博碩士論文 974401001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:18.210.28.227
姓名 羅耀宗(Yao-Chung Lo)  查詢紙本館藏   畢業系所 企業管理研究所
論文名稱 在社群網站上作互動推薦及研究使用者行為對其效果之影響
(Implementing interaction recommendations on social networking sites and investigating how user behavior influences their effectiveness)
相關論文
★ 以AHP法探討伺服器品牌大廠的供應商遴選指標的權重決定分析★ 以AHP法探討智慧型手機產業營運中心區位選擇考量關鍵因素之研究
★ 太陽能光電產業經營績效評估-應用資料包絡分析法★ 建構國家太陽能電池產業競爭力比較模式之研究
★ 以序列採礦方法探討景氣指標與進出口值的關聯★ ERP專案成員組合對績效影響之研究
★ 推薦期刊文章至適合學科類別之研究★ 品牌故事分析與比較-以古早味美食產業為例
★ 以方法目的鏈比較Starbucks與Cama吸引消費者購買因素★ 探討創意店家創業價值之研究- 以赤峰街、民生社區為例
★ 以領先指標預測企業長短期借款變化之研究★ 應用層級分析法遴選電競筆記型電腦鍵盤供應商之關鍵因子探討
★ 以互惠及利他行為探討信任關係對知識分享之影響★ 利用資料探勘技術探討北台灣地區機動車輛稅費繳納模式
★ 以資料挖礦方法發掘臍帶血品質診斷規則★ 自企業資料庫挖掘和彙整商情規則之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 雖然許多學者已經根據社群網站上使用者產生的內容所推斷的個人興趣,發展出各式各樣的推薦系統,極少學者體認到可以利用這些社群媒體獨有的特徵,透過機器人、使用者,和使用者的朋友之間的互動,推薦產品。本研究設計一支機器人,處理這個研究缺口,除了推薦產品給目標使用者,也推薦給他們的朋友圈。實驗結果證實這個推薦引擎的績效優於傳統的推薦機制。此外,本研究也提出假說,並且證實使用者的行為強度對於推薦效果產生顯著的影響。尤其是,經常張貼長訊息和獲得更多回應的活躍型使用者,和比較不活躍的使用者比起來,對推薦效果產生更大的影響。
摘要(英) Although researchers have proposed various recommendation systems based on the inferred interests provided by user-generated content on social networking sites, few researchers have realized that recommendations can take advantage of the characteristics of these social media in the form of interactions among bots, users, and users’ friend circles. This study designed a bot to address this research gap and recommended items to target users as well as their circle of friends. The experimental results confirmed that the recommendation engine outperformed other conventional recommendation mechanisms. Additionally, this paper also posits and confirms that user behavior intensity has a significant impact on recommendation effectiveness. In particular, active users who frequently post long messages and elicit more responses exerted a greater impact on recommendation effectiveness than less active users.
關鍵字(中) ★ 社群網站上的使用者行為
★ 微網誌
★ 互動推薦
★ C2朋友圈
關鍵字(英) ★ User behavior on social networking sites
★ Microblog
★ Interaction recommendation
★ C2 of friends
論文目次 中文摘要 i
ABSTRACT ii
INDEX iii
LIST OF FIGURES iv
LIST OF TABLES v
Chapter 1. Introduction 1
Chapter 2. Literature review 4
2.1. Interest detection from messages posted on SNSs 4
2.2. SNS user behavior perspectives 5
Chapter 3. Interaction recommendation mechanisms and performance evaluation 7
3.1. Plurk platform and Karma 7
3.2. The design of a bot to interact with human users 7
3.3. Constructing the PISL 9
3.4. Conducting recommendation to C2 of users 10
3.5. Performance of the proposed system 12
Chapter 4. The impact of users’ behavior on recommendation effectiveness 15
Chapter 5. Data collection, analysis, and discussion 18
5.1. Analysis of the collected data 18
5.2. Discussion 20
Chapter 6. Implications derived from the research 22
6.1. Implications for academic research 22
6.2. Implications for business practitioners 23
Chapter 7. Conclusion 24
References 25
參考文獻
Abbasi, A., Altmann, J., & Hossain, L. (2011). Identifying the effects of co-authorship networks on the performance of scholars: A correlation and regression analysis of performance measures and social network analysis measures. Journal of Informetrics, 5(4), 594-607.
Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE transactions on knowledge and data engineering, 17(6), 734-749.
