博碩士論文 975201004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.145.23.123
姓名 蔡明志(Ming-chih Tsai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於植入式生醫系統的六十四通道電刺激器與阻抗量測電路之分析與設計
(Analysis and Design of a 64-Channel Electrical Stimulator and Impedance Measurement Circuitry for Implantable Biomedical Systems)
相關論文
★ 應用於2.5G/5GBASE-T乙太網路傳收機之高成本效益迴音消除器★ 應用於IEEE 802.3bp車用乙太網路之硬決定與軟決定里德所羅門解碼器架構與電路設計
★ 適用於 10GBASE-T 及 IEEE 802.3bz 之高速低密度同位元檢查碼解碼器設計與實現★ 基於蛙跳演算法及穩定性準則之高成本效益迴音消除器設計
★ 運用改良型混合蛙跳演算法設計之近端串音干擾消除器★ 運用改良粒子群最佳化演算法之近端串擾消除器電路設計
★ 應用於多兆元網速乙太網路接收機 類比迴音消除器之最小均方演算法電路設計★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器
★ 地面數位電視廣播基頻接收器之載波同步設計★ 適用於通訊系統之參數化數位訊號處理器核心
★ 以正交分頻多工系統之同步的高效能內插法技術★ 正交分頻多工通訊中之盲目頻域等化器
★ 兆元位元率之平行化可適性決策回饋等化器設計與實作★ 應用於數位視頻廣播系統中之自動增益放大器 及接受端濾波器設計
★ OFDM Symbol Boundary Detection and Carrier Synchronization in DVB-T Baseband Receiver Design★ 適用於億元位元率混合光纖與銅線之電信乙太接取網路技術系統之盲目等化器和時序同步電路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文著重在應用於植入式視覺輔具的多通道電刺激器以及阻抗量測電路。這個動機來自於色素性視網膜炎以及老年性黃斑部退化疾病導致感光細胞退化所引發的視覺障礙。正常的視網膜,透過感光細胞接收光刺激以產生神經訊號得到視覺;在感光細胞退化的視網膜上,則可利用視覺輔具透過視網膜或視覺皮質區上的電刺激,形成視覺感知。在此,我們設計了一個具有六十四通道刺激功能的電刺激器。
  電刺激器必須透過電極作為介面才能對神經或肌肉進行電刺激。由於所植入的介面並非為平面,電極-組織介面阻抗可能會因接觸不良、電極大小與材質的差異,又或者電極本體受刺激電流、環境等因素而產生變化。基於以上因素,長期地觀測阻抗變化是必要的。因此,本論文中亦設計了一個使用時間數位轉換器之阻抗量測電路,觀察植入後電極-組織介面的阻抗變化狀況,這將有利於評估刺激成效以及刺激參數的調整。
摘要(英) This thesis aims to design a multi-channel electrical stimulator and impedance measurement system for implanted visual prosthesis. The motivation comes from retinitis pigmentosa (RP) and age-related macular degradation (AMD) both lead to photoreceptor degeneration and result in a significant visual deficit individual. In a healthy retina, the photoreceptors initiate a neural signal in response to light. In a retina with photoreceptor loss, a successful elicitation in visual perception will be possible by using electrical stimulation on retina or visual cortex by the visual prosthesis. In this paper, we design an electrical stimulator which is capable of 64-channel stimulation.
 The designed electrical stimulator stimulates nerves or muscles using electrodes as the interface. Due to the interface we implanted are not a flat surface, the electrode-tissue interface might have poor contact. Or the electrode size and material differences, electrode-self by stimulus current and environment factors, and so on. The impedance between electrode and tissue will be change. On account of these problems, a long term observation is required. Therefore, we designed an impedance measurement system with time-to-digital converter (TDC) to observe the status of electrode-tissue interface after implantation. It is useful for evaluating the effect on stimulation and adjustment of stimulus parameters.
