博碩士論文 975201021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.144.93.73
姓名 呂紹新(Shao-hsin Lu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 降壓型轉換器之控制在市電併聯型光伏系統
(Control of Buck Converter in Grid Connected Photovoltaic System)
相關論文
★ 用於類比/混和訊號積體電路可靠度增強的加壓測試★ 應用於電容陣列區塊之維持比值良率的通道繞線法
★ 高速無進位除法器設計★ 以正交分頻多工系統之同步的高效能內插法技術
★ 增強CMOS鎖相迴路可靠度★ 適用於地面式數位電視廣播系統之平行架 構記憶體式快速傅立葉轉換處理器設計
★ 對於長解碼長度可降低其記憶體使用的低密度同位檢查碼解碼器設計★ 單級降壓式功因修正轉換器之探索
★ 設計具誤差消除機制之串疊式三角積分調變器★ 交換電容式類比電路良率提升之設計方法
★ 使用分級時序記憶實作視角無關手勢辨識問題★ 部分平行低密度同為元檢查碼解碼器設計
★ 應用於無線通訊系統之同質性可組態記憶體式快速傅立葉處理器★ 低記憶體需求及效能改善的低密度同位元檢查碼解碼器架構
★ 混合式加法器設計★ 非線性鋰電池之充放電模型
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文旨在探討市電併聯型光伏系統之設計且提出一最大功率演算法適用於前級轉換器控制電路並輸出交流電流滿足一般用電功率。在光伏系統中,前級採用降壓型轉換器,符合降壓升流,提高後級電流源變流器輸入電流的大小,並且針對兩倍瞬時功率的影響,傳統上使用電解電容來隔離交流訊號,本文於降壓型轉換器控制採用不同架構有效隔離交流市電的擾動,且減小電解電容的大小,使太陽能板維持穩定的輸出。後級採用電流源變流器,可以免除交流電流受輸出端交流市電的限制同時不用考量因為電壓源變流器為避免開關同時導通的空白時間設計。電流源變流器雖然控制簡單,但必須解決輸入電流源兩倍基頻諧波的問題,利用調整脈波寬度調變訊號以抵銷諧波訊號使輸出交流電流無低頻諧波。本文針對降壓型轉換器控制架構提出一最大功率演算法,有效達到最大功率點追蹤,使太陽能板維持最大功率輸出供後級電流源變流器轉換成交流電流。
摘要(英) This study presents a grid-connected photovoltaic system which is comprised of two stages: Buck DC/DC Converter and Current Source Inverter (CSI). The converter is used to buck the voltage and boost the current and provides a stable input power to the next stage. Conventionally, the electrolytic capacitor is used to isolate the disturbance caused by the ac output signals. The proposed control mechanism to the converter achieves an effective isolation from the grid-connected system, and also significantly reduces the size of electrolytic capacitor, so that the photovoltaic system provides a stable output. On the other hand, the CSI implements the inverter stage with a simpler control mechanism and has the inherent short circuit protection and the rapidness in system control. This study also proposes a simple way to obtain a reference voltage which makes sure the photovoltaic array to operate at the maximum power point.
關鍵字(中) ★ 最大功率點追蹤
★ 光伏系統
★ 電流源變流器
關鍵字(英) ★ maximum power point tracking
★ photovoltaic system
★ current source inverter
論文目次 摘要
ABSTRACT
致謝
目錄
圖目錄
表目錄
第一章 緒論
1.1 研究背景與動機
1.2 論文大綱
第二章 太陽能板特性與最大功率追蹤技術
2.1 太陽能板特性
2.2 太陽能模組等效電路
2.3 最大功率追蹤技術
2.3.1 擾動觀察法
2.3.2 增量電導法
2.3.3 定電壓法
2.3.4 開路電壓法
2.3.5 短路電流法
2.3.6 溫度量測法
第三章 太陽能轉換系統架構
3.1 降壓型直流/直流轉換器
3.2 電流源直流/交流變流器
3.3 脈波寬度調變切換技術
3.3.1 正弦脈波寬度調變
第四章 系統控制分析
4.1 降壓型轉換器控制
4.1.1 太陽能板輸出電壓漣波影響
4.1.2 兩倍瞬時功率
4.1.3 最大功率追蹤控制電路
4.1.4 降壓式轉換器模擬分析
4.2 電流源變流器控制分析
4.2.1 諧波抑制方法
4.2.2 主動非線性調變技術
4.2.3 總諧波失真與功率因數
4.2.4 功率因數修正
4.2.5 參考電流值
4.2.6 電流源變流器模擬分析
第五章 最大功率追蹤基於溫度量測
5.1 溫度量測最大功率追蹤
5.2 短路電流控制最大功率追蹤
5.3 溫度與短路電流控制最大功率點追蹤
5.4 系統模擬分析
第六章 結論
6.1 結論
6.2 未來研究方向
參考文獻
參考文獻 [1] W. Xiao, W. G. Dunford, and A. Capel, “A novel modeling method for photovoltaic cells,” in Proc. IEEE Power Electron. Spec. Conf.(PESC), vol. 3, pp. 1950-1956, June. 2004.
[2] M. G. Villalva, J. R. Gazoli, and E. R. Filho, “Comprehensive approach to modeling and simulation of photovoltaic arrays,” IEEE Trans. on Power Electronics., vol. 24, no. 5, pp. 1198-1208, May. 2009.
[3] T. Esram, and P.L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 439-449, June. 2007.
[4] R. Faranda, S. Leva, “Energy comparison of MPPT techniques for PV systems,” WSEAS Trans. on Power Systems, vol.3, no.6 , pp. 446-455, 2008.
[5] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. on Power Electronic, vol. 20, no. 4, pp. 963-973, July. 2005.
