 216-220.
Kasai, E., Harjanto, S., Terui, T., Nakamura, T., Waseda, Y.,
2000. Thermal remediation of PCDD/Fs contaminated soil by zone combustion process. Chemosphere 41, 857-864.
Katsenovich, Y. P., Wilhelm, F.R.M., 2009. Evaluation of nanoscale zerovalent iron particles for trichloroethene degradation in clayey soil. Science of the Total Environment 407, 4986-4993.
Kim Y.H., Carraway E.R., 2000. Dechlorination of Pentachlorophenol by Zero valent iron and Modified zero valent iron. Environmental Science & Technology 34, 2014-2017.
Kim, G., Jeong, W., Choe, S., 2007. Impact of pH buffer capacity of sediment on dechlorination of atrazine using zero valent iron. Journal of Environmental Science and Health Part B 42, 287-295.
Kung, K.H.S., McBride, M. B., 1991. Bonding of chlorophenols on iron and aluminum oxides. Environmental Science & Technology 25, 702-709.
Lee, C.L., Lee, H.Y., Tseng, K.H., Hong, P.K.A., Jou, C.J.G., 2011. Enhanced dechlorination of chlorobenzene by microwave-induced zero-valent iron: particle effects and activation energy. Environmental Chemistry Letters 9, 355-359.
Lee, J.K., Parka, D., Kimb, B., Dongb, J., Lee, S., 1998. Remediation of petroleum-contaminated soil by fluidized thermal. Waste Management 18, 503-507.
Lee, J.M., Kim, J.H., Lee, J.W., Kim, J.H., Lee, H.S., Chang, Y.S., 2008. Synthesis of Fe nano particles obtained by borohydride reduction with solvent. Remediation of chlorinated and recalcitrant compounds: Proceedings of the sixth international conference on remediation of chlorinated and recalcitrant compounds, paper A-067.
Lee, W.J., Shih, S.I., Chang, C.Y., Lai, Y.C., Wang, L.C., Chang, C.G.P., 2008. Thermal treatment of polychlorinated dibenzo-p-dioxins and dibenzo furans from contaminated soil. Journal of Hazardous Materials 160, 220-227.
Li, L., Fan, M., Brown, R.C., Leeuwen, J.V., Wang, J., Wang, W., Song, Y., Zhang, P., 2006. Synthesis, Properties and Environmental Applications of nanoscale iron based materials: A review. Critical reviews in environmental science and technology 36, 405-431.
Li, X.Q., Elliott, D.W., Zhang, W.X., 2006. Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and Engineering Aspects. Critical Reviews on solid state and materials Sciences 31, 111-122.
Li, Y., Zhang, Y., Li, J., Zheng, X.M., 2011. Enhanced removal of pentachlorophenol by a novel composite: Nanoscale zero valent immobilized on organobentonite. Environmental Pollution 159, 3744-3749.
Li, Z., Yuan, S., Wan, J., Long, H., Tong, M., 2011. A combination of electrokinetics and Pd/Fe PRB for the remediation of pentachlorophenol-contaminated soil. Journal of Contaminant Hydrology 124, 99-107.
Liao, C.J., Chung, T.L., Chen, W.L., Kuo, S.L., 2007. Treatment of pentachlorophenol-contaminated soil using nano-scale zero valent iron with hydrogen peroxide. Journal of Molecular Catalysis A: Chemical 265, 189-194.
Lien, H.L, Zhang, W.X., 2001. Nanoscale iron particle for complete reduction of chlorinated ethenes. Colloid and Surfaces A 191, 97-105.
Lien, H.L., Zhang, W. X., 2007. Nanoscale Pd/Fe bimetallic particles: catalytic effects of palladium on hydrodechlorination. Applied Catalysis B: Environmental 77, 110.
Lighty, J.S., Silcox, G.D., Pershing, D.W., 1990. Fundamentals for the thermal remediation of contaminated soils: Particle and bed desorption models. Environmental Science & Technology 24, 750-757.
Lindahl, R., Rappe, C., Buser, H.R., 1980. Formation of polychlorinated dibenzofurans (PCDFs) and polychlorinated dibenzo-p-dioxins (PCDDs) from the pyrolysis of polychlorinated diphenyl ethers. Chemosphere 9, 351-361.
Liou R.M., Chen S.H., Hung M.Y., Hsu C.S., 2004. Catalytic oxidation of pentachlorophenol in contaminated soil suspensions by Fe3+-resin/H2O2. Chemosphere 55, 1271–1280.
