博碩士論文 973409001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.15.147.215
姓名 魏宇晨(Yu-Chen Wei)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應
(Preparation, Promotion and Characterization of High Performance PdCo/C Catalyst for the Oxygen Reduction Reaction)
相關論文
★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應
★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質
★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應
★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究
★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應
★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應
★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應
★ 鈀金鎳觸媒在鹼性乙醇氧化環境下結構與活性的關係★ 不同形貌硒化鎘奈米晶之製備及其於有機光伏元件之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本研究中,吾人致力於製備高活性之PdCo/C觸媒以利用於陰極氧氣還原反應(ORR),並且利用改質及製程控制,如調控pH值、添加氧化飾(CeO2)、氧化熱處理及添加元素金等方法,用以製備組成及結構可調控之電催化PdCo/C觸媒,並增益其ORR活性。本研究利用沉澱沉積法(DP)合成金屬重量為20 wt. %之PdCo/C觸媒,並以氫氣還原。所研製觸媒其結構、形貌、表面組成以及電催化特性之關係將利用粉末X光繞射儀(XRD)、X光吸收光譜(XAS)、穿透式電子顯微鏡(TEM)、光電子能譜儀(XPS)、程式溫度還原儀(TPR)和各種電化學量測方法進行深入探討。
本論文中研究主題分成四部分,第一部分為控制Pd/Co原子比為3/1的PdCo/C之製程參數,在反應過程中將pH值精準控制至9、11及13,而觸媒分別在390和620 K的氫氣中還原。研究指出,pH值將會顯著影響Pd及Co離子的沉澱速率進而影響觸媒的結構、表面組成及ORR活性。表面及電化學結果顯示高pH值(pH = 11和13)和高還原溫度(620 K)的製備條件會導致製備出的PdCo/C觸媒表面富含Co氧化物種而使ORR活性下降。反之,在pH=9及低還原溫度(390 K)的條件下所製備的觸媒可形成良好的Pd-Co合金、表面富含Pd組成及良好的ORR活性。
第二部分之研究重點為探討經CeO2改質之PdCo/C觸媒其ORR活性增益和表面組成的關係。利用DP法製備添加不同含量CeO2 (10 ~ 20 wt. %)的PdCo/C觸媒,並分別在390和620 K的氫氣中還原。研究結果發現雖然Co離子能在620 K下被完全還原,然而390 K的還原溫度可防止觸媒合金顆粒團聚和Co物種的表面偏析。此外,添加15 wt. %的CeO2 (Ce15)及低還原溫度(390 K)的製程條件可使觸媒表面富含Pd而形成Pd skin / alloy core結構。因此,Ce15有最佳的ORR活性,相較於未經改質的PdCo/C觸媒,其活性約提升了2.3倍,此乃因CeO2添加促進了合金顆粒的分散及表面物種的改變,因此對PdCo/C觸媒而言,CeO2為一結構及表面改質劑,能用來大幅提升觸媒ORR之活性。
第三部分為將第一部分所製備之PdCo/C觸媒進一步進行氧化後熱處理(320 ~ 620 K)。並以XPS的結果定義表面氧化程度(DSO)用以解釋觸媒ORR活性提升和表面氧化程度之關係。研究結果顯示提升觸媒活性的最佳氧化溫度為520 K,於此條件所改質之觸媒其表面由PdO所組成。此外,PdCo/C觸媒也以H2或CO熱處理,在此條件下觸媒合金顆粒之大小並無顯著改變。結果顯示:氧化過的PdCo/C觸媒較其它熱處理的觸媒有較佳的ORR活性,由此可推斷觸媒活性的提升主要是因為形成PdO物種及100 % DSO值,而非大尺寸效應所致。
第四部分合成不同原子比例之三元Pd75Co25-xAux/C(x = 5~25)觸媒,並系統性的探討金元素的添加對於觸媒的結構、表面組成及活性之影響。由XRD的結果可知添加金進入Pd-Co系統內將會導致形成非均質之合金結構。同時,XAS結果顯示金的添加會使得觸媒的異相原子混合度大幅度提升,特別是添加了15 at. %的金(Pd75Co10Au15/C, Au15)。由TPR結果可知當金添加量大於15 at. %時,觸媒的表面組成將由富含Pd之表面逐漸變成Pd,Au及合金相共存之表面組成。此外,經過金修飾過後的觸媒其合金顆粒大小約在4.9 ~ 5.4奈米之間,其中又以Au15的合金顆粒分佈尺寸最為集中。電化學特性分析發現,相較於Pd/C及Pd75Co25/C樣品,Au15的Pd質量活性分別提升了4和2.5倍。Au15能有良好的ORR活性主要是因為異相原子混合度的提升、較為集中的合金顆粒尺寸分佈、較大的電化學活性面積及多相共存之表面組成所致。
摘要(英) In this study, the highly effective PdCo/C catalysts toward oxygen reduction reaction (ORR) are prepared. The preparation and modification approaches, including the control over pH values, addition of ceria (CeO2), oxidation heat treatment and incorporation of Au are used to synthesize Pd-Co/C with tunable structure and surface compositions and high catalytic activity. The PdCo/C catalysts with 20 wt. % metal loading are synthesized through the deposition-precipitation (DP) method and reduced under H2 atmosphere. The fundamental understanding of relationship between structures, morphologies, surface species and electrochemical properties is studied by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction (TPR) and various electrochemical measurements.