關鍵字(中) ★ 時間數位轉換器
★ 阻抗量測
★ 電刺激器
關鍵字(英) ★ time-to-digital converter
★ impedance measurement
★ electrical stimulator
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 論文架構 3
第二章 植入式功能性電刺激系統 4
2.1 植入式功能性電刺激的應用 4
2.2 植入式視覺輔具 5
2.2.1 視覺的生成 6
2.2.2 利用電刺激產生視覺反應 7
2.2.3 無線視覺輔具系統 9
2.3 電刺激模式與參數 10
2.3.1 電刺激模式 11
2.3.2 電刺激參數 13
2.4 論文中整體電路架構 16
第三章 六十四通道電刺激器之設計 17
3.1 刺激電流產生器電路設計 18
3.1.1 數位類比轉換器規格考量 18
3.1.2 二位元權重數位類比轉換器 19
3.2 H型切換器 24
3.3 電刺激器電路架構 26
3.4 六十四通道電刺激器之設計考量 28
第四章 阻抗量測電路設計 30
4.1 阻抗量測電路架構 30
4.2 儀表放大器 31
4.2.1 傳統式儀表放大器 32
4.2.2 電流模式儀表放大器 34
4.3 類比數位轉換器之介紹 36
4.3.1 單斜率類比數位轉換器(Single Slope ADC) 36
4.3.2 雙斜率類比數位轉換器(Dual Slope ADC) 36
4.3.3 連續近似類比數位轉換器(Successive Approximation ADC) 38
4.3.4 快閃式類比數位轉換器(Flash ADC) 39
4.4 具有時間數位轉換器之阻抗量測電路 40
4.4.1 電路動作原理 40
4.4.2 電壓時間轉換器 42
4.4.3 時間數位轉換器 47
4.5 電路設計考量與規格制定 53
4.5.1 儀表放大器的輸出 53
4.5.2 電壓時間轉換器 53
4.5.3 時間數位轉換器 54
第五章 電路模擬與晶片量測 55
5.1 電刺激器模擬結果 55
5.1.1 單通道電刺激器模擬結果 55
5.1.2 數位控制電路 58
5.1.3 六十四通道電刺激器 59
5.2 阻抗量測電路模擬與量測結果 63
5.2.1 佈局後模擬結果(Post-Layout Simulation) 63
5.2.2 佈局考量 70
5.2.3 量測考量 72
5.2.4 量測結果 74
5.3 文獻比較 75
第六章 結論與未來展望 77
6.1 結論 77
6.2 未來展望 77
參考文獻 79
參考文獻 [1] W. T. Liberson, H. J. Holmquest, D. Scot, and M. Dow, “Functional electrotherapy: stimulation of peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients,” Archives of Physical Medicine and Rehabilitation, vol. 42, pp. 101-105, Feb. 1961.
[2] A. Kralj, T. Bajd, R. Turk, J. Krajnik, and H. Benko, “Gait restoration in paraplegic patients: a feasibility demonstration using multichannel surface electrode FES,” Journal of Rehabilitation R&D, vol. 20, pp. 3-20, Jul. 1983.
[3] C. W. Caldwell and J. B. Reswick, “A percutaneous wire electrode for chronic research use,” IEEE Transactions on Bio-Medical Engineering, vol. 22, no.5, pp. 429-432, Sep. 1975.
[4] D. R. McNeal, R. J. Nakai, P. Meadows, and W. Tu, “Open-loop control of the freely-swinging paralyzed leg,” IEEE Transactions on Bio-Medical Engineering, vol. 36, no. 9, pp.895-905, Sep. 1989.
[5] M. Mahadevappa, J. D. Weiland, D. Yanai, I Fine, R. J. Greenberg, and M. S. Humayun, “Perceptual thresholds and electrode impedance in three retinal prosthesis subjects,” IEEE Transactions on Neural Systems Rehabilitation Engineering, vol. 13, no. 2, pp. 201-206, Jun. 2005.