Alexa. How pupular is plurk.com?. (2017, May). http://www.alexa.com/siteinfo/plurk.com Accessed 30.04.17.
Allen, S. M., Chorley, M. J., Colombo, G. B., Jaho, E., Karaliopoulos, M., Stavrakakis, I., & Whitaker, R. M. (2014). Exploiting user interest similarity and social links for micro-blog forwarding in mobile opportunistic networks. Pervasive and Mobile Computing, 11, 106-131
Arrigo, E. (2015). Micro-blogging as generator of market insights and competitive intelligence. In Maximizing Commerce and Marketing Strategies through Micro-Blogging (pp. 297-312). IGI Global.
Asur, S., & Huberman, B. A. (2010, August). Predicting the future with social media. In Web Intelligence and Intelligent Agent Technology (WI-IAT), 2010 IEEE/WIC/ACM International Conference on (Vol. 1, pp. 492-499). IEEE.
Bach, N. X., Do Hai, N., & Phuong, T. M. (2016). Personalized recommendation of stories for commenting in forum-based social media. Information Sciences, 352, 48-60.
Bakshy, E., Hofman, J. M., Mason, W. A., & Watts, D. J. (2011, February). Everyone′s an influencer: quantifying influence on twitter. In Proceedings of the fourth ACM international conference on Web search and data mining (pp. 65-74). ACM.
Banerjee, N., Chakraborty, D., Dasgupta, K., Joshi, A., Mittal, S., Nagar, S., Rai, A., Madan, S. (2009, November). User interests in social media sites: an exploration with micro-blogs. In Proceedings of the 18th ACM conference on Information and knowledge management (pp. 1823-1826). ACM.
Benevenuto, F., Rodrigues, T., Cha, M., & Almeida, V. (2009, November). Characterizing user behavior in online social networks. In Proceedings of the 9th ACM SIGCOMM conference on Internet measurement conference (pp. 49-62). ACM.
Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G. (2009). Network analysis in the social sciences. science, 323(5916), 892-895.
Burgers, C., Eden, A., van Engelenburg, M. D., & Buningh, S. (2015). How feedback boosts motivation and play in a brain-training game. Computers in Human Behavior, 48, 94-103.
Butakov, N., Chuprova, Y., Knyazkov, K., Shindyapina, N., & Boukhanovsky, A. (2015). Evolutionary-based framework for optimizing the spread of information on Twitter. Procedia Computer Science, 66, 287-296.
Chang, P. S., Ting, I. H., & Wang, S. L. (2011, July). Towards social recommendation system based on the data from microblogs. In Advances in Social Networks Analysis and Mining (ASONAM), 2011 International Conference on (pp. 672-677). IEEE.
Chen, K. C., & Jang, S. J. (2010). Motivation in online learning: Testing a model of self-determination theory. Computers in Human Behavior, 26(4), 741-752.
Chen, Y. L., & Cheng, L. C. (2010). An approach to group ranking decisions in a dynamic environment. Decision support systems, 48(4), 622-634.
Cheng, Y. S., Hsu, P. Y, and Liu, Y. C. (2017, March). Contrasting the Motivations of Using Social Network Sites between Western and Eastern Countries. In International Conference on the Development and Applicaion of Big Data and Enterprise Resource Manangement, 2017. CERPS Taiwan.
Chiu, C. M., Hsu, M. H., Lai, H., & Chang, C. M. (2012). Re-examining the influence of trust on online repeat purchase intention: The moderating role of habit and its antecedents. Decision Support Systems, 53(4), 835-845.
Chiu, C. M., Hsu, M. H., & Wang, E. T. (2006). Understanding knowledge sharing in virtual communities: An integration of social capital and social cognitive theories. Decision support systems, 42(3), 1872-1888.
De Meo, P., Quattrone, G., & Ursino, D. (2010). A query expansion and user profile enrichment approach to improve the performance of recommender systems operating on a folksonomy. User Modeling and User-Adapted Interaction, 20(1), 41-86.
Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. New York: Plenum Press.
Deci, E. L., & Ryan, R. M. (2002). Handbook of self-determination research. Rochester, NY: University of Rochester Press.
Duggan, M. (2015, August). Mobile messaging and social media 2015. Pew Research Center. http://www.pewinternet.org/files/2015/08/Social-Media-Update-2015-FINAL2.pdf Accessed 24.12.16.
Esparza, S. G., O’Mahony, M. P., & Smyth, B. (2012). Mining the real-time web: a novel approach to product recommendation. Knowledge-Based Systems, 29, 3-11.