The study is divided into four parts. In the 1st part, the PdCo/C alloy catalysts with a Pd/Co atomic ratio of 3/1 are prepared at various pH values (pH = 9, 11 and 13) and reduced at 390 or 620 K under H2 atmosphere. The pH value affects the deposition and reduction rates of Pd and Co ions significantly and thus the structures, surface species and ORR activity of the PdCo/C catalysts are also influenced. Due to the enhancement of Co surface segregation and the formation of Co oxides on the alloy surface, the deterioration of ORR activity for PdCo/C catalysts prepared under the high pH values (pH = 11 and 13) and high temperature (620 K) is observed. On the other hand, the alloy catalysts deposited at pH = 9 and reduced at 390 K have well-formed Pd-Co alloy structure, Pd-rich surface and excellent ORR activity.
In the 2nd part, the ORR activity enhancement and surface species alteration of PdCo/C alloy catalysts with various Ce additions (10 ~ 20 wt. %) is studied. The electrocatalysts are prepared and subsequently reduced at 390 or 620 K. Although Co ions can be fully reduced only at 620 K, the reduction process conducted at 390 K can prevent the Pd-Co alloys from grain growth and undesired surface Co segregation. The addition of 15 wt. % CeO2 (Ce15) along with low reduction temperature (390 K) into the Pd-Co system promotes the enrichment of Pd surface species, resulting in the formation of a Pd skin / alloy core structure. As a consequence, Ce15 can present the superior ORR activity with a 2.3-fold improvement as compared to the un-modified, and CeO2 acting as a textural promoter and surface modifier for the PdCo/C alloy catalysts, can significantly improve their ORR activity.
In the 3rd part, the PdCo/C catalysts prepared in the 1st part are further oxidation treated at various temperatures (To = 320 ~ 620 K) and the oxidation induced improvement of the ORR activity for PdCo/C is investigated. Based on the XPS characterization, a new term, degree of surface oxidation (DSO), is proposed to illustrate the relationship between ORR activity enhancement and surface oxidation extent of the PdCo/C. The optimal temperature for the promotion of ORR activity on various oxidized samples is 520 K where its surface is majorly comprised of PdO. Besides, various heat treatment atmospheres (H2 and CO) are applied on Pd-Co system without changing their particle size. It is clearly evident that the PdCo/C catalysts oxidized at 520 K exhibit a better performance relative to that of the non-oxidized ones, confirming that the improved ORR activity is solely ascribed to the formation of surface PdO species with 100 % DSO value rather than the large particle size effect.
In the 4th part, ternary catalysts of Pd75Co25-xAux/C with varying x content (x = 5 ~ 25) are synthesized and the role of Au in altering structures, surface conditions and electrochemical properties of PdCo/C catalysts is systematically investigated. XRD results reveal that the incorporation of Au into Pd-Co system contributes to the formation of inhomogeneous alloy structure. Meanwhile, the fine structural details determined by XAS indicates that Au improves the heteroatomic intermix extent of alloy nanocatalysts significantly, especially for the Pd75Co10Au15/C (Au15) catalysts. TPR results suggest that the Pd-rich surface gradually changes to Pd, Au and alloy mixed surface species when Au content is larger than 15 at. %. All of the Au-modified PdCo/C catalysts have the particles size of ca. 4.9 ~ 5.4 nm and Au15 has the narrowest size distribution among all catalysts. For the electrochemical properties, the Pd mass activity of Au15 is ca. 4-fold and 2.5-fold higher than that of Pd/C and Au0 (Pd75Co25/C). Thus, it is demonstrated that Au15 displays the excellent ORR performance due to the improved extent of heteroatomic intermix in bulk structure, narrow size distribution, large electrochemical surface area (ECSA) and the concomitant multiple coexisting species predominated on the outermost surface.
關鍵字(中) ★ X光吸收光譜
★ 異相原子混合度
★ 表面氧化程度
★ 電化學活性面積
★ PdCoAu
★ 氧還原反應
★ PdCo
★ pH值
★ 氧化飾
★ 程溫式還原儀
★ 氧化熱處理
關鍵字(英) ★ PdCo
★ PdCoAu
★ Oxygen reduction reaction
★ X-ray absorption spectroscopy
★ Temperature programmed reduction
★ pH values
★ Ceria
★ Oxidation treatment
★ Degree of surface oxidation
★ Heteroatomic intermix extent
★ Electrochemical surface area
論文目次 摘要............................................................................................ i
Abstract...................................................................................