[6] A. P. Chu, K. Morris, R. J. Greenberg, and D. M. Zhou, “Stimulus induced pH changes in retinal implant,” IEEE Engineering in Medicine and Biology Society Conference, vol. 2, pp. 4160-4162, Sep. 2004.
[7] L. S. Y. Wong, S. Hossain, A. Ta, J. Edvinsson, D. H. Rivas, and H. Naas, “A very low-power CMOS mixed-signal IC for implantable pacemaker applications,” IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2446-2456, Dec. 2004.
[8] J. Georgiou and C. Toumazou, “A 126-μW cochlear chip for a totally implantable system,” IEEE Journal of Solid-State Circuits, vol. 40, no. 2, pp. 430-443, Feb. 2005.
[9] S. K. Kelly and J. Wyatt, “A power-efficient voltage-based neural tissue stimulator with energy recovery,” IEEE Solid-State Circuits Conference, pp. 228-230, Feb. 2004.
[10] M. Ghovanloo, “Switched-capacitor based implantable low-power wireless microstimulating systems,” IEEE International Symposium on Circuits and Systems, pp. 2197-2200, May 2006.
[11] M. Sivaprakasam, W. Liu, G. Wang, J. D. Weiland, and M. S. Humayum, “Architecture tradeoffs in high-density microstimulators for retinal prosthesis,” IEEE Transactions on Circuits and Systems, Reg. Papers, vol. 52, no. 12, pp. 2629-2641, Dec. 2005.
[12] https://www.blindness.org
[13] http://webvision.med.utah.edu
[14] J. D. Weiland and M. S. Humayun, “Intraocular retinal prosthesis,” IEEE Engineering Medicine and Biology Magazine, vol. 25, pp. 60-66, Sep. 2006.
[15] J. D. Weiland, D. Yanai, M. Mahadevappa, R. Williamson, B. V. Mech, G. Y. Fujii, J. Little, R. J. Greenberg, E. de Juan Jr., and M. S. Humayun, “Electrical stimulation of retina in blind humans,” IEEE Engineering in Medicine and Biology Society Conference, vol. 3, pp. 2021-2022, Sep. 2003.
[16] P. Hossain, I. W. Seetho, A. C. Browning, and W. M. Amoaku, “Artificial means for restoring vision,” BMJ, vol. 330, pp. 30-33, Jan. 2005.
[17] K. Cha, K. W. Horch, R. A. Normann, and D. K. Boman, “Reading speed with a pixelized vision system,” Journal of the Optical Society of America. A, vol. 9, no. 5, pp. 673-677, May 1992.
[18] R. W Thompson, G. D. Barnett, M. S. Humayun, and G. Dagnelie, “Facial recognition using simulated prosthetic pixelized vision,” Investigative Ophthalmology and Visual Science, vol. 44, no. 11, pp. 5035-5042, Nov. 2003.
[19] M. Sivaprakasam, W. Liu, M. S. Humayun, and J. D. Weiland, “A variable range bi-phasic current stimulus driver circuitry for an implantable retinal prosthetic device,” IEEE Journal of Solid-State Circuits, vol. 40, no. 3, pp. 763-771, Mar. 2005.
[20] J. D. Weiland and M. S. Humayun, “A biomimetic retinal stimulating array: design considerations,” IEEE Engineering Medicine and Biology Magazine, vol. 24, no. 12, pp. 14-21, Sep. 2005.
[21] S. C. DeMarco, W. Liu, P. R. Singh, G. Lazzi, M. S. Humayun, and J. D. Weiland, “An arbitrary waveform stimulus circuit for visual prostheses using a low-area multibias DAC,” IEEE Journal of Solid-State Circuits, vol. 38, no. 10, pp. 1679-1690, Oct. 2003.
[22] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.
[23] D. A. Johns and K. Martin, Analog Integrated Circuit Design. New York: Wiley, 1997.