[6] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimizing sampling rate of P&O MPPT technique,” IEEE Power Electron. Spec. Conf (PESC). vol. 3 , pp. 1945-1949, June. 2004.
[7] G. J. Yu, Y. S. Jung, J. Y. Choi, I. Choy, J. H. Song and G. S. Kim, “A novel two-mode MPPT control algorithm based on comparative study of existing algorithms,” in Proc. IEEE Photovol. Spec.Conf., no. 19-24, pp. 1531-1534. , May. 2002.
[8] K. H. Hussein and I. Mota, “Maximum photovoltaic power tracking: An algorithm for rapidly changing atmospheric condition,” Proc. Inst. ElectrEng. Gener., Transmiss. Distrib., vol. 142, no. 1, pp. 59-64, Jan. 1995.
[9] G. W. Hart, H. M. Branz, and C. H. Cox, “Experimental tests of open loop miximum power point tracking techniques,” Solar Cells, pp. 185, 1984.
[10] K. Kobayashi, H. Matsuo, and Y. Sekine, “A novel optimum operating point tracker of the solar cell power supply system,” IEEE Power Electron. Spec. Conf.(PESC), vol. 3. pp. 2147-2151, June. 2004.
[11] B. Bekker and H. J. Beukes, “Finding an optimal PV panel maximum power point tracking method,” 7th AFRICON Conf. Africa, , vol. 2, pp. 1125-1129, Sept. 2004.
[12] T. Noguchi, S. Togashi, and R. Nakamoto, “Short-current pulse based adaptive maximum-power-point tracking for photovoltaic power generation systems,” in Proc. IEEE Int. Symp. Ind. Electron., vol.1,pp.157-162, Dec. 2000.
[13] N. Mutoh, T. Matuo, K. Okada, and M. Sakai, “Prediction data based maximum power point tracking method for photovoltaic power generation systems,” IEEE Power Electron. Spec. Conf.(PESC),vol. 3., pp. 1489-1494, Nov. 2002.
[14] S.Yuvarajan and S. Xu, “Photovoltaic power converter with a simple maximum power point tracker,” Proc. Int. Symp. Circuits Syst., pp. III-399-III-402, 2003.
[1
5] M. Park and I. K. Yu, “A study on optimal voltage for MPPT obtained by surface temperature of solar cell,” in Proc. 30th Annu. Conf. IEEE Ind. Electron. Soc., pp. 2040-2045, Nov. 2004.
[16] F. Coelho, M. Concer, C. Martins, “A MPPT approach based on temperature measurements applied in PV systems,” IEEE International Conference on Industry Applications.(IAS), pp. 1-6, Nov. 2010.
[17] Y. K. Lo, J. M. Wang and K. J. Pai, "Improved commutation method for a full-bridge current-source inverter,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 961-963, Feb. 2008.
[18] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics-Converters, Applications, and Design, 3rd edition , John Wiley & Sons, 2003.
[19] S. B. Kjaer, K. K. Pedersen, and F. Blaabjerg, “A review of single-phase grid-connected inverters for photovoltaic modules,” IEEE Trans. Ind. Appl., vol. 41(5), pp. 1292-1306, Sep./Oct. 2005
[20] T. Shimizu, K. Wada, and N. Nakamura, “A flyback-type single phase utility interactive inverter with low-frequency ripple current reduction on the DC input for an AC photovoltaic module system,” IEEE Power Electron. Spec. Conf.(PESC), vol. 3, pp. 1483-1488, Jun. 2002.
[21] S. B. Kjaer and F. Blaabjerg, “Design optimization of a single phase inverter for photovoltaic applications,” IEEE Power Electron. Spec. Conf.(PESC), vol. 3,pp. 1183-1190, Jun. 2003.
[22] S. Khajehodin, A. Bakhshai, P. Jain, and J. Drobnik, “A robust power decoupler and maximum power point tracker topology for a grid-connected photovoltaic system,” IEEE Power Electron. Spec. Conf.(PESC), pp. 66-69, June. 2008.
[23] S. B. Kjaer, “Design and control of an inverter for photovoltaic applications,” Ph.D. dissertation, Inst. Energy Technol., Aaborg University, Aaborg East, Denmark, 2002.
[24] J. Espinoza, G. Joos, and P. Ziogas, “Current source converter on-line pattern generator with switching frequency minimization,” IEEE Trans. Ind. Electron., vol. 44(2),pp. 198-206, Apr. 1997.
[25] G. Ledwich, “Current source inverter modulation,” IEEE Trans. on Power Electronic., vol. 6(4),pp. 618-623, Oct. 1991.
[26] D. N. Zmood and D. G. Holmes, “A generalized approach to the modulation of current source inverters,” IEEE Power Electron. Spec. Conf.(PESC), vol. 1, pp. 739-745, May. 1998.
[27] S. Wei and A. Maswood, “A novel current source PWM drive topology with specific harmonic elimination switching patterns,” IEEE Power Eng. Rev.,vol. 20(12), pp.53-55, Dec. 2000.
[28] J. Sun, S. Beineke, and H. Grotstollen, “Optimal PWM based on real-time solution of harmonic elimination equations,” IEEE Trans. on Power Electronics, vol. 11, no. 4, pp. 612-621, July. 1996.
[29] K. Hirachi and Y. Tomokuni, “Improved control strategy to eliminate the harmonic current components for single-phase PWM current source inverter,” in Proc. Int. Telecommun. Energy Conf., pp. 189-194, Oct. 1997,
[30] R. T. H. Li , H. S. Chung and T. K. M. Chan, ”An active modulation technique for single-phase grid-connected CSI,” IEEE Trans. on Power Electronics., vol. 22, no. 4, pp. 1373-1382, Jul. 2007.
指導教授 魏慶隆(Chin-Long Wey) 審核日期 2011-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明