Acknowledgement.................................................................. vii
Table of Contents.................................................................... ix
List of Symbols....................................................................... xii
List of Figures ....................................................................... xiii
List of Tables.......................................................................... xx
Chapter I Introduction......................................................... 1
1. History of fuel cells...........................................................................3
2. Classification of fuel cells .................................................................5
3. Main cell components and materials of the PEMFCs ........................8
3.1 Proton exchange membrane .......................................................8
3.2 Gas diffusion layer ...................................................................12
3.3 Catalysts layer ..........................................................................12
3.4 Flow field plate ........................................................................13
Chapter II Literature Review ............................................. 14
1. Principle of the PEMFCs.................................................................15
2. Cathode catalysts in PEMFCs .........................................................21
2.1 Mechanism of the ORR............................................................22
2.2 PdCo/C alloy catalysts for the ORR .........................................24
2.3 Modification and promotion of PdCo/C alloy catalysts ............26
3. Important correlation between structure, surface composition and ORR activity ..................................................................................46
4. Motivation in my study ...................................................................51
Chapter III Experimental procedure................................... 55
1. Preparation and modification of PdCo/C catalysts..........................55
1.1 Preparation of PdCo/C by the pH value control........................55
1.2 Preparation of PdCo/C by the CeO2 addition............................57
1.3 Modification of PdCo/C by the oxidation heat treatment.......... 57
1.4 Preparation of PdCoAu/C catalysts ..........................................59
2. Characterization of catalysts ...........................................................62
2.1 TGA analysis ...........................................................................62
2.2 ICP analysis .............................................................................62
2.3 XRD characterization...............................................................62
2.4 XAS characterization ...............................................................64
2.5 HR-TEM characterization ........................................................65
2.6 XPS characterization................................................................65
2.7 TPR characterization................................................................66
3. Electrochemical measurements ......................................................69
3.1 Linear sweep voltammetry .......................................................69
3.2 CO stripping voltammetry........................................................70
Chapter IV Results and Discussion...................................... 71
1. The ORR activity enhancement of PdCo/C by fine control over pH values.............................................................................................71
2. The ORR activity enhancement of PdCo/C by CeO2 addition ......... 87
xi
3. The ORR activity enhancement of PdCo/C by oxidation thermal treatment ......................................................................................102
3.1 The effect of surface oxidation on the promotion of ORR activity .........................................................................................102
3.2 Relationship between surface species and ORR activity on various heat treated PdCo/C catalysts........................................... 117
4. The ORR activity enhancement of PdCo/C by the incorporation of Au................................................................................................126
5. Comparison of the ORR activity of various modified PdCo/C ..... 153
Chapter V Conclusions...................................................... 155
References ............................................................................ 157
參考文獻 [1]K. Kordesch, G. Simader, Fuel Cells and Their Applications, CRC Press, New York, 2002.
[2]P. B. L. Chaurasia, Y. Ando, T. Tanaka, Energ. Convers. Manage. 44 (2003) 611.
[3]S. Song, Catal. Today 77 (2002) 17.
[4]G. J. K. Acres, J. Power Sources 100(2001) 60.
[5]P. Costamagna, S. Srinvasan, J. Power Sources 102(2001) 242.
[6]V. A. paganin, C. L. F. Oliveira, E. A. Ticianelli, T. E. Springer, E. R. Gonzalez, Electrochim. Acta 43 (1998) 3761.
[7]G. Hoogers, Fuel Cells Technology, CRC Press, New York, 2002.
[8]J. Zhang, PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications, Springer, London, 2008.
[9]Z. Ogumi, T. Kuroe, Z. I. Takehara, J. Electrochem. Soc. 132 (1985) 2601.
[10]J. Cruickshank, K. Scott, J. Power Sources 70 (1998) 40.
[11]M. Watanabe, M. Uchida, S. Moot, J. Electroanal. Chem. 229 (1987) 396.
[12]E. Antolini, Appl. Catal. B: Environ. 74 (2007) 324.
[13]A. Serov, C. Kwak, Appl. Catal. B: Environ. 90 (2009) 313.
[14]L. Carrette, K. A. Friedrich, U. Stimming, Fuel Cells 1 (2005) 5.
[15]R. Adzic, Recent Advances in the Kinetics of Oxygen Reduction, Wiley-VCH, New York,1998.
[16]G. Hoogers, F. R. Foulkes, Fuel Cells Handbook, CRC Press, New York, 2002.
[17]M. P. Hogarth, T. R. Ralph, Platinum Metals Rev. 46 (2002) 146.
