博碩士論文 975201031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:3.147.66.193
姓名 黃宣貴(Hsuan-Kuei Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 含高速化排序架構之天線組態可變的多輸入輸出解碼器設計
(Design of Antenna-Configurable MIMO Detector with High Speed Sorting Architectures)
相關論文
★ 應用於2.5G/5GBASE-T乙太網路傳收機之高成本效益迴音消除器★ 應用於IEEE 802.3bp車用乙太網路之硬決定與軟決定里德所羅門解碼器架構與電路設計
★ 適用於 10GBASE-T 及 IEEE 802.3bz 之高速低密度同位元檢查碼解碼器設計與實現★ 基於蛙跳演算法及穩定性準則之高成本效益迴音消除器設計
★ 運用改良型混合蛙跳演算法設計之近端串音干擾消除器★ 運用改良粒子群最佳化演算法之近端串擾消除器電路設計
★ 應用於多兆元網速乙太網路接收機 類比迴音消除器之最小均方演算法電路設計★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器
★ 地面數位電視廣播基頻接收器之載波同步設計★ 適用於通訊系統之參數化數位訊號處理器核心
★ 以正交分頻多工系統之同步的高效能內插法技術★ 正交分頻多工通訊中之盲目頻域等化器
★ 兆元位元率之平行化可適性決策回饋等化器設計與實作★ 應用於數位視頻廣播系統中之自動增益放大器 及接受端濾波器設計
★ OFDM Symbol Boundary Detection and Carrier Synchronization in DVB-T Baseband Receiver Design★ 適用於億元位元率混合光纖與銅線之電信乙太接取網路技術系統之盲目等化器和時序同步電路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在此論文裡,我們提出了可適用於6×6、5×5、4×4、3×3 和2×2不同的天線組態,以及可支援64-QAM、16-QAM、QPSK和BPSK不同的調變方法且K值10的K最佳多輸入輸出解碼器。我們設計了改良型K最佳演算法(Modified K-best, 以下簡稱MKB)來取代傳統K最佳演算法每層都需要排序的特色,改為每兩層排序一次減少排序的次數,為了進一步減少拜訪的點數又設計了新式的編碼式列舉法(Code-Book Enumeration, 以下簡稱CBE)將拜訪節點由K×√M減少為K×e,針對排序效率的提升設計了新式的排序方法平行切割合併法(Parallel-Slice Merge Algorithm, 以下簡稱PSMA)和平行氣泡切割排序法(Parallel Bubble-Slice Sort, 以下簡稱PBSS)來加快排序的速度。在硬體的實現上,我們利用MKB與排序電路的組合方塊來達到管線式架構可配置的需求。為了減少乘法器的複雜度,我們使用移位乘法器(Shift Multiplier, SM)來取代傳統的乘法器。本論文使用SMIMS VeriEnterprise Xilinx FPGA驗證電路功能,並以Design Compiler 與UMC Faraday 90μm製程合成與其他文獻作比較。
摘要(英) In this thesis, we proposed a MIMO detector which can support multiple antenna types (6×6, 5×5, 4×4, 3×3, and 2×2), various modulation schemes (64-QAM, 16-QAM, QPSK, and BPSK) and K-value (K=10). From the algorithm aspects, we deigned a modified K-best algorithm (MKB) can reduce the number of sorting layer from 2Nt to Nt, compared with the conventional K-best algorithm. The MKB also include the Code-Book Enumeration to reduce number of visted nodes from K×√(M ) to K×e.To further enhance sorting performance, we design the Paralled-Slice Merge algorithm(PSMA) and Parallel Bubble-Slice sort(PBSS). In terms of hardware implementation, the MKB and sorting circuit are designed as elementary building blocks. With these building blocks, the proposed MIMO detector can flexibly achieve the configurable architecture. In order to simplify the multiplier complexity, we propose a novel shift-multiplier (SM) to replace the conventional multiplier. Finally, the proposed configurable MIMO detector is verified by the SIMIS VeriEnterprise Xilinx FPGA development board.