Facebook Newsroom. Facebook Company Information. (2016). http://newsroom.fb.com/company-info/ Accessed 26.0317.
Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social networks, 1(3), 215-239.
Godin, S. (1999). Permission marketing: Turning strangers into friends and friends into customers. Simon and Schuster.
Guo, H., Pathak, P., & Cheng, H. K. (2015). Estimating Social Influences from Social Networking Sites—Articulated Friendships versus Communication Interactions. Decision Sciences, 46(1), 135-163.
Guo, J., Zhang, P., & Guo, L. (2012). Mining hot topics from Twitter streams. Procedia Computer Science, 9, 2008-2011.
Han, J., & Lee, H. (2016). Characterizing the interests of social media users: Refinement of a topic model for incorporating heterogeneous media. Information Sciences, 358, 112-128.
Han, J. J., Zheng, R. J., & Xu, Y. (2007, January). The effect of individual needs, trust and identification in explaining participation intentions in virtual communities. In System sciences, 2007. HICSS 2007. 40th Annual Hawaii international conference on (pp. 179c-179c). IEEE.
Han, X., Wang, L., Crespi, N., Park, S., & Cuevas, Á. (2015). Alike people, alike interests? Inferring interest similarity in online social networks. Decision Support Systems, 69, 92-106.
Jones, M., & Alony, I. (2008). Blogs – the New Source of Data Analysis. Journal of Issues in Informing Science and Information Technology, 5, 433-446.
Kent, M. L., & Taylor, M. (1998). Building dialogic relationships through the World Wide Web. Public relations review, 24(3), 321-334.
Ketelaar, P. E., Janssen, L., Vergeer, M., van Reijmersdal, E. A., Crutzen, R., & van‘t Riet, J. (2016). The success of viral ads: Social and attitudinal predictors of consumer pass-on behavior on social network sites. Journal of Business Research, 69(7), 2603-2613.
Kim, H., Suh, K. S., & Lee, U. K. (2013). Effects of collaborative online shopping on shopping experience through social and relational perspectives. Information & Management, 50(4), 169-180.
Kim, H. N., Alkhaldi, A., El Saddik, A., & Jo, G. S. (2011). Collaborative user modeling with user-generated tags for social recommender systems. Expert Systems with Applications, 38(7), 8488-8496.
Krishen, A. S., Berezan, O., Agarwal, S., & Kachroo, P. (2016). The generation of virtual needs: Recipes for satisfaction in social media networking. Journal of Business Research, 69(11), 5248-5254.
Lamertz, K., & Aquino, K. (2004). Social power, social status and perceptual similarity of workplace victimization: A social network analysis of stratification. Human Relations, 57(7), 795-822.
Lee, A. J., Yang, F. C., Tsai, H. C., & Lai, Y. Y. (2014). Discovering content-based behavioral roles in social networks. Decision Support Systems, 59, 250-261.
Lee, D. H., & Brusilovsky, P. (2010, June). Social networks and interest similarity: the case of CiteULike. In Proceedings of the 21st ACM conference on Hypertext and hypermedia (pp. 151-156). ACM.
Li, D., Lv, Q., Xie, X., Shang, L., Xia, H., Lu, T., & Gu, N. (2012). Interest-based real-time content recommendation in online social communities. Knowledge-Based Systems, 28, 1-12.
Li, F., & Du, T. C. (2011). Who is talking? An ontology-based opinion leader identification framework for word-of-mouth marketing in online social blogs. Decision Support Systems, 51(1), 190-197.
Li, H., Cui, J., Shen, B., & Ma, J. (2016). An intelligent movie recommendation system through group-level sentiment analysis in microblogs. Neurocomputing, 210, 164-173.
Li, X., Guo, L., & Zhao, Y. E. (2008, April). Tag-based social interest discovery. In Proceedings of the 17th international conference on World Wide Web (pp. 675-684). ACM.
Li, Y. M., & Lien, N. J. (2009, August). An endorser discovering mechanism for social advertising. In Proceedings of the 11th International Conference on Electronic Commerce (pp. 125-132). ACM.
Li, Y. M., & Shiu, Y. L. (2012). A diffusion mechanism for social advertising over microblogs. Decision Support Systems, 54(1), 9-22.
Lombardi, I., & Vernero, F. (2017). What and who with: A social approach to double-sided recommendation. International Journal of Human-Computer Studies.