[18]J. Luo, L. Wang, D. Mott, P. N. Njoki, Y. Lin, T. He, Z. Xu, B. N. Wanjana, I. I. S. Lim, C. J. Zhong, Adv. Mater. 20 (2008) 4342.
[19]C. Wang, D.V. D. Vliet, K. L. More, N. J. Zaluzec, S. Peng, S. Sun, H. Daimon, G. Wang, J. Greeley, J. Pearson, A. P. Paulikas, G. Karapetrov, D. Strmcnik, N. M. Markovic, V. R. Stamenkovic, Nano Lett. 11 (2011) 919.
[20]H. A. Gasteiger, S. S. Kocha, B. Sompalli, F. T. Wagner, Appl. Catal. B: Environ. 56 (2005) 9.
[21]T. D. Jarvi, S. Stuve, E. M. Sriramulu, J. Phys. Chem. B 101 (1997) 3649.
[22]V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A. Lucas, N. M. Markovic, Science 315 (2007) 493.
[23]B. E. Hayden, D. Pletcher, J. P. Suchsland, L. J. Williams, Phys. Chem. Chem. Phys.11 (2009) 9141.
[24]F. J. Nores-Pondal, I. M. J. Vilella, H. Troiani, M. Granada, S. R. de-Miguel, O. A. Scelza, H. R. Corti, Int. J. Hydrogen Energy 34 (2009) 8193.
[25]E. Antolini, Energy Environ. Sci. 2 (2009) 915.
[26]http://www.platinum.matthey.com/pgm-prices/price-charts/
[27]M. R. Tarasevich, V. A. Bogdanovskaya, L. N. Kuznetsova, A. D. Modestov, B. N. Efremov, A. E. Chalykh, Y. G. Chirkov, N. A. Kapustina, M. R. Ehrenburg, J. Appl. Electrochem. 37 (2007) 1503.
[28]F. Kadirgan, A. M. Kannan, T. Atilan, S. Beyhan, S. S. Ozenler S. Suzer, A. Yorur, Int. J. Hydrogen Energy 34 (2009) 9450.
[29]E. Antolini, T. Lopes, E. R. Gonzalez, J. Alloys Compds. 461 (2008) 253.
[30]F. Jaouen, J. Phys. Chem. C 113 (2009) 15433.
[31]J. Lipkowski, P. N. Ross, Electrocatalysis, Wiley-VCH, New York, 1998.
[32]F. Jaouen, J. P. Dodelet, J. Phys. Chem. C 113 (2009) 15422.
[33]M. H. Shao, T. Huang, P. Liu, J. Zhang, K. Sasaki, M. B. Vukmirovic, R. R. Adzic, Langmuir 22 (2006) 10409.
[34]S. A. Grigoriev, E. K. Lyutikova, S. Martemianovb, V. N. Fateev, Int. J. Hydrogen Energy 32 (2007) 4438.
[35]M. H. Shao, K. Sasaki, R. R. Adzic, J. Am. Chem. Soc. 128 (2006) 3526.
[36]L. Zhang, K. Lee, J. Zhang, Electrochim. Acta 52 (2007) 7964.
[37]H. Liu, A. Manthiram, Energy Environ. Sci. 2 (2009) 124.
[38]J. L. Fernandez, D. A. Walsh, A. J. Bard, J. Am. Chem. Soc. 127 (2005) 357.
[39]Y. Suo, L. Zhuang, J. Lu, Angew. Chem. Int. Ed. 46 (2007) 2862.
[40]H. Liu, A. Manthiram, Electrochem. Commun. 10 (2008) 740.
[41]B. J. Hwang, S. M. S. Kumar, C. H. Chen, R. W. Chang, D. G. Liu, J. F. Lee, J. Phys. Chem. C 112 (2008) 2370.
[42]D. Lahiri, B. Bunker, B. Mishra, Z. Zhang, D. Meisel, C. M. Doundna, M. F. Bertino, F. D. Blum, A. T. Tokuhiro, S. Chattopadhyay, T. Shibata, J. Terry, J. Appl. Phys. 97 (2005) 094304.
[43]C. M. Doudna, M. F. Bertino, F. D. Blum, A. T. Tokuhiro, D. Lahiri-Dey, S. Chattopadhyay, J. Terry, J. Phys. Chem. B107 (2003) 2966.
[44]L. Ren, Y. Xing, Electrochim. Acta 53 (2008) 5563.
[45]L. Mo, X. Zheng, C. T. Yeh, ChemPhysChem 6 (2005) 1470.
[46]J. H. Blank, J. Beckers, P. F. Collignon, G. Rothenberg, ChemPhysChem 8 (2007) 2490.
[47]S. Y. Huang, C. M. Chang, C. T. Yeh, J. Catal. 241 (2006) 400.