Liu, Y., Choi, Dionysou, D., Lowry, G.V., 2005a. Trichloroethene hydrodechlorination in water by highly disordered monometallic nanoiron. Chemistry of Materials 17, 5315-5322.
Liu, Y., Majetich, S.A., Tilton, R.D., Sholl, D.S., Lowry, G.V., 2005b. TCE dechlorination rates, pathways and efficiency of nanoscale iron particles with different properties. Environmental Science & Technology 39, 1338-1345.
Lomnickia, S., Dellinger, B., 2003. A detailed mechanism of the surface-mediated formation of PCDD/F from the oxidation of 2-chlorophenol on a CuO/Silica surface. The Journal of Physical Chemistry A 107, 4387-4395.
Lundin, L., Aurell, J., Marklund, S., 2011. The behavior of PCDD and PCDF during thermal treatment of waste incineration ash. Chemosphere 84, 305-310.
Lundin, L., Marklund, S., 2007. Thermal degradation of PCDD/F, PCB and HCB in municipal solid waste ash. Chemosphere 67, 474-481.
Ma, X., Zheng, M., Liu, W., Qian, Y., Zhao, X., Zhang, B., 2005. Synergic effect of calcium oxide and iron (III) oxide on the dechlorination of hexachlorobenzene. Chemosphere 60, 796-801.
McGraw-Hill, 1982. Encyclopedia of Science and Technology, 5th Edition, Mcgraw-Hill Book Co., Newyork.
Merino, J., Bucala, V., 2007. Effect of temperature on the release of hexadecane from soil by thermal treatment. Journal of Hazardous Materials 143, 455-461.
Mitoma, Y., Egashira, N., Simion, C., 2009. Highly effective degradation of polychlorinated biphenyls in soil mediated by a Ca/Rh bicatalytic system. Chemosphere 74, 968-973.
Mitoma, Y., Makitakase, N., Hidekitashiro, T., Egashira, N., 2006. Calcium-promoted Catalytic Degradation of PCDDs, PCDFs and Coplanar PCBs under a Mild Wet Process. Environmental Science & Technology 40, 1849-1854.
Mitoma, Y., Uda, T., Egashira, N., 2004. Approach to Highly Efficient dechlorination of PCDDs, PCDFs and Coplanar PCBs Using Metallic Calcium in Ethanol under Atmospheric Pressure at Room Temperature. Environmental Science & Technology 38, 1216-1220.
Morales, J., Hutcheson, R., Cheng, I. F., 2002. Dechlorination of chlorinated phenols by catalyzed and uncatalyzed Fe(0) and Mg(0) particles. Journal of Hazardous Materials B90, 97-108
Mulholland, J.A., Akki, U., Yang, Y., Ryu, J.Y., 2001. Temperature dependence of PCDD/F isomer distributions from chlorophenol precursors. Chemosphere 42, 719-727.
Nordstrom, D.K., Munoz, J.L., 1985. Geochemical thermodynamics: The Benjamin/Cummings Publishing Co., Inc.
Noubactep C., 2008. A critical review on the process of contaminant removal in Fe(0)-H2O systems. Environmental Technology 29, 909-920.
Noubactep, C., 2009. The suitability of metallic iron for environmental remediation. Environmental Progress and Sustainable Energy 29, 286-291.
Nurmi, J.T., Tratnyek, P. G., Sarathy, V., Baer, D. R., Amonette, J.E., Pecher, K., Wang, C., Linehan, J. C., Matson, D. W., Penn, R.L., Driessen, M. D., 2005. Characterization and Properties of metallic iron particles: Spectroscopy, Electrochemistry and Kinetics. Environmental Science & Technology 39, 1221-1230.
Nusier, O.K., Abu-Hamdeh, N.H., 2003. Laboratory techniques to evaluate thermal conductivity for some soil. Heat & Mass Transfer 39, 119-123
Pekfirek, V., Karban, J., Fiserova, E., Bures, M., Pacakova, V., Vecernikova, E., 2003. Dehalogenation Potential of Municipal Waste Incineration Fly Ash. Environmental Science & Pollution Research 10, 39-43.
Qian, Y., Zheng, M., Liu, W., Ma, X., Zhang, B., 2005. Influence of metal oxides on PCDD/Fs formation from pentachlorophenol. Chemosphere 60, 951-958.