Ma, Y., Zeng, Y., Ren, X., & Zhong, N. (2011, September). User interests modeling based on multi-source personal information fusion and semantic reasoning. In International Conference on Active Media Technology (pp. 195-205). Springer Berlin Heidelberg.
Maia, M., Almeida, J., & Almeida, V. (2008, April). Identifying user behavior in online social networks. In Proceedings of the 1st workshop on Social network systems (pp. 1-6). ACM.
McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual review of sociology, 27(1), 415-444.
Mekler, E. D., Brühlmann, F., Tuch, A. N., & Opwis, K. (2015). Towards understanding the effects of individual gamification elements on intrinsic motivation and performance. Computers in Human Behavior.
Mezghani, M., Péninou, A., Zayani, C. A., Amous, I., & Sèdes, F. (2017). Producing relevant interests from social networks by mining users′ tagging behaviour: A first step towards adapting social information. Data & Knowledge Engineering, 108, 15-29.
Morris, M. R., Teevan, J., & Panovich, K. (2010, April). What do people ask their social networks, and why?: a survey study of status message q&a behavior. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 1739-1748). ACM.
Muckensturm, E. (2013). Using dialogic principles on Facebook: How the accommodation sector is communicating with it’s consumers. All Theses. Paper 1657.
Newman, M. (2004). Who is the best connected scientist? A study of scientific coauthorship networks. Complex networks, 337-370.
Newman, M. E. (2001). Scientific collaboration networks. I. Network construction and fundamental results. Physical review E, 64(1), 016131.
Ng, C. S. P. (2013). Intention to purchase on social commerce websites across cultures: A cross-regional study. Information & Management, 50(8), 609-620.
Nie, Y., Chua, B. L., Yeung, A. S., Ryan, R. M., & Chan, W. Y. (2015). The importance of autonomy support and the mediating role of work motivation for well‐being: Testing self‐determination theory in a Chinese work organisation. International Journal of Psychology, 50(4), 245-255.
Pagani, M., & Mirabello, A. (2011). The influence of personal and social-interactiveengagement in social TV web sites. International Journal of Electronic Commerce,16(2), 41–68
Palmer, A., & Koenig-Lewis, N. (2009). An experiential, social network-based approach to direct marketing. Direct Marketing: An International Journal, 3(3), 162-176.
Pennacchiotti, M., & Gurumurthy, S. (2011, March). Investigating topic models for social media user recommendation. In Proceedings of the 20th international conference companion on World wide web (pp. 101-102). ACM.
Phang, C. W., Zhang, C., & Sutanto, J. (2013). The influence of user interaction and participation in social media on the consumption intention of niche products. Information & Management, 50(8), 661-672.
Phelan, O., McCarthy, K., & Smyth, B. (2009, October). Using twitter to recommend real-time topical news. In Proceedings of the third ACM conference on Recommender systems (pp. 385-388). ACM.
Plurk.com. What’s karma?. (2014). http://www.plurk.com/Help/karmaHelp Accessed 19.05.17.
Preece, J. (2000). Online communities: Designing usability and supporting socialbilty. John Wiley & Sons, Inc.
Preece, J. (2001). Sociability and usability in online communities: Determining and measuring success. Behaviour & Information Technology, 20(5), 347-356.
Rau, P. L. P., Gao, Q., & Ding, Y. (2008). Relationship between the level of intimacy and lurking in online social network services. Computers in Human Behavior, 24(6), 2757-2770.
Rosa, R. L., Rodriguez, D. Z., & Bressan, G. (2015). Music recommendation system based on user′s sentiments extracted from social networks. IEEE Transactions on Consumer Electronics, 61(3), 359-367.
Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American psychologist, 55(1), 68.
Sakaki, T., & Matsuo, Y. (2010, May). How to Become Famous in the Microblog World. In ICWSM.
Salvatori, L., & Marcantoni, F. (2016). Interaction commerce, a technological architecture focused on recommender system. International Journal of Electronic Commerce Studies, 7(2), 105.
Sayce, D. Number of tweets per day?. (2016, November). http://www.dsayce.com/social-media/tweets-day Accessed 19.05.17.
Shin, Y., Ryo, C., & Park, J. (2014). Automatic extraction of persistent topics from social text streams. World Wide Web, 17(6), 1395-1420.
Shin, W. Y., Singh, B. C., Cho, J., & Everett, A. M. (2015). A new understanding of friendships in space: Complex networks meet Twitter. Journal of Information Science, 41(6), 751-764.