[48]C. Xu, P. K. Shen, J. Power Sources 142 (2005) 27.
[49]C. W. Liu, Y. C. Wei, K. W. Wang, Electrochem. Commun. 11 (2009) 1362.
[50]K. H. Lee, K. Kwon, V. Roev, D. Y. Yoo, H. Chang, D. Seung, J. Power Sources 185 (2008) 871.
[51]Y. C. Wei, C. W. Liu, K. W. Wang, ChemPhysChem 10 (2009) 1230.
[52]D. H. Lim, W. D. Lee, D. H. Choi, H. H. Kwon, H. I. Lee, Electrochem. Commun. 10 (2008) 592.
[53]L. Mo, X. Zheng, C. T. Yeh, Chem. Commun. (2004) 1426.
[54]J. W. Guo, T. S. Zhao, J. Prabhuram, R. Chen, C. W. Wong, J. Power Sources 156 (2006) 345.
[55]D. H. Lim, W. D. Lee, D. H. Choi, H. I. Lee, Appl. Catal. B: Environ. 94 (2010) 85.
[56]J. Zhao, W. Chen, Y. Zheng, Mater. Chem. Phys. 113 (2009) 591.
[57]K. H. Lee, K. Kwon, V. Roev, D. Y. Yoo, H. Chang, D. Seung, J. Power Sources 185 (2008) 871.
[58]K. W. Wang, C. T. Yeh, J. Colloid Inter. Sci. 325 (2008) 203.
[59]K. W. Wang, S. Y. Huang, C. T. Yeh, J. Phys. Chem. C 111 (2007) 5096.
[60]X. Li, I. M. Hsing, Electrochim. Acta 52 (2006) 1358.
[61]C. W. Liu, Y. C. Wei, K. W. Wang, Chem. Commun. 46 (2010) 2483.
[62]N. Tsiouvaras, M. V. Martinez-Huerta, O. Paschos, U. Stimming, J. L. G. Fierro, M. A. Pena, Int. J. Hydrogen Energy 35 (2010) 11478.
[63]D. B. Kim, H. J. Chun, Y. K. Lee, H. H. Kwon, H. I. Lee, Int. J. Hydrogen Energy 35 (2010) 313.
[64]B. J. Hwang, L. S. Sarma, G. R. Wang, C. H. Chen, D. G. Liu, H. S. Sheu, J. F. Lee, Chem. Eur. J. 13 (2007) 6255.
[65]K. S. Lee, H. Y. Park, Y. H. Cho, I. S. Park, S. J. Yoo, Y. E. Sung, J. Power Sources 195 (2010) 1031.
[66]R. K. Raman, A. K. Shukla, A. Gayen, M. S. Hegde, K. R. Priolkar, P. R. Sarode, S. Emura, J. Power Sources 157 (2006) 45.
[67]P. K. Babu, H. S. Kim, S. T. Kuk, J. H. Chung, E. Oldfield, A. Wieckowski, J. Phys. Chem. B 109 (2005) 17192.
[68]S. Y. Huang, S. M. Chang, C. L. Lin, C. H. Chen, C. T. Yeh, J. Phys. Chem. B 110 (2006) 23300.
[69]S. Y. Huang, C. M. Chang, K. W. Wang, C. T. Yeh, ChemPhysChem 8 (2007) 1774.
[70]T. K. Yeh, C. H. Tsai, M. T. Wu, Mater. Chem. Phys. 114 (2009) 199.
[71]R. Sellin, C. Grolleau, S. Arrii-Clacens, S. Pronier, J. M. Clacens, C. Coutanceau, J. M. Leger, J. Phys. Chem. C 113 (2009) 21735.
[72]T. Y. Jeon, S. J. Yoo, Y. H. Cho, K. S. Lee, S. H. Kang, Y. E. Sung, J. Phys. Chem. C 113 (2009) 19732.
[73]M. K. Min, J. H. Cho, K. W. Cho, H. Kim, Electrochim. Acta 45 (2000) 4211.
[74]A. K. Shukla, M. Neergat, P. Bera, V. Jayaram, M. S. Hegde, J. Electroanal. Chem. 504 (2001) 111.
[75]K. J. J. Mayrhofer, V. Juhart, K. Hartl, M. Hanzlik, M. Arenz, Angew. Chem. Int. Ed. 48 (2009) 3529.
[76]W. Chen, D. Ny, S. Chen, J. Power Sources 195 (2010) 412.
[77]W. S. Baker, J. J. Pietron, M. E. Teliska, P. J. Bouwman, D. E. Ramaker, K. E. Swider-Lyons., J. Electrochem. Soc. 153 (2006) A1702.
[78]B. J. Hwang, S. M. S. Kumar,? C. H. Chen, Monalisa,? M. Y. Cheng, D. G. Liu, J. F. Lee, J. Phys. Chem. C 111 (2007) 15267.
