博碩士論文 974203024 詳細資訊


姓名 曾心怡(Hsin-I Tseng)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 雙屬性集合之空間分群演算法-應用於地理資料
(A Two-Attributes-Set Spatial Clustering Algorithm for Geographic Data)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 分群是資料探勘技術中的一個重要研究領域,且已在許多領域中被廣泛的研究與應用。分群是在空間上將相似的資料劃分成同一群並以少數的群集代替龐大的資料。然而目前傳統演算法針對地理資料上的空間分群皆為單一屬性,但實際上是可以將地理資料屬性做分類後加以分群,例如氣象局想了解不同地區的觀測站所測量氣候現象是否相似,故針對經度、緯度、溫度、雨量、溼度等屬性進行分群,我們可以察覺當中包含兩種屬性,經度和緯度的屬性為空間上的屬性,溫度、雨量和濕度等為氣象特徵上的屬性。傳統演算法在分群時,空間屬性與特徵屬性必須是相同的,因此無法針對此類問題產生良好的分群結果。因此我們提出雙屬性空間分群演算法,可以兼顧空間與多維特徵屬性分群,達到可以以空間上的屬性來分出每一群群內屬性相似,群間不相似的分群結果。
摘要(英) Cluster analysis has recently become a highly active topic in data mining research. However, traditional clustering algorithms had a restriction that they consider only one set of attributes. Actually, we can divide all attributes of a spatial object into two attribute sets. For example, Weather Bureau would like to know which regions have similar climate phenomenon, where each weather station are described by latitude and longitude attributes, and measurement of temperature, precipitation attributes. Therefore, two different attribute sets are required for spatial clustering, where one set is spatial attributes and the other one is characteristic attributes. Traditional algorithms do not distinguish the two sets of attributes, which lead to low quality spatial clustering results. We propose Two-Attributes-Set Spatial Clustering, generating clusters that can be segmented by characteristic attributes and objects in the same cluster are similar in spatial attributes as well.
關鍵字(中) ★ 資料挖掘
★ 空間分群
關鍵字(英) ★ Data mining
★ Cluster analysis
★ Spatial Clustering
論文目次 Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 2
1.3 Research Objectives 5
1.4 Thesis Framework 5
Chapter 2 Related Works 6
2.1 Cluster spatial objects without characteristic attributes 7
2.2 Cluster spatial objects with characteristic attributes 9
Chapter 3 The Problem and the Definitions 13
3.1 Research Problem 13
3.2 Definitions 14
Chapter 4 Two-Attributes-Set Spatial Clustering 24
4.1 Overview of the Algorithm 24
4.2 The Clustering Algorithm 27
4.2.1 Parameters of the Algorithm 27
4.2.2 Procedure of the Algorithm 28
4.2.3 Algorithm 29
4.3 Example 33
Chapter 5 Experiments 39
5.1 Content of Experiments 39
5.2 Performance Evaluation 40
5.2.1 Indicators for clustering results measures 40
5.2.2 Parameter Optimization 43
5.2.3 Clustering results measures 49
5.2.4 Draw the Clustering results 53
Chapter 6 Conclusions 59
6.1 Implications for Academic Researches 59
6.2 Implications for Business Practitioners 60
6.3 Future Works 60
References 61
參考文獻 [1] Ester, M., Kriegel, H. P. and Sander, J., 1997, “Spatial Data Mining: A Database Approach,” Proc. Fifth International Symposium on Large Spatial Databases, pp. 48-66.
[2] Ng, R. T. and Han, J., 1994, “Efficient and Effective Clustering Method for Spatial Data Mining,” International Conference Very Large Databases, pp. 144-155.
[3] Koperski, K. and Han, J., 1995, “Discovery of Spatial Association Rules in Geographic Information Database,” In Advances in Spatial Databases, Vol. 4, pp. 47-66.