Reddy, K.R., Karri, M.R., 2008. Removal and degradation of pentachlorophenol in clayed soil using nanoscale iron particle. GeoCongress: Geotechnics of Waste Management and Remediation. Proceedings of sessions of GeoCongress, 463-470.
Ross, B.J., Naikwadi K.P., Karasek, F.W., 1989. Effect of temperature, carrier gas and precursor structure on PCDD and PCDF formed from precursors by catalytic activity of MSW incinerator fly ash. Chemosphere 19, 291-198.
Ryu, J.Y., 2008. Formation of chlorinated phenols, dibenzo-p-dioxins, dibenzofurans, benzenes, benzoquinnones and perchloroethylenes from phenols in oxidative and copper (II) chloride-catalyzed thermal process. Chemosphere 71, 1100-1109.
Satapanajaru, T., Anurakpongsatorn, P., Pengthamkeerati, P., Boparai, H., 2008. Remediation of Atrazine contaminated soil and water by nano zero valent iron. Water Air & Soil Pollution 192, 349-359.
Satapanajaru, T., Onanong, S., Confort, S.D., Snow, D.D., Cassada, D.A., Harris, C., 2009. Remediating dinoseb contaminated soil with zerovalent iron. Journal of Hazardous Materials 168, 930-937.
Schwarzer, H.C., Peukert, W., 2002. Experimental investigation into the influence of mixing on nanoparticle precipitation. Chemical Engineering & Technology 25, 657–661.
Sedlak, D.L., Dean, K.E., Armstrong, D.E., Andren, A.W., 1991. Interaction of Quicklime with Polychlorobiphenyl-Contaminated Soil. Environmental Science & Technology 25, 1936-1940.
Shea, P.J., Machacek, T.A., Comfort, S.D., 2004. Accelerated remediation of pesticide-contaminated soil with zerovalent iron. Environmental Pollution 132, 183-188.
Shih, Y.H., Hsu, C.Y., Su, Y.F., 2011. Reduction of hexachlorobenzene by nanoscale zero valent iron: Kinetics, pH effect, and degradation mechanism. Separation and Purification Technology 76, 268-274.
Sidhu, S., Dellinger, B., 1997. The effect of hydrocarbons on PCDD/F formation in the Gas-Phase oxidation of 2,4,6-trichlorophenol. Organohalogen Compounds 31, 469-474.
Sidhu, S.S., Maqsud, L., Dellinger, B., 1995. The Homogeneous, Gas-Phase Formation of Chlorinated and Brominated Dibenzo-p-Dioxins from 2,4,6-Trichloro- and 2,4,6-Tribromophenols. Combustion and Flame 100, 11-20.
Singh, J., Comfort, S.D., Shea, P.J., 1999. Iron-mediated remediation of RDX-contaminated water and soil under controlled Eh/pH. Environmental Science & Technology 33, 1488-1494.
Singh, R., Misra, V., Singh, R.P., 2011. Remediation of ?-hexachlorocychlohexane contaminated soil using nanoscale zero valent iron. Journal of Bionanoscience 5, 82-87.
Singhal, R.K., Gangadhar, B., Basu, H., Manisha, V., Naidu, G.R.K., Reddy, A.V.R., 2012. Remediation of Malathion contaminated soil using zero valent iron nano particles. American Journal of Analytical Chemistry 3, 76-82.
Song, G.J., Kim, S.H., Seo, Y.C., Kim, S.C., 2008. Dechlorination and destruction of PCDDs/PCDFs in fly ashes from municipal solid waste incinerators by low temperature thermal treatment. Chemosphere 71, 248-257.
Su, C and Puls, A. W., 1999. Kinetics of trichloroethene reduction by zero valent iron and Tin: pretreatment effect, apparent activation energy and intermediate products. Environmental Science & Technology 33, 163.
Sun, Y.P., Li, X.Q., Cao, J.C., Zhang, W. X., Wang, H.P., 2006. Characterization of zero-valent iron particles. Advances in Colloid and Interface Science 120, 47-56.
Taniguchi, S., Miyamura, A., Ebihara, A., Hosomi, M., Murakami, A., 1998. Treatment of pcb-contaminated soil in a pilot- scale continuous decomposition system. Chemosphere 37, 2315-2326.
Taniguchi, S., Murakami, A., Hosomi, M., Miyamura, A., Uchida, R., 1997. Chemical Decontamination of PCB- Contaminated Soil. Chemosphere 34, 1631-1637.