[79]C. Wang, D. V. D. Vliet, K. C. Chang, H. You, D. Strmcnik, J. A. Schlueter, N. M. Markovic, V. R. Stamenkovic, J. Phys. Chem. C 113 (2009) 19365.
[80]S. Axnanda, K. D. Cummins, T. He, D. W. Goodman, M. P. Soriaga, ChemPhysChem 11 (2010) 1468.
[81]S. Chen, P. J. Ferreira, W. Sheng, N. Yabuuchi, L. F. Allard, Y. S. Horn, J. Am. Chem. Soc. 130 (2008) 13818.
[82]Y. C. Wei, C. W. Liu, Y. W. Chang, K. W. Wang, C. M. Lai, P. Y. Lim, L. D. Tsai, Int. J. Hydrogen Energy 35 (2010) 1864.
[83]Y. Takasu, N. Ohashi, X. G. Zhang, Y. Murakami, H. Minagawa, S. Sato, K. Yahikozawa, Electrochim. Acta 41 (1996) 2595.
[84]S. Mukerjee, J. Mc-Breen, J. Electroanal. Chem. 448 (1998) 163.
[85]K. J. J. Mayrhofer, B.B. Blizanac, M. Arenz, V. R. Stamenkovic, P. N. Ross, N. M. Markovic, J. Phys. Chem. B 109 (2005) 14433.
[86]F. Maillard, M. Martin, F. Gloaguen, J. M. Leger, Electrochim. Acta 47 (2002) 3431.
[87]H. Yano, J. Inukai, H. Uchida, M. Watanabe, P. K. Babu, T. Kobayashi, J. H. Chung, E. Oldfield, A. Wieckowski, Phys. Chem. Chem. Phys. 8 (2006) 4932.
[88]V. Raghuveer, P. J. Ferreira, A. Manthiram, Electrochem. Commun. 8 (2006) 807.
[89]J. L. Fernandez, V. Raghuveer, A. Manthiram, A. J. Bard, J. Am. Chem. Soc.127 (2005) 13100.
[90]V. Raghuveer, A. Manthiram, A. J. Bard, J. Phys. Chem. B109 (2005) 22909.
[91]W. Tang,S. Jayaraman, T. F. Jaramillo, G. D. Stucky, E. W. Mc-Farland, J. Phys. Chem. C 113 (2009) 5014.
[92]D. Mott, J. Luo, P. N. Njoki, Y. Lin, L. Wang, C. J. Zhong, Catal. Today 122 (2007) 378.
[93]J. Luo, M. M. Maye, V. Petkov, N. N. Kariuki, L. Wang, P. Njoki, D. Mott, Y. Lin, C. J. Zhong, Chem. Mater. 17 (2005) 3086.
[94]J. Zhang, K. Sasaki, E. Sutter, R. R. Adzic, Science 315 (2007) 220.
[95]C. W. Liu, Y. C. Wei, K. W. Wang, J. Colloid Inter. Sci. 336 (2009) 654.
[96]P. Hernandez-Fernandez, S. Rojas, P. Ocon, A. D. Frutos, J. M. Figueroa, P. Terreros, M. A. Pena, J. L. G. Fierro, J. Power Sources 177 (2008) 9.
[97]P. Hernandez-Fernandez, S. Rojas, P. Ocon, J. L. Gomez-de-la-Fuente, J. S. Fabian, J. Sanza, M. A. Pena, F. J. Garcıa-Garcıa, P. Terreros, J. L. G. Fierro, J. Phys. Chem. C 111 (2007) 2913.
[98]J. Luo, P. N. Njoki, Y. Lin, L. Wang, C. J. Zhong, Electrochem. Commun. 8 (2006) 581.
[99]H. Nitani, T. Nakagawa, H. Daimon, Y. Kurobe, T. Ono, Y. Honda, A. Koizumi, S. Seino, T. A. Yamamoto, Appl. Catal. A: Gen. 326 (2007) 194.
[100]Z. Peng, H. Yang, Nano Today 4 (2009) 143.
[101]R. R. Adzic, J. Zhang, K. Sasaki, M. B. Vukmirovic, M. Shao, J. X. Wang , A. U. Nilekar, M. Mavrikakis, J. A. Valerio, F. Uribe, Top Catal. 46 (2007) 249.
[102]B. J. Hwang, L. S. Sarma, J. M. Chen, C. H. Chen, S. C. Shih, G. R. Wang, D. G. Liu, J. F. Lee, M. T. Tang, J. Am. Chem. Soc. 127 (2005) 11140.
[103]F. J. Lai, L. S. Sarma, H. L. Chou, D. G. Liu, C. A. Hsieh, J. F. Lee, B. J. Hwang, J. Phys. Chem. C113 (2009) 12674.