[4] Chawla, S., Shekhar, S., WU, W. and Ozesmi, U., 2000, “Extending Data Mining for Spatial Application: A Case Study in Predicting Nest Locations,” ACM SIGMOD Workshop on Research Issue in Data Mining and Knowledge Discovery.
[5] Han, J. and Kamber, M., 2000, “Data Mining: Concepts and Techniques,” Morgan Kaufmann.
[6] Jain, A. K., Murty, M. N. and Flynn, P.J., 1999, “Data Clustering: A Review,” ACM Computing Surveys, Vol. 31, No. 3, pp. 264-323.
[7] Liu, B., Xia, Y. and Yu, P., 2000, “Clustering Through Decision Tree Construction,” In SIGMOD.
[8] Cheng, C.H., Fu, A.W. and Zhang, Y., 1999, “Entropy-Based Subspace Clustering for Mining Numerical Data,” KDD, pp. 84-93.
[9] Ester, M., Kriegel, H. and Sander, J., 1999, “Knowledge discovery in spatial databases,” German Conference on Artificial Intelligence, Vol. 23.
[10] Singh, V. P., 1971, “Model Flow Duration and Stream Variability,” Water Resource Research, Vol. 7, No. 4, pp. 1031-1036.
[11] Mosley, M. P., 1981, “Delimitation of New Zealand Hydrological Regions,” Journal of Hydrology, Vol. 49, pp. 173-92.
[12] Wiltshire, S. E., 1986, “Identification of Homogeneous Regions for flood frequency analysis,” Journal of Hydrology, Vol. 84, pp. 287-302.
[13] Chen, C.-J., 2005, “A Study On Clustering Characteristics of Spatial Distribution of Extreme Rainfall” Journal of Technology, Vol. 20, pp. 377-386.
[14] Chen, H.-I, 2001, “Defining the Housing Submarkets in Taipei Metropolitan Area” Master's Thesis of Department of Urban Planning, NCKU.
[15] Hsu, L. H., and H. L., 2004, “A Study on the Changing Spatial Patterns of the Retail-Service Industries in the Taichung Metropolitan Area,” Journal of Building and Planning National Taiwan University, Num. 11, pp. 1-19.
[16] Karypis, G. Han, E-H., and Kumar, V., 1999, “Chameleon: A Hierarchical Clustering Algorithm Using Dynamic Modeling,” IEEE Computer, pp. 68-75.
[17] Guha, S., Rastogi, R., and Shim, K., 1999, “ROCK: A Robust Clustering Algorithm for Categorical Attributes,” Int'l Conference on Data Engineering, pp. 512-521.
[18] Guha, S., Rastogi, R., and Shim, K., 1998, “CURE: an efficient clustering algorithm for large databases,” ACM SIGMOD International Conference on Management of Data, pp. 73-84.
[19] http://cdc.cma.gov.cn/index.jsp
[20] http://worldweather.wmo.int/index.htm
[21] http://www.dgbas.gov.tw/ct.asp?xItem=18472&ctNode=3279
[22] Kaufman, L., and Rousseeuw, P., 1990, “Finding Groups in Data: An Introduction to Cluster Analysis,” Wiley.
[23] Jung, C.-T., 2005, “Spatial Data Mining on Census Data- A Case Study for Location Analysis of Convenience Stores in Taipei City” Journal of Taiwan Geographic Information Science, Vol. 2, pp. 45-56.
[24] Ester, M., Frommelt, A., Kriegel, H.P. and Sander, J., 1998, “Algorithms for Characterization and Trend Detection in Spatial Databases,” International Conference on Knowledge Discovery and Data Mining, Vol. 4, pp. 44-50.
[25] Han, J., Kamber, M., and Tung, A. K. H., 2001, “Spatial clustering methods in data mining: A survey.” In Miller, H. and Han, J., editors, In Geographic Data Mining and Knowledge Discovery, pp. 187–217.
指導教授 陳彥良(Yen-Liang Chen) 審核日期 2010-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