博碩士論文 974208027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:34.204.203.142
姓名 黃思瑋(Sze-wei Huang)  查詢紙本館藏   畢業系所 財務金融學系
論文名稱 權益連結年金保險之定價 — 考慮GARCH 效果
(Valuation of Ratchet Equity-Indexed Annuities under GARCH Process)
相關論文
★ 從銀行業角度探討反向抵押貸款在臺灣實行之可行性研究★ 金融科技與監理沙盒對臺灣保險業影響之探討
★ 線上課程學習成效與影響之研究-以壽險從業人員為例★ 公司治理與風險性資本的關係:以美國壽險及健康險業為例
★ 實際波動度模型下的VIX選擇權定價★ 經濟供需模型評價死亡率債券
★ 保險業外匯價格變動準備金之研究★ 隨機模型建構在保險業現金流量測試之應用
★ Solvency II 量化分析──以反向抵押貸款為例★ 反向抵押貸款採用隨機房價模型之分析
★ VIX金融衍生性市場的價格發現和跳躍行為之研究★ 企業社會責任對上市公司獲利影響分析:以台灣50成分股為例
★ 壽險保單準備金之有效存續期間分析─利率風險與死亡率風險★ 運用關聯性結構方法及GARCH過程評價權益連結型年金內含二元選擇權
★ 公司治理對台灣銀行業獲利 及逾放比的影響★ 跨國死亡率模型之建構:考慮世代效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在保險商品市場裡,附保證權益連結年金保險日趨流行,這樣的投資型保險不僅提供投保人參與投資連結的指數,並且在保單到期時,擁有最低保證收益,讓投保人在市場蓬勃時,可以獲得較高的報酬;但在市場低迷時,仍保有最低收益。然而,在過去的文獻當中,大部分的附保證權益連結年金保險訂價,都假設在Black and Scholes 選擇權訂價模型下做評價,但其假設標的資產波動度為常數並不符合真實情況,因此,本文使用Heston and Nandi (2003) 所提出的GARCH 模型,放寬標的資產波動度為常數的假設,並將其與Hsieh and Chiu (2007) 中每年重設法 (Ratchet) 下的附保證權益連結年金保險訂價結合,並且採用標準普爾500指數 (S&P 500 index) 做為連結指數,探討在隨機波動度的假設下與資產波動度為常數的假設下,附保證權益連結年金保險訂價的差異。本文實證結果顯示,在GARCH 模型下的附保證權益連結年金保險價格較資產波動度為常數的假設下的價格高,表示在Black and Scholes 選擇權訂價模型下的價格低估。將附保證權益連結年金保險的評價模式與隨機波動度模型結合,不但可使商品評價過程更接近真實情況,並且合適的運用在理論與實務的銜接。
摘要(英) ABSTRACT
An equity-indexed annuity (EIA) with maturity guarantee is getting more popular in insurance companies. It provides policyholders not just participate the investment in linked index, but still have the minimum guarantee payoff at the maturity of contract. However, most of litera-ture is pricing the EIA contract under the Black and Scholes assumptions that the assets prices follow the geometric Brownian motion, and the volatility is constant. Under the assumptions, the valuation of EIA may result in some pricing error, and the pricing procedure will be more inaccurate and unrealistic. Therefore, in this paper, we broaden the constant volatility assump-tion and introduce the volatility model that is the GARCH process in Heston and Nandi (2003) into valuation. We do the valuation in two type of ratchet EIA, compound and simple, and let S&P 500 index as the linked index. We use the analytic pricing formulas in Hsieh and Chiu (2007) to get the prices under the Black and Scholes assumptions. Moreover, numerical analy¬sis also shows the prices of two types of ratchet EIAs with maturity guarantee in constant volatil¬ity and under GARCH process. The results show that under the GARCH process, the prices of EIA are higher than the prices under con¬stant volatility which means the prices un¬der Black and Scholes assumptions are underestimated. Combining the volatility model into EIA valuation makes the pricing process more practical. It is much closer to the real¬ity situa¬tion and useful in actual products valuation.
關鍵字(中) ★ 權益連結年金保險
★ GARCH選擇權評價模型
關鍵字(英) ★ Valuation
★ GARCH Model
★ Equity-Indexed Annuities
論文目次 摘 要 i
ABSTRACT ii
誌謝       iii
Contents iv
Table Contents v
Figure Contents vi
1. Introduction 1
2. Literature review 2
3. The model 5
3.1. The ratchet EIA payoff function 5
3.2. Analytic Valuation formula of the ratchet EIA 6
3.3. The GARCH process 9
3.4. Empirical Martingale Simulation Adjusted 11
4. Numerical Analysis 12
4.1. Data and estimation 12
4.2. Analytic prices of compound and simple ratchet EIAs 16
4.3. The valuation of ratchet EIAs with maturity guarantee 17
4.3.1. Under constant volatility 18
4.3.2. Under GARCH process 19
4.3.3. Comparison 20
5. Conclusion 21
Reference 23
Appendix 25
參考文獻 Black F. and M. Scholes, (1973), “The pricing of options and corporate liabilities”, Journal of Political Economy, 81:637–59.
Bollerslev T., (1986), “Generalized Autoregressive Conditional Heteroskedasticity”, Journal of Econometrics, 31, 307-327.
Duan J. C., (1995), “The GARCH option pricing model”, Mathematical Finance, Vol. 5, No. 1, 13-32
Duan J. C. and Simonato J. G., (1998), “Empirical martingale simulation for asset prices”, Manage-ment Science, Vol. 44, No. 9, 1218-1233.
Hardy M., (2004), “Ratchet equity indexed annuities”, In 14th Annual International AFIR Collo¬quium.
Heston S. L. and S. Nandi, (2003), “A closed-form GARCH option valuation model”, Review of Financial Studies, 13:585–625.
Hsieh M. H. and Chiu Y. F., (2007), “Monte Carlo methods for valuation of ratchet equity in-dexed annuities”, Proceedings of the 2007 Winter Simulation Conference, 998-1003.
Kijima M. and T. Wong, (2007), “Pricing of ratchet equity-indexed annuities under stochastic interest rates”, Insurance, Mathematics, and Economics, 41:317-338.
Lee H., (2003), “Pricing equity-indexed annuities with path dependent options”, Insurance, Mathematics, and Economics, 33(3):677–690.
Lee K. H., (2007), “Valuation of equity indexed annuities embedded options under stochastic volatility settings”, Department of Business Mathematics, Soochow University.
Lehar A., Scheicher M., and Schittenkopf C., (2002), “GARCH vs. stochastic volatility: op-tion pricing and risk management”, Journal of Banking & Finance, 26, 323-345.
Lin S. X. and K. S. Tan, (2003), “Valuation of equity indexed annuities under stochastic inter-est rates”, North American Actuarial Journal, 6:72–91.
Tiong S., (2000), “Valuing equity-indexed annuities”, North American Actuarial Journal, 4:149–170.
指導教授 楊曉文(Sharon S. Yang) 審核日期 2010-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明