關鍵字(中) ★ 改良型K最佳演算法
★ 排序法
★ 多輸入輸出解碼器
★ K最佳演算法
關鍵字(英) ★ MIMO
★ K-Best
★ MKB
★ Sorting Algorithm
論文目次 摘 要.....................................................i
Abstract.................................................ii
致謝....................................................iii
目錄.....................................................iv
圖目錄...................................................vi
表目錄....................................................x
第一章 緒論..............................................1
1.1 背景..............................................1
1.2 研究動機..........................................4
1.3 論文架構..........................................5
第二章 多輸入輸出系統....................................6
2.1 系統架構..........................................6
2.2 多輸入輸出技術....................................8
2.2.1 發射分集..........................................8
2.2.2 接收分集.........................................10
2.2.3 波束成型.........................................11
2.2.4 空間多工.........................................12
2.3 空間多工解碼.....................................13
2.3.1 線性解碼.........................................13
2.3.2 非線性解碼.......................................14
第三章 K-最佳演算法.....................................17
3.1 實數訊號模型.....................................17
3.2 傳統K-最佳演算法.................................19
3.3 所提出之改良型K-最佳演算法.......................20
3.3.1 改良型K-最佳演算法步驟說明.......................22
3.3.2 星座點列舉法.....................................25
3.3.3 合併/排序法......................................35
3.3.4 天線組態可配置之系統架構.........................51
3.4 複雜度與效能比較分析.............................57
第四章 K-最佳演算法解碼器硬體電路設計..................59
4.1 MKB硬體架構......................................60
4.2 輔助單元設計.....................................62
4.2.1 移位乘法器.......................................63
4.3 前端解碼電路設計.................................67
4.3.1 路徑延伸1:16電路設計.............................71
4.3.2 前端排序電路設計.................................72
4.4 後端解碼電路設計.................................76
4.4.1 路徑延伸1:2電路設計..............................77
第五章 硬體實現.........................................79
5.1 設計流程.........................................79
5.2 定點數分析.......................................80
5.3 FPGA驗證.........................................86
5.4 硬體比較.........................................88
第六章 結論.............................................91
參考文獻.................................................92
參考文獻 [1] 3G LTE & IMT-Advanced Service, HSN 2006, February 22-24, 2006, Dr. Hyeon Woo Lee, Global Standards & Research, SAMSUNG ELECTRONICS
[2] 林菀睛, ”連結性為下一波殺手級應用-電視機增添有線/無線功能,” 新電子科技雜誌, vol. 266, pp.169-171, may.2008.
[3] 鍾榮峯, “WirelessHD/WiGig/WHDI三劍客各有一片天!,” 零組件雜誌, 第222期, 2010年4月號.
[4] 曾保彰:無線網路將取代有線網路-802.11n簡介。2010年6月20日,取自http://www.cc.ntu.edu.tw/chinese/epaper/0013/20100620_1308.htm。
[5] IEEE standard for information technology telecommunications and information exchange between systems local and metropolitan area networks, part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, IEEE 802.11, 2009
[6] AirMagnet, “802.11n Primer,” Whitepaper, August 05, 2008.
[7] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closet point search in lattices,” IEEE Trans. Inform. Theory, vol. 48, no. 8, pp. 2201-2214, Aug. 2002.
[8] K.-W. Wong, C.-Y. Tsui, R. S.-K Cheng and W.-H. Mow, “A VLSI architecture of a K-best lattice decoding algorithm for MIMO channels,” in Proc. ISCAS, May 2002, pp. 273-276.
[9] M. Wenk, M. Zellweger, A. Burg, N. Felber, and W. Fichtner, “K-Best MIMO detection VLSI architectures achieving up to 424 Mbps,” in proc ISCAS 2006, pp. 1151-1154.
[10] Z. Guo and P. Nilsson, “Algorithm and implementation of the K-best sphere decoding for MIMO detection,” IEEE J. Sel. Areas Commun., vol. 24, no. 3, pp. 491-503., 2006.
[11] M. Shabany and P. G. Gulak, “Scalable VLSI architecture for K-best lattice decoders,”in proc. ISCAS, 2008, pp. 940-943.
[12] 李蔚澤、許家華”WiMax技術原理與應用:瞭解寬頻無線網路”,2007年
[13] E. Perahia, R. Stacey, “Next Generation Wireless LANs:Throughtput, Robustness, and Reliability in 802.11n” Cambridge University Press, Sep. 2008.
[14] S. M. Alamouti, “A Simple transmit diversity technique for wireless communication,” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451-1458., Oct. 1998.
[15] E. Teletar. “Capacity of multi-antenna Gaussian channels,” European Transactions Telecommunications, pp. 585-595., Nov.-Dec. 1999.
[16] G. Golden, C. Foschini, R. Valenzuela, and P. Wolniansky, “Detection algorithm and initiallaboratoryresultsusingV-BLAST space-time communication architecture,” IEEE Electron. Lett., vol. 35, no. 1, pp. 14-16., Jan. 1999.
[17] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and H. Bolcskei, “VLSI implementation of MIMO detection using the sphere decoding algorithm,” IEEE J. Solid-State Circuit, vol. 40, pp. 1566-1577., 2005.
[18] C. Studer, A. Burg, and H. Bolcskei, “Soft-output sphere decoding:Algorithm and VLSI implementation,” IEEE J. Sel. Areas Commun., vol. 26, no. 2, pp. 290-300., 2008.
[19] IEEE (2010). IEEE 802.16m System Description Document (SDD) Draft
[20] C.-H. Liao, T.-P. Wang and T.-D. Chiueh, “A 74.8mW soft-output detector IC for 8×8 spatial-multiplexing MIMO communications,” IEEE J. Solid-State Circuit, vol. 45, no. 2, pp. 411-421., 2010
[21] T.-P. Wang and T.-D. Chiueh, “Design of a New Complex Sphere Decoder for Soft-Output MIMO Detection” National Taiwan University thesis, 2007.