Thompson, J.M., Chisholm B.J., Bezbaruah, A. N., 2010. Reductive dechlorination of chloroacetanilide herbicide (Alachlor) using zero valent iron particles. Environmental Engineering Science 27(3), 227-232.
Tingyu, Z., Shouyu, Z., Jiejie, H., Yang, W., 2000. Effect of Calcium oxide on pyrolysis of coal in a fluidized bed. Fuel Processing Technology 63, 271-284.
Tratnyek, P.G., Johnson, R.L. 2006. Nanotechnologies for environmental cleanup. Nanotoday, 1, 44-48.
Tse, K.K.C., Lo, S.L., 2002. Desorption kinetics of PCP-contaminated soil: effect of temperature. Water Resources 36, 284-290.
USEPA, 1989. Interim procedures for estimating risks associated with exposures to mixtures of chlorinated dibenzo-p-dioxins and dibenzofurans (CDDs and CDFs) and 1989 Update. Washington, DC: Risk assessment forum. EPA/625/3-89.016.
Uzgiris, E.E., Edelstein, W.A., Philipp, H.R., Iben, I.E.T., 1994. Complex thermal desorption of PCBs from soil. Chemosphere 30, 377-387.
Van den Berg, M., Birnbaum, L., Bosveld, A.T.C., 1998. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environmental Health Perspectives 106, 775-792.
Vlkova L., Pekarek V., Pacakova V., Karban J., Bures M., Stulik K., 2004. Dechlorination ability of municipal waste incineration fly ash for polychlorinated phenols. Chemosphere 56, 935-942.
Voncina, E., Solmajer, T., 1998. Thermolysis on aluminum oxides chemisorbed 3-chlorophenol as example for the fly ash mediated surface catalysis reaction. Chemophere 37, 2335 - 2350.
Wang, C., Zhang, W., 1997. Nanoscale metal particles for dechlorination of PCE and PCBs. Environmental Science & Technology 31, 2154–2156.
Wang, W., Gao, X., Zheng, L., Lan, Y., 2006. Reductive dechlorination of polychlorinated dibenzo-p-dioxins and dibenzofurans in MSWI fly ash by sodium hypophosphite. Separation and Purification Technology 52, 186–190.
Wang, W., Jin, Z., Li, T., Zhang, H., Gao, S., 2006a. Preparation of spherical iron nanoclusters in ethanol-water solution for nitrate removal. Chemosphere 65, 1396-1404.
Wang, Yu., Zhou, D., Wang, Y., Wang, L., 2012. Automatic pH control system enhances the dechlorination of 2,4,4’-trichlorobiphenyl and extracted PCBs from contaminated soil by nanoscale Feo and Pd/Feo. Environmental Science and Pollution Research 19, 448-457.
Weber, R., Hagenmaier, H., 1998. Mechanism of the Formation of Dibenzo-p-dioxins and Furans from Chlorophenols in Gas Phase Reactions. Chemosphere 38, 529-549.
Weber, R., Nagai, K., Nishino, J., Shiraishi, H., Ishida, M., Takasuga, T., Konndo, K., Hiraoka, M., 2002. Effects of selected metal oxides on the dechlorination and destruction of PCDD and PCDF. Chemosphere 46, 1247-1253.
Yang, Z.., Xia, C.., Zhang, Q., Chen, J., Liang, X., 2007. Catalytic detoxification of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in fly ash. Waste Management 27, 588-592.
You, C.N., Liu, J.C., 1996. Desorptive behavior of chlorophenols in contaminated soil. Water Science and Technology 33, 263-270.
Zhang, F., Chen, J., Zhang, H., Ni, Y., Liang, X., 2007. The study on the dechlorination of OCDD with Pd/C catalyst in ethanol-water solution under mild condition. Chemosphere 68, 1716-1722.
Zhou, T., Li, Y., Lim, T.T., 2010. Catalytic hydrodechlorination of chlorophenols by Pd/Fe nanoparticles: Comparisons with other bimetallic systems, kinetics and mechanism. Separation and Purification Technology 76, 206-214.
Zhu, B.Z., Shan, G.Q., 2009. Potential mechanism for pentachlorophenol-induced carcinogenicity: A novel mechanism for metal-independent production of hydroxyl radicals. Chemical Research and Toxicology 22, 969-977.
指導教授 張木彬(Moo-Been Chang) 審核日期 2012-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明