Shouzhong, T., & Minlie, H. (2016). Mining microblog user interests based on TextRank with TF-IDF factor. The Journal of China Universities of Posts and Telecommunications, 23(5), 40-46.
Smith, T., Coyle, J. R., Lightfoot, E., & Scott, A. (2007). Reconsidering models of influence: the relationship between consumer social networks and word-of-mouth effectiveness. Journal of advertising research, 47(4), 387-397.
Su, C. C., & Chan, N. K. (2017). Predicting social capital on Facebook: The implications of use intensity, perceived content desirability, and Facebook-enabled communication practices. Computers in Human Behavior, 72, 259-268.
Suh, B., Hong, L., Pirolli, P., & Chi, E. H. (2010, August). Want to be retweeted? large scale analytics on factors impacting retweet in twitter network. In Social computing (socialcom), 2010 ieee second international conference on (pp. 177-184). IEEE.
Sun, N., Rau, P. P. L., & Ma, L. (2014). Understanding lurkers in online communities: A literature review. Computers in Human Behavior, 38, 110-117.
Tchuente, D., Canut, M. F., Jessel, N., Péninou, A., & Sèdes, F. (2013). A community-based algorithm for deriving users’ profiles from egocentrics networks: experiment on Facebook and DBLP. Social Network Analysis and Mining, 3(3), 667-683.
Twitter Engineering. 200 million Tweets per day. (2011). https://blog.twitter.com/2011/200-million-tweets-day Accessed 09.12.12.
University of Winsconsin-Extension. Social Media: Trends and Techniques. (2016, April). https://grant.uwex.edu/files/2016/04/Social-Media-Facts-PDF.pdf Accessed 19.05.17.
Vallerand, R. J., & Ratelle, C. F. (2002). Intrinsic and extrinsic motivation: A hierarchical model. Handbook of self-determination research, 128, 37-63.
Vargas, S., & Castells, P. (2014, October). Improving sales diversity by recommending users to items. In Proceedings of the 8th ACM Conference on Recommender systems (pp. 145-152). ACM.
Wallace, D., Walker, J., Lopez, T., & Jones, M. (2011). Do word of mouth and advertising messages on social networks influence the purchasing behavior of college students?. Journal of Applied Business Research (JABR), 25(1).
Wang, J., Shen, K., Xu, A., & Lan, Y. (2014). An Improved Lda Model in Micro-Blog Tags Extracting Based on Multi-Tags. Open Cybernetics & Systemics Journal, 8, 1266-1270.
Wang, J. L., Jackson, L. A., Wang, H. Z., & Gaskin, J. (2015). Predicting social networking site (SNS) use: Personality, attitudes, motivation and internet self-efficacy. Personality and Individual Differences, 80, 119-124.
Wang, T., Yeh, R. K. J., Chen, C., & Tsydypov, Z. (2016). What drives electronic word-of-mouth on social networking sites? Perspectives of social capital and self-determination. Telematics and Informatics, 33(4), 1034-1047.
Wang, X., Zhao, Y. L., Nie, L., Gao, Y., Nie, W., Zha, Z. J., & Chua, T. S. (2015). Semantic-based location recommendation with multimodal venue semantics. IEEE Transactions on Multimedia, 17(3), 409-419.
Wasko, M. M., Teigland, R., & Faraj, S. (2009). The provision of online public goods: Examining social structure in an electronic network of practice. Decision Support Systems, 47(3), 254-265.
Xu, B., & Li, D. (2015). An empirical study of the motivations for content contribution and community participation in Wikipedia. Information & management, 52(3), 275-286.
Yu, S. J. (2012). The dynamic competitive recommendation algorithm in social network services. Information Sciences, 187, 1-14.
Zhang, L., Peng, T., Zhang, Y., & Wang, X. (2012). Content or context: Which carries more weight in predicting popularity of tweets in china. Proc. of WAPOR, 4.
Zhao, L., & Lu, Y. (2012). Enhancing perceived interactivity through network externalities: An empirical study on micro-blogging service satisfaction and continuance intention. Decision Support Systems, 53(4), 825-834.
Zhao, L., Lu, Y., Wang, B., & Huang, W. (2011). What makes them happy and curious online? An empirical study on high school students’ Internet use from a self-determination theory perspective. Computers & Education, 56(2), 346-356.
指導教授 許秉瑜(Ping-Yu Hsu) 審核日期 2017-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明