[22] M. Shabany, K. Su, and P. G. Gulak, “A pipelined scalable high-throughput implementation of a near-ML K-best complex lattice decoder,” in Proc. ICASSP, 2008, pp. 3173-3176.
[23] S. Yazdi, T. Kwasniewski, “Configurable K-best MIMO Detector Architecture”in Proc. ISCCSP, 2008, pp.1565 – 1569.
[24] M. Shabany, and P. G. Gulak, “A 0.13μm CMOS 655Mb/s 4×4 64-QAM K-best MIMO detector,” in Proc. IEEE Int, Solid-State Circuits Conf., Feb. 2009, pp. 256-257.
[25] C.-J. Huang, C.-W. Yu, and H.-P. Ma, “A power-efficient configurable low-complexity MIMO detector,” IEEE Trans. Circuit and Syst.-I: Regular Papers, vol. 56, no. 2, pp. 485-496., Feb. 2009.
[26] H.-L. Lin, R. C. Chang, and H.-L. Chen,“A high-speed SDM-MIMO decoder using efficient candidatesearching for wireless communication,”IEEE Trans. Circuit and Syst.--II: Express Briefs, vol. 55, no. 3, pp. 289-293., Mar. 2008.
[27] B. M. Hochwald and S. ten Brink,”Achieving near-capacity on a multiple-antenna channel,”IEEE Trans. Commun., vol. 51, no. 3, pp. 389-399., Mar. 2003.
[28] L. C. Godara,”Application of antenna arrays to mobile communications, part II: Beam-forming anddirection-of-arrival considerations,” Proc. IEEE, vol. 85, no. 8, pp. 1195-1245., Aug.1997.
[29] C.-H. Yang, D. Marković, “A Flexible DSP Architecture for MIMO Sphere Decoding,” IEEE Trans. Circuit and Syst.-I: Regular Papers, vol. 56, no. 10, Oct. 2009.
[30] R. Shariat-Yazdi and T. Kwasniewski,”A Multi-mode Sphere Detector Architecture for WLAN Applications” IEEE SOC Confrerence, Sep, 2008, pp. 155-158.
[31] D. Garrett, L. Davis, S. Brink, B. Hochwald, G. Knagge,”Silicon Complexity for Maximum Likelihood MIMO Detection Using Spherical Decoding,” IEEE Int, Solid-State Circuits Conf.,vol. 39, no. 9, Sep. 2004.
[32] P.-Y. Tsai, X.-C. Lin, “Improved K-best Sphere Decoder with a Look-ahead Technique for Multiple-Input Multiple-Output Systems” IEEE ISPACS, Feb. 2008, pp.1-4.
[33] B.-S. Kim, K. Choi, “SNR Measurement-Free Adaptive K-Best Algorithm for MIMO Systems” IEEE WCNC, Apr. 2008, pp. 628-633.
[34] S. Mondal, A. M. Eltawil, K. N. Salama,“Architectural Optimizations for Low-Power K-Best MIMO Decoders” IEEE Trans. Vechicular Tech., vol. 58, no. 7, Sep. 2009.
[35] K. E. Batcher, “Sorting networks and their applications,” Proc. AFIPS Spring Joint Comput. Conference, 1968, pp. 307-314.
[36] Z. Guo and P. Nilsson, "A VLSI architecture of the Schnorr-Euchner decoder for MIMO systems," in Proc. IEEE CAS Symposium on Emerging Technologies, June 2004, pp.65-68.
[37] J. Jie, C. Tsui, and W. Mow, "A threshold-based algorithm and VLSI architecture of a K-best Lattice Decoder for MIMO Systems," in Proc. IEEE ISCASO05, May 2005, pp. 3359-3362.
[38] H.-L. Lin, R. C. Chang, and H.-L. Chen, “A high-speed SDM-MIMO decoder using efficient candidate searching for wireless communication,” IEEE Trans. Circuit and Syst.--II: Express Briefs, vol. 55, no. 3, pp. 289-293., Mar. 2008.
[39] N. Moezzi-Madani, T. Thorolfsson, and W. Davis, “A low-area flexible mimo detector for wifi/wimax standards,” in DATE ’10: Proceedings of the 2010 Design, Automation and Test Conference, mar. 2010, pp. 1633–1636
[40] S. Chen and T. Zhang, “Low power soft-output signal detector design for wireless MIMO communication systems,” in Proc. International Symp. on Low Power Electronics and Design, pp. 232–237, 2007
[41] IEEE 802.16m Evaluation Methodology Document (EMD), IEEE 802.16m-08/004r5, 2009-01-15.
指導教授 薛木添(Muh-Tian Shiue) 審核日期 2011-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明