[104]F. J. Lai, H. L. Chou, L. S. Sarma, D. Y. Wang, Y. C. Lin, J. F. Lee, B. J. Hwang, C. C. Chen, Nanoscale 2 (2010) 573.
[105]D. G. Liu, J. F. Lee, M. T. Tang, J. Mol. Catal. A: Chem. 240 (2005), 197.
[106]D. Briggs, M. P. Seah, Practical Surface Analysis, Wiley-VCH, New York, 1990.
[107]P. H. C. Camargo, M. Rycenga, L. Au, Y. Xia, Angew. Chem. Int. Ed. 48 (2009) 2180.
[108]R. Alvarez-Puebla, R. Contreras-Caceres, I. Pastoriza-Santos, J. Perez-Juste, L. M. Liz-Marzan, Angew. Chem. Int. Ed. 48 (2009) 138.
[109]Y. Wang, X. Wang, C. M. Li, Appl. Catal. B: Environ. 99 (2010) 229.
[110]F. J. Lai, W. N. Su, L. S. Sarma, D. G. Liu, C. A. Hsieh, J. F. Lee, B. J. Hwang, Chem. Eur. J. 16 (2010) 4602.
[111]A. Habrioux, W. Vogel, M. Guinel,L. Guetaz, K. Servat, B. Kokoh, N. Alonso-Vante, Phys. Chem. Chem. Phys. 11 (2009) 3573.
[112]K. W. Wang, S. R. Chung, C. W. Liu, J. Phys. Chem. C 112 (2008) 10242.
[113]Y. C. Wei, C. W. Liu, K.W. Wang, ChemPhysChem11 (2010) 3078.
[114]Y. C Wei, C. W. Liu, W. J. Chang, K. W. Wang, J. Alloys Compd. 509 (2011) 535.
[115]Y. C. Wei, C. W. Liu, H. W. Lee, S. R. Chung, S. L. Lee, T. S. Chan, J. F. Lee, K. W. Wang, Int. J. Hydrogen Energy 36 (2011) 3789.
[116]Y. C. Wei, C. W. Liu, W. D. Kang, C. M. Lai, L. D. Tsia, K. W. Wang, J. Electroanal. Chem. 660 (2011) 64.
[117]W. D. Kang, Y. C. Wei, C. W. Liu, K. W. Wang, Electrochem. Commun. 13 (2011) 162.
[118]C. W. Liu, Y. C. Wei, K. W. Wang, J. Phys. Chem. C 115 (2011) 8702.
[119]S. Srinivasan, R. J. De-angelis, P. J. Reucroft, A. G. Dhere, J. Bentley, J. Catal. 116 (1989) 144.
[120]D. J. Kim, H. S. Chung, K. Yu, Mater. Res. Bull. 37 (2002) 2067.
[121]K. Sasaki, H. Naohara, Y. Cai, Y. M. Choi, P. Liu, M. B. Vukmirovic, J. X. Wang, R. R. Adzic, Angew. Chem. Int. Ed. 49 (2010) 8602.
[122]R. R. Adzic, J. Zhang, K. Sasaki, M. B. Vukmirovic, M. Shao, J. X. Wang, A. U. Nilekar, M. Mavrikakis, J. A. Valerio, F. Uribe, Top. Catal. 46 (2007) 249.
[123]B. E. Warren, X-ray Diffraction, Dover Publications, Inc., New York, 1990.
[124]S. I. Zabinsky, J. J. Rehr, A. L. Ankudinov, R. C. Albers, M. J. Eller, Phys. Rev. B 52 (1995) 2995.
[125]S.Y. Ang, D. A. Walsh, Appl. Catal. B: Environ. 98 (2010) 49.
[126]D. H. Lim, W. D. Lee, D. H. Choi, H. I. Lee, Appl. Catal. B: Environ. 94 (2010) 85.
[127]G. Liu, X. Li, P. Ganesan, B. N. Popov, Appl. Catal. B: Environ. 93 (2009) 156.
[128]K. J. J. Mayrhofer, D. Strmcnik, B. B. Blizanac, V. Stamenkovic, M. Arenz, N. M. Markovic, Electrochim. Acta 53 (2008) 3181.
[129]H. Schulenburg,J. Durst,E. Müller, A.Wokaun, G. G. Scherer, J. Electroanal. Chem. 642 (2010) 52.
[130]S. Y. Huang, P. Ganesan, B. N. Popov, Appl. Catal. B: Environ. 96 (2010) 224.
[131]A. E. Martell, R. M. Smith, Critical stability constants, Plenum Press, New York, 1976.
[132]A. Sarkar, V. Murugan, A. Manthiram, Langmuir 26 (2010) 2894.
[133]V. D. Noto, E. Negro, S. Lavina, S. Gross, G. Pace, Electrochim. Acta 53 (2007) 1604.