[24] W. Liu, K. Vichienchom, M. Clements, S. C. DeMarco, C. Hughes, E. McGucken, M. S. Humayun, E. Juan, J. D. Weiland, and R. Greenberg, “A neuro-stimulus chip with telemetry unit for retinal prosthetic device,” IEEE Journal of Solid-State Circuits, vol. 35, no. 10, pp. 1487-1497, Oct. 2000.
[25] A. B. Majji, M. S. Humayun, J. D. Weiland, S. Suzuki, S. A. D’Anna, and E. de Juan Jr., “Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs,” Investigative Ophthalmology and Visual Science, vol. 40, no. 9, pp. 2073-2081, Aug. 1999.
[26] A. S. Sedra and K. C. Smith, “Microelectronic circuits,” 5th ed. New York: Oxford, Aug. 2007.
[27] A. Harb and M. Sawan, “New low-power low-voltage high-CMRR CMOS instrumentation amplifier,” IEEE International Symposium on Circuits and Systems, vol. 6,pp. 97-100, May 1999.
[28] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design. New York: Oxford University Press, 2002.
[29] C. H. Kuo, S. L. Chen, and S. I. Liu, “Magnetic-field-to-digital converter using PWM and TDC techniques,” IEE Proceedings of Circuits, Devices and Systems, vol. 153, no. 3, pp. 247-252, Jun. 2006.
[30] P. Chen, S. L. Liu, and J. Wu, “A CMOS pulse-shrinking delay element for time interval measurement,” IEEE Transactions on Circuits and Systems, vol. 47, no. 9, pp. 954-958, Sep. 2000.
[31] S. Rajapandian, K. Shepard, P. Haxucha, and T. Karnik, “High-tension power delivery: Operating 0.18μm CMOS digital logic at 5.4V,” IEEE Solid-State Circuits Conference, vol. 1, pp. 298-599, Feb. 2005.
[32] C. T. Chiang and C. Y. Wu, “Implantable neuromorphic vision chips,” IET Electronics Letters, vol. 40, pp. 361-363, Mar. 2004.
[33] I. T. Mohammad, S. Pepe, and W. A. Gregory, “Implantable CMOS-based Stimulator/Reader Design for Retinal Prosthesis,” Conference on Microtechnology in Medicine and Biology, 3rd IEEE/EMBS, pp. 94-97, May. 2005.
[34] P. Nadeau and M. Sawan, “A flexible high voltage biphasic current-controlled stimulator,” IEEE International Symposium on Circuits and Systems, pp. 206-209, Nov. 2006.
[35] G. Lesbros and M. Sawan, “Multiparameters monitoring for long term in-vivo characterization of electrode-tissues contacts,” IEEE International Symposium on Circuits and Systems, pp. 25-28, Dec. 2006.
[36] A. Harb, Y. Hu, M. Sawan, A. Abdelkerim, and M. M. Elhilali, “Low-power CMOS interface for recording and processing very low amplitude signals,” Analog Integrated Circuits and Signal Processing, vol. 39, pp. 39-54, Mon. 2004.
[37] C. C. Wang, C. C. Huang, Y. C. Liu, V. Pikov, and D. Shmilovitz, “A mini-invasive multi-function biomedical pressure measurement system ASIC,” IEEE International Symposium on Circuits and Systems, pp. 2936-2939, May 2010.
[38] W. Qu, S. K. Islam, M. R. Mahfouz, M. R. Haider, G. To, and S. Mostafa, “Microcantilever array pressure measurement system for biomedical instrumentation,” IEEE Sensors Journal, vol. 10, no. 2, pp. 321-330, Feb. 2010.
[39] P. Napolitano, A. Moschitta, P. Carbone, “A survey on time interval measurement techniques and testing methods,” IEEE Transactions on Instrumentation and Measurement, pp. 181-186, May. 2010.
指導教授 薛木添(Muh-tian Shiue) 審核日期 2011-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明