[134]A. J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solutions, Marcel Dekker, New York, 1985.
[135]R. Kant, S. K. J. Rangarajan, J. Electroanal. Chem.368 (1994) 1.
[136]P. Hernandez-Fernandez, S. Rojas, P. Ocon, J. L. Gomezde-la-Fuente, J. San-Fabian, J. Sanza, M. A. Pena, F. J. Garcıa-Garcıa, P. Terreros, J. L. G. Fierro, J. Phys. Chem. C 111 (2007) 2913.
[137]J. Luo, P. N. Njoki, Y. Lin, L. Wang, C. J. Zhong, Electrochem. Commun. 8 (2006) 581.
[138]R. J. Wu, J. G. Wu, T. K. Tsai, C. T. Yeh, Sens. Actuators B 120 (2006) 104.
[139]C. W. Chou, S. J. Chu, H. J. Chiang, C. Y. Huang, C. J. Lee, S. R. Sheen, T. P. Perng, C. T. Yeh, J. Phys. Chem. B105 (2001) 9113.
[140]L. Jiang, G. Sun, Z. Zhou, W. Zhou, Q. Xin, Catal. Today 93 (2004) 665.
[141]Y. Zhang, Q. Huang, Z. Zou, J. Yang, W. Vagel, H. Yang, J. Phys. Chem. C114 (2010) 6860.
[142]K. W. Wang, S. Y. Huang, C. T. Yeh, J. Phys. Chem. C 111 (2007) 5096.
[143]L. O. O. Costa, A. M. Silva, L. E. P. Borges, L. V. Mattos, F. B. Noronha, Catal. Today 138 (2008) 147.
[144]P. Fornasiero, G. Balducci, R. Di-Monte, J. Kapar, V. Sergo, G. Gubitosa, A. Ferrero, M. Graziani, J. Catal. 164 (1996) 173.
[145]F. B. Noronha, R. Frety, M. Schmal, Appl. Catal. 78 (1991) 125.
[146]V. Raghuveer, P. J. Ferreira, A. Manthiram, Electrochem. Commun. 8 (2006) 807.
[147]W. Vogel, W. He, Q. H. Huang, Z. Zou, X. G. Zhang, H. Yang, Int. J. Hydrogen Energy 35 (2010) 8609.
[148]U. A. Paulus, A. Wokaun, G. G. Scherer, J. Phys. Chem. B 106 (2002) 4181.
[149]W. Wang, D. Zheng, C. Du, Z. Zou, X. Zhang, B. Xia, H. Yang, D. L. Akins, J. Power Sources 167 (2007) 243.
[150]H. Liu, W. Li, A. Manthiram, Appl. Catal. B: Environ. 90 (2009) 184.
[151]W. Vogel, V. L. Rhun, E. Garnier, N. Alonso-Vante, J. Phys. Chem. B 105 (2001) 5238.
[152]W. Vogel, P. Kaghazchi, T. Jacob, N. Alonso-Vante, J. Phys. Chem. C 111 (2007) 3908.
[153]W. Vogel, J. Phys. Chem. C 112 (2008) 13475.
[154]I. L. Leontyev, D. Y. Chernyshov, V. E. Guterman, E. V. Pakhomova, A. V. Guterman, Appl. Catal. A: Gen. 357 (2009) 1.
[155]T. Y. Chen, T. L. Lin, T. J. M. Luo, Y. Chioi, J. F. Lee, ChemPhysChem 11 (2010) 2383.
[156]P. J. Durham in XANES theory (Eds.: D. C. Koningsberger, R. Prins), Wiley, New York, 1998.
[157]S. Alayoglu, B. Eichhorn, J. Am. Chem. Soc. 130 (2008) 17479.
[158]Y. C. Yeh, H. M. Chen, R. S. Liu, K. Asakura, M. Y. Lo, Y. M. Peng, T. S. Chan, J. F. Lee, Chem. Mater. 21 (2009) 4030.
[159]ICSD #88722, J. M. Tarascon, G. Vaughan, Y. Chabre, L. Seguin, M. Anne, P. Strobel, G. Amatucci, J. Solid State Chem.147 (1999) 410.
[160]ICSD #28505, J.G. Mullen, Phys. Rev.168 (1968) 220.
[161]M. P. Casaletto, A. Longo, A. M. Venezia, A. Martorana, A. Prestianni, Appl. Catal. A: Gen. 302 (2006) 309.
[162]Y. W. Lee, M. Kim, S. W. Kang, S. W. Han, Angew. Chem. Int. Ed. 50 (2011) 3528.
[163]W. Zhou, J. Y. Lee, J. Phys. Chem. C 112 (2008) 3789.
指導教授 王冠文(Kuan-Wen Wang) 審核日期 2012